首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Since the actual combinatorial diversity in the V(H) repertoire in fetal piglets represents <1% of the potential in mice and humans, we wondered whether 1) complementarity-determining region 3 (CDR3) diversity was also restricted; 2) CDR3 diversity changed with fetal age; and 3) to what extent CDR3 contributed to the preimmune VDJ repertoire. CDR3 spectratyping and sequence analyses of 213 CDR3s recovered from >30 fetal animals of different ages showed that >95% of VDJ diversity resulted from junctional diversity. Unlike sheep and cattle, somatic hypermutation does not contribute to the repertoire. These studies also revealed that 1) N region additions are as extensive in VDJ rearrangements recovered at 30 days as those in late term fetuses, suggesting that TdT is fully active at the onset of VDJ rearrangement; 2) nearly 90% of all rearrangement are in-frame until late gestation; 3) the oligoclonal CDR3 spectratype of 30-day fetal liver becomes polyclonal by 50 days, while this change occurs much later in spleen; 4) there is little evidence of individual variation in CDR3 spectratype or differences in spectratype among lymphoid tissues with the exception of the thymus; and 4) there is a tendency for usage of the most J(H) proximal D(H) segment (D(H)B) to decrease in older fetuses and for the longer D(H) segment to be trimmed to the same length as the shorter D(H) when used in CDR3. These findings suggest that in the fetal piglet, highly restricted combinatorial diversity and the lack of somatic mutation are compensated by early onset of TdT activity and other mechanisms that contribute to CDR3 junctional diversity.  相似文献   

3.
In embryonic mice pluripotential hemopoietic stem cells (PHSC) originate in the yolk sac and migrate to the fetal liver and from there to the bone marrow. Hemopoietic cells from yolk sac and fetal liver also migrate to the thymic primordium, and within the thymic environment these prothymocytes differentiate into mature T cells. We have recently demonstrated that macromolecular insoluble cold globulin (MICG), a T cell marker, is synthesized and inserted into the plasma membrane of embryonic prothymocytes as soon as these cells appear in the early thymus. In addition, we have shown that MICG+ cells are present within the fetal liver before the thymus has fully formed. In the present study we show that pluripotential hemopoietic stem cells in the fetal liver and bone marrow have MICG on their surface and represent a subpopulation of these MICG+ cells. The implications of these findings in relationship to stem cell differentiation and isolation are discussed.  相似文献   

4.
Mature T cells are derived from prethymic stem cells, which arise at one or more extrathymic sites and enter and differentiate in the thymus. The nature of these prethymic stem cells is a critical factor for the formation of the T-cell repertoire. Although the bone marrow of adult mice can provide such stem cells, their origin during murine embryogenesis is still undetermined. Among potential sites for these progenitor cells are the fetal liver and the embryonic yolk sac. Our studies focus on the yolk sac, both because the yolk sac appears earlier than any other proposed site, and because the mammalian yolk sac is the first site of hematopoiesis. Although it has been shown that the yolk sac in midgestation contains stem cells that can enter the thymic rudiment and differentiate toward T-cell lineage, our aim was to analyze the developmental potential of cells in the yolk sac from earlier stages, prior to the formation of the liver and any other internal organ. We show here that the yolk sac from 8- and 9-day embryos (2-9 and 13-19 somites, respectively) can reconstitute alymphoid congenic fetal thymuses and acquire mature T-cell-specific characteristics. Specifically, thymocytes derived from the early embryonic yolk sac can progress to the expression of mature T lymphocyte markers including CD3/T-cell receptor (TCR), CD4 and CD8. In contrast, we have been unable to document the presence of stem cells within the embryo itself at these early stages. These results support the hypothesis that the stem cells capable of populating the thymic rudiment originate in the yolk sac, and that their presence as early as at the 2- to 9-somite stage may indicate that prethymic stem cells found elsewhere in the embryo at later times may have been derived by migration from this extra-embryonic site. Our experimental design does not exclude the possibility of multiple origins of prethymic stem cells of which the yolk sac may provide the first wave of stem cells in addition to other later waves of cells.  相似文献   

5.
Of birds and mice: hematopoietic stem cell development   总被引:2,自引:0,他引:2  
For many years it has been assumed that the ontogeny of the mammalian hematopoietic system involves sequential transfers of hematopoietic stem cells (HSCs) generated in the yolk sac blood islands, to successive hematopoietic organs as these become active in the embryo (fetal liver, thymus, spleen and eventually bone marrow). Very little was known about early events related to hematopoiesis that could take place during the 4.5 day gap separating the appearance of the yolk sac blood islands and the stage of a fully active fetal liver. Experiments performed in birds documented that the yolk sac only produce erythro-myeloid precursors that become extinct after the emergence of a second wave of intra-embryonic HSCs from the region neighbouring the dorsal aorta. The experimental approaches undertaken over the last ten years in the murine model, which are reviewed here, led to the conclusion that the rules governing avian hematopoietic development basically apply to higher vertebrates.  相似文献   

6.
Hematopoietic stem cells (HSC) are multi-potent cells that function to generate a lifelong supply of all blood cell types. During mammalian embryogenesis, sites of hematopoiesis change over the course of gestation: from extraembryonic yolk sac and placenta, to embryonic aorta-gonad-mesonephros region, fetal liver, and finally fetal bond marrow where HSC reside postnatally. These tissues provide microenviroments for de novo HSC formation, as well as HSC maturation and expansion. Within adult bone marrow, HSC self-renewal and differentiation are thought to be regulated by two major cellular components within their so-called niche: osteoblasts and vascular endothelial cells. This review focuses on HSC generation within, and migration to, different tissues during development, and also provides a summary of major regulatory factors provided by osteoblasts and vascular endothelial cells within the adult bone marrow niche.  相似文献   

7.
The continuous ileal Peyer's patches (IPP) of sheep are regarded as a type of mammalian bursal equivalent where B cells diversify their repertoire in an Ag-independent fashion. Anatomically and developmentally similar IPP occur in swine. Resection of ~90% of the IPP in piglets at birth did not alter Ig levels in serum and secretions or retard diversification of the Ab repertoire when animals were maintained in isolators and colonized with a defined gut flora. Resection or sham surgery elevated IgG and IgA in serum and in lavage fluid from the gut, lung, and in saliva. No changes in the frequency of IgG-, IgA-, and IgM-containing cells in the spleen and peripheral lymph node were observed. Using an index that quantifies diversification of the VDJ repertoire, no differences were seen in three secondary lymphoid tissues between piglets lacking IPP and colonized controls, whereas both groups displayed >10-fold greater diversification than did late-term fetal piglets or piglets maintained germ-free. Somatic hypermutation was very low in fetal IPP and the IPP of germ-free piglets but increased 3- to 5-fold after colonization. D-J signal joint circles were not recovered in IPP, and V-DJ signal joint circles were 5-fold lower than in bone marrow and similar to those in thymus and spleen. We conclude that the porcine IPP are not a site of B cell lymphogenesis, do not undergo Ag-independent repertoire diversification, and are not primary lymphoid tissue since they are not required for maintenance of Ig levels in serum and secretions.  相似文献   

8.
The platelet glycoprotein IIb (alpha(IIb); CD41) constitutes the alpha subunit of a highly expressed platelet surface integrin protein. We demonstrate that CD41 serves as the earliest marker of primitive erythroid progenitor cells in the embryonic day 7 (E7.0) yolk sac and high-level expression identifies essentially all E8.25 yolk sac definitive hematopoietic progenitors. Some definitive hematopoietic progenitor cells in the fetal liver and bone marrow also express CD41. Hematopoietic stem cell competitive repopulating ability is present in CD41(dim) and CD41(lo/-) cells isolated from bone marrow and fetal liver cells, however, activity is enriched in the CD41(lo/-) cells. CD41(bright) yolk sac definitive progenitor cells co-express CD61 and bind fibrinogen, demonstrating receptor function. Thus, CD41 expression marks the onset of primitive and definitive hematopoiesis in the murine embryo and persists as a marker of some stem and progenitor cell populations in the fetal liver and adult marrow, suggesting novel roles for this integrin.  相似文献   

9.
10.
Presence of mast cell precursors in the yolk sac of mice   总被引:3,自引:0,他引:3  
Concentration of mast-cell precursors in hematopoietic tissues of mouse embryos was evaluated by a limiting dilution method. Cells from yolk sacs, livers, and bodies of (WB x C57BL/6)F1 (hereafter called WBB6F1)- +/+ embryos were injected directly into the skin of adult WBB6F1-W/Wv mice which were genetically depleted of tissue mast cells. Concentration of mast-cell precursors was calculated from the proportion of injection sites at which mast cells did not appear. Since the concentration of mast-cell precursors in the yolk sac was about 30 times as great as that of embryonic body at Day 9.5 of the pregnancy, the mast-cell precursors seemed to be generated within the yolk sac. The concentration in the yolk sac reached the maximum level at Day 11, and then dropped markedly at Day 13. In contrast, mast-cell precursors increased from Day 11 to Day 15 in the fetal liver. As a result, the concentration of 11-day yolk sacs was comparable to that of 15-day fetal liver. Although intravenous injection of 15-day fetal liver cells (2 x 10(6)) rescued the general mast-cell depletion of WBB6F1-W/Wv mice, the intravenous injection of the same number of 11-day yolk sac cells did not rescue it. In contrast with fetal livers, yolk sacs scarcely contained hematopoietic stem cells which were measured by spleen colony formation. Therefore, the mast-cell precursors of the yolk sac may not originate from such stem cells.  相似文献   

11.
Intimate interactions between the two major systems of cell-to-cell communication, the neuroendocrine and immune systems, play a pivotal role in homeostasis and developmental biology. During phylogeny as well as during ontogeny, the molecular foundations of the neuroendocrine system emerge before the generation of diversity within the system of immune defenses. Before reacting against non-self infectious agents, the immune system has to be educated in order to tolerate the host molecular structure (self). The induction of self-tolerance is a multistep process that begins in the thymus during fetal ontogeny (central tolerance) and also involves anergizing mechanisms outside the thymus (peripheral tolerance). The thymus is the primary lymphoid organ implicated in the development of competent and self-tolerant T-cells. During ontogeny, T-cell progenitors originating from hemopoietic tissues (yolk sac, fetal liver, then bone marrow) enter the thymus and undergo a program of proliferation, T-cell receptor (TCR) gene rearrangement, maturation and selection. Intrathymic T-cell maturation proceeds through discrete stages that can be traced by analysis of their cluster differentiation (CD) surface antigens. It is well established that close interactions between thymocytes (pre-T-cells) and the thymic cellular environment are crucial both for T-cell development and for induction of central self-tolerance. Particular interest has focused on the ability of thymic stromal cells to synthesize polypeptides belonging to various neuroendocrine families. The thymic repertoire of neuroendocrine-related precursors recapitulates at the molecular level the dual role of the thymus in T-cell negative and positive selection. Thymic precursors not only constitute a source of growth factors for cryptocrine signaling between thymic stromal cells and pre-T-cells, but are also processed in a way that leads to the presentation of self-antigens by (or in association with) thymic major histocompatibility complex (MHC) proteins. Thymic neuroendocrine self-antigens usually correspond to peptide sequences highly conserved during the evolution of their corresponding family. The thymic presentation of some neuroendocrine self-antigens does not seem to be restricted by MHC alleles. Through the presentation of neuroendocrine self-antigens by thymic MHC proteins, the T-cell system might be educated to tolerate main hormone families. More and more recent experiments support the concept that a defect in thymic tolerogenic function is implicated as an important factor in the pathophysiology of autoimmunity.  相似文献   

12.
The first and major blood-forming organ to develop in the viviparous lizard Chalcides ocellatus is the yolk sac, which exhibits prominent erythropoietic activity from as early as stage 21 through birth (stage 41). Myeloid cells and megakaryocytes are produced in the yolk sac from stage 23 onward. During lizard embryogenesis hemopoietic activity is also observed in spleen and bone marrow but in neither kidney nor liver. Cells capable of giving rise to lymphocytes both in vivo and in vitro are first found in the thymus at stage 35. Active lymphopolesis in thymus and spleen begins at stages 36 and 39, respectively. In contrast, the gut-associated lymphoid aggregates are not evident before birth.  相似文献   

13.
14.
Uninfected chicken cells were found to contain endogenous avian myeloblastosis virus (AMV)-specific information. Different tissues from chicken embryos and chickens expressed different amounts of the AMV-specific information. The endogenous AMV-related RNA was most abundant in bone marrow cells, which contained about 20 copies per cell. About 5 to 10 copies of AMV endogenous RNA per cell were found in embryonic yolk sac cells and bursa cells. The spleen, muscle, liver, and kidney cells of chickens and the fibroblasts of chicken embryos contained about two copies per cell. The amounts of AMV endogenous RNA in bone marrow, yolk sac, and bursa varied with age. From 19-day-old embryos to 2-week-old chickens, the bone marrow contained 20 copies of AMV RNA per cell. Bone marrow cells from 2-year-old chickens contained five copies per cell. Yolk sac cells of 10-day-old embryos and 1-day-old chickens were found to contain two copies per cell, whereas in 15- to 17-day-old embryos, these cells contained 5 to 10 copies. These results indicate that the level of endogenous AMV expression correlates with the development of granulopoiesis of the chicken hemopoietic system. The results of experiments on the thermostability of RNA-DNA hybrids indicated that the endogenous AMV RNA is closely related to viral AMV RNA. The expression of endogenous AMV information is independent of the activity of the chick helper factor. This endogenous AMV information is expressed as 20 to 21S RNA in both bone marrow and yolk sac cells.  相似文献   

15.
Remarkable differences were found between late erythroid progenitors (CFU-e) in cultures of murine yolk sac cells and those of fetal liver cells with respect to frequency, erythropoietin responsiveness and colony size. Cultures of yolk sac on day 11 of gestation showed a CFU-e population of lower frequency, less sensitivity to erythropoietin and smaller colony size than those from cultures of day 14 fetal liver cells. As the proportion of CFU-e to BFU-e was much lower in yolk sac than that in fetal liver, 48-96 h liquid culture experiments were done with these cells to examine the capacity of their precursors to generate a certain amount of CFU-e subpopulations. The cultures of yolk sac cells produced large numbers of CFU-e which formed some large-sized colonies but those of fetal liver cells generated only a small amount of CFU-e.  相似文献   

16.
Macrophages are widely distributed in lymphohaemopoietic and other tissues of the normal and diseased adult, where they play an important role in host defence and repair. Although the development of haemopoiesis has been well studied in several species, the ontogeny of the mononuclear phagocyte system remains poorly understood. We have used a highly specific mAb, F4/80, to examine the distribution of mature macrophages in the developing mouse, with special reference to their presence in the haemopoietic microenvironment. Monocytes and macrophages were first seen in embryos on day 10 in the yolk sac and liver as well as in mesenchyme. In liver, spleen and bone marrow, there was expansion of this population associated with the initiation of haemopoiesis on days 11, 15 and 17, respectively. Macrophages in these sites formed part of the haemopoietic stroma and their extensively spread plasma membrane processes could be seen making intimate contacts with clusters of differentiating haemopoietic cells. F4/80+ cells were widely dispersed in undifferentiated mesenchymal tissue in organs such as lung, kidney and gut. Numbers of F4/80-labelled cells increased concomitantly with organ growth and local mitoses were evident, as well as actively phagocytic macrophages. Our studies establish that macrophages are among the earliest haemopoietic cells to be produced during development and that they are relatively abundant in fetal tissues in the absence of overt inflammatory stimuli. Their distribution is correlated with the sequential migration of haemopoiesis and they constitute a prominent component of the stroma in fetal liver, spleen red pulp and bone marrow. Apart from a role in haemopoietic cellular interactions, their highly developed endocytic and biosynthetic activities suggest that macrophages contribute major undefined functions during growth, turnover and modelling of fetal tissues.  相似文献   

17.
HbF synthesis was studied during chicken development by incubating the yolk sac, the bone marrow, and blood cells in 59Fe-serum. A rapid change in the proportion of HbF synthesis is noted in the bone marrow between day 17 of incubation and hatching. During this change, the proportion of HbF synthesis decreases from the value observed in the yolk sac to the value found in the bone marrow of young chicks. The possibility that several erythropoietic cell lines exist during chicken development is discussed in the light of this observation.  相似文献   

18.
Integrin alphaIIb is a cell adhesion molecule expressed in association with beta3 by cells of the megakaryocytic lineage, from committed progenitors to platelets. While it is clear that lymphohemopoietic cells differentiating along other lineages do not express this molecule, it has been questioned whether mammalian hemopoietic stem cells (HSC) and various progenitor cells express it. In this study, we detected alphaIIb expression in midgestation embryo in sites of HSC generation, such as the yolk sac blood islands and the hemopoietic clusters lining the walls of the major arteries, and in sites of HSC migration, such as the fetal liver. Since c-Kit, which plays an essential role in the early stages of hemopoiesis, is expressed by HSC, we studied the expression of the alphaIIb antigen in the c-Kit-positive population from fetal liver and adult bone marrow differentiating in vitro and in vivo into erythromyeloid and lymphocyte lineages. Erythroid and myeloid progenitor activities were found in vitro in the c-Kit(+)alphaIIb(+) cell populations from both origins. On the other hand, a T cell developmental potential has never been considered for c-Kit(+)alphaIIb(+) progenitors, except in the avian model. Using organ cultures of embryonic thymus followed by grafting into athymic nude recipients, we demonstrate herein that populations from murine fetal liver and adult bone marrow contain T lymphocyte progenitors. Migration and maturation of T cells occurred, as shown by the development of both CD4(+)CD8- and CD4-CD8(+) peripheral T cells. Multilineage differentiation, including the B lymphoid lineage, of c-Kit(+)alphaIIb(+) progenitor cells was also shown in vivo in an assay using lethally irradiated congenic recipients. Taken together, these data demonstrate that murine c-Kit(+)alphaIIb(+) progenitor cells have several lineage potentialities since erythroid, myeloid, and lymphoid lineages can be generated.  相似文献   

19.
Blood-forming potential of vascular endothelium in the human embryo   总被引:15,自引:0,他引:15  
Hematopoietic cells arise first in the third week of human ontogeny inside yolk sac developing blood vessels, then, one week later and independently, from the wall of the embryonic aorta and vitelline artery. To address the suggested derivation of emerging hematopoietic stem cells from the vessel endothelium, endothelial cells have been sorted by flow cytometry from the yolk sac and aorta and cultured in the presence of stromal cells that support human multilineage hematopoiesis. Embryonic endothelial cells were most accurately selected on CD34 or CD31 surface expression and absence of CD45, which guaranteed the absence of contaminating hematopoietic cells. Yet, rigorously selected endothelial cells yielded a progeny of myelo-lymphoid cells in culture. The frequency of hemogenic endothelial cells in the yolk sac and aorta reflected the actual blood-forming activity of these tissues, as a function of developmental age. Even less expected, a subset of endothelial cells sorted similarly from the embryonic liver and fetal bone marrow also exhibited blood-forming potential. These results suggest that a part at least of emerging hematopoietic cells in the human embryo and fetus originate in vascular walls.  相似文献   

20.
A stromal cell clone, ST2, which can support both myelopoiesis and B lymphopoiesis of adult bone marrow was used as an in vitro microenvironment for investigating the ontogeny of the B cell progenitor in murine embryos. The B cell progenitor clonable on an ST2 layer first become detectable in the embryonal body rather than in the yolk sac around day 9.5 of gestation. As soon as it develops in the embryo, it enters the blood circulation and becomes detectable both in the developing fetal liver and the yolk sac of the 10 day embryo. On the other hand, mast cell and polymorphonuclear cell progenitors, which are also generated on the ST2 layer, develop first in the yolk sac and migrate to the fetal liver around day 10-11 of gestation. At the late stage of embryonal development, day 15-16 of gestation, the B cell progenitor enters the femur as vascularization of the femur starts. These results suggest that the localization of the committed stem cells for various hemopoietic cell lineages differs in the early embryo, although the localization of the pluripotent stem cells is yet to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号