首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stem cells isolated from adult mammalian tissues may provide new approaches for the autologous treatment of disease and tissue repair. Although the potential of adult stem cells has received much attention, it has also recently been brought into question. This article reviews the recent work describing the ability of non-hematopoietic stem cells derived from adult bone marrow to form neural derivatives and their potential for brain repair. Earlier transplantation experiments imply that grafted adult stem cells can differentiate into neural derivatives. Recent reports suggest, however, that such findings may be misleading and grafted cells acquiring different identities may merely be explained by their fusion with host cells and not the result of radical changes to their program of cellular differentiation. Nonetheless, in vitro studies have shown that neural development by bone-marrow-derived stem cells also appears possible. Understanding the molecular mechanisms that specify the neural lineage will lead to the development of tools for the targeted production of neural cell types in vitro that may ultimately provide a source of material to treat specific neurological deficits.  相似文献   

2.
在成体的许多组织中发现了多能干细胞,这些干细胞可以进行自我复制,参与组织的正常修复。神经干细胞在体外能分化为神经元、星形胶质细胞和少突胶质细胞,并具有多向分化潜能。成体神经干细胞和胚胎干细胞都能分化成成体神经系统中的各种神经细胞。神经干细胞具有自我更新能力,因此神经干细胞可以应用于神经损伤或者神经疾病的修复。本文概述了神经干细胞体外分离培养的方法及其生长影响因子。  相似文献   

3.
EGFL7 drives the formation of neurons from neural stem cells. In the embryonic and adult brain this process is essential for neurogenesis and homeostasis of the nervous system. The function of adult neurogenesis is not fully understood but maybe it supports life-long learning and brain repair after injuries such as stroke. The transition of neural stem cells into mature neurons is tightly regulated. One of the essential signaling pathways governing this process is the Notch pathway, which controls metazoan development. In a recent publication, we identified a novel non-canonical Notch ligand, EGFL7, and described its impact on neural stem cells.1 We explored the molecular mechanisms, which this molecule affects to regulate the self-renewal capacity of neural stem cells and to promote their differentiation into neurons. In this review, we discuss the implications of our findings for adult neurogenesis and illustrate the potential of EGFL7 to serve as an agent to increase neurogenesis and the self-renewal potential of the brain.  相似文献   

4.
Scientific advances in stem cell biology and adult neurogenesis have raised the hope that neurodegenerative disorders could benefit from stem cell-based therapy.Adult neurogenesis might be part of the physiological regenerative process; however, it might become impaired by the disease''s mechanism and therefore contribute to neurodegeneration. In prion disorders this endogenous repair system has rarely been studied. Whether adult neurogenesis plays a role or not in brain repair or in the propagation of prion pathology remains unclear. We have recently investigated the status of adult neural stem cells isolated from prion-infected mice. We were able to show that neural stem cells accumulate and replicate prions thus resulting in an alteration of their neuronal destiny. We also reproduced these results in adult neural stem cells, which were infected in vitro. The fact that endogenous adult neurogenesis could be altered by the accumulation of misfolded prion protein represents another great challenge. Inhibiting prion propagation in these cells would thus help the endogenous neurogenesis to compensate for the injured neuronal system. Moreover, understanding the endogenous modulation of the neurogenesis system would help develop effective neural stem cell-based therapies.  相似文献   

5.
Adult neural stem cells: plasticity and developmental potential.   总被引:28,自引:0,他引:28  
Stem cells play an essential role during the processes of embryonic tissue formation and development and in the maintenance of tissue integrity and renewal throughout adulthood. The differentiation potential of stem cells in adult tissues has been thought to be limited to cell lineages present in the organ from which they derive, but there is evidence that somatic stem cells may display a broader differentiation repertoire. This has been documented for bone marrow stem cells (which can give rise to muscle, hepatic and brain cells) and for muscle precursors, which can turn into blood cells. The adult central nervous system (CNS) has long been considered incapable of cell renewal and structural remodeling. Recent findings indicate that, even in postnatal and adult mammals, neurogenesis does occur in different brain regions and that these regions actually contain adult stem cells. These cells can be expanded both in vivo and ex vivo by exposure to different combinations of growth factors and subsequently give rise to a differentiated progeny comprising the major cell types of the CNS. Almost paradoxically, adult neural stem cells display a multipotency much broader than expected, since they can differentiate into non-CNS mesodermal-derivatives, such as blood cells and skeletal muscle cells. We review the recent findings documenting this unforeseen plasticity and unexpected developmental potential of somatic stem cells in general and of neural stem cells in particular. To better introduce these concepts, some basic notions on the functional properties of adult neural stem cells will also be discussed, particularly focusing on the emerging role of the microenvironment in determining and maintaining their peculiar characteristics.  相似文献   

6.
The evidence obtained in the last 15 years has shed new light on the functioning of the brain tissue in norm and pathology. It has been shown that proliferating stem cells exist in the adult brain. Under certain conditions, these cells can participate in posttraumatic repair, replacing perished cells. The involvement of stem cells in the development of malignant tumors have been established. Numerous genomic mechanisms of regulating self-renewal of neural stem cells, their proliferation and differentiation have been found. These findings open new avenues in studying brain functions and development. They are used for designing cardinally novel technologies for treating neurogenerative diseases and brain cancers. In this review, we present new evidence on the genomic mechanisms involved in governing the fate of neural stem cells in vivo and in vitro.  相似文献   

7.
The past decade has witnessed ground-breaking advances in human stem cell biology with scientists validating adult neurogenesis and establishing methods to isolate and propagate stem cell populations suitable for transplantation. These advances have forged promising strategies against human neurodegenerative diseases. For example, growth factor administration could stimulate intrinsic repair from endogenous neural stem cells, and cultured stem cells engineered into biopumps could be transplanted to deliver neuroprotective or restorative agents. Stem cells could also be transplanted to generate new neural elements that augment and potentially replace degenerating central nervous system (CNS) circuitry. Early efforts in neural tissue transplantation have shown that these strategies can improve functional outcome, but the ultimate success of clinical stem cell-based strategies will depend on detailed understanding of stem cell biology in the degenerating brain and detailed evaluation of their functional efficacy and safety in preclinical animal models.  相似文献   

8.
Cord blood–derived neural stem cells (NSCs) are proposed as an alternative cell source to repair brain damage upon transplantation. However, there is a lack of data showing how these cells are driven to generate desired phenotypes by recipient nervous tissue. Previous research indicates that local environment provides signals driving the fate of stem cells. To investigate the impact of these local cues interaction, the authors used a model of cord blood–derived NSCs co-cultured with different rat brain–specific primary cultures, creating the neural-like microenvironment conditions in vitro. Neuronal and astro-, oligo-, and microglia cell cultures were obtained by the previously described methods. The CMFDA-labeled neural stem cells originated from, non-transformed human umbilical cord blood cell line (HUCB-NSCs) established in a laboratory. The authors show that the close vicinity of astrocytes and oligodendrocytes promotes neuronal differentiation of HUCB-NSCs, whereas postmitotic neurons induce oligodendrogliogenesis of these cells. In turn, microglia or endothelial cells do not favor any phenotypes of their neural commitment. Studies have confirmed that HUCB-NSCs can read cues from the neurogenic microenvironment, attaining features of neurons, astrocytes, or oligodendrocytes. The specific responses of neurally committed cord blood–derived cells, reported in this work, are very much similar to those described previously for NSCs derived from other “more typical” sources. This further proves their genuine neural nature. Apart from having a better insight into the neurogenesis in the adult brain, these findings might be important when predicting cord blood cell derivative behavior after their transplantation for neurological disorders.  相似文献   

9.
The evidence obtained in the last 15 years has shed new light on the functioning of the brain tissue in norm and pathology. It has been shown that proliferating stem cells exist in the adult brain. Under certain conditions, these cells can participate in posttraumatic repair, replacing perished cells. The involvement of stem cells in the development of malignant tumors have been established. Numerous genomic mechanisms of regulating self-renewal of neural stem cells, their proliferation and differentiation have been found. These findings open new avenues in studying brain functions and development. They are used for designing cardinally novel technologies for treating neurogenerative diseases and brain cancers. In this review, we present new evidence on the genomic mechanisms involved in governing the fate of neural stem cells in vivo and in vitro.  相似文献   

10.
Neural stem cells are the most immature progenitor cells in the nervous system and are defined by their ability to self-renew by symmetric division as well as to give rise to more mature progenitors of all neural lineages by asymmetric division (multipotentiality). The interest in neural stem cells has been growing in the past few years following the demonstration of their presence also in the adult nervous system of several mammals, including humans. This observation implies that the brain, once thought to be entirely post-mitotic, must have at least a limited capacity for self-renewal. This raises the possibility that the adult nervous system may still have the necessary plasticity to undergo repair of inborn defects and acquired injuries, if ways can be found to exploit the potential of neural stem cells (either endogenous or derived from other sources) to replace damaged or defective cells. A full understanding of the molecular mechanisms regulating generation and maintenance of neural stem cells, their choice between different differentiation programmes and their migration properties is essential if these cells are to be used for therapeutic applications. Here, we summarize what is currently known of the genes and the signalling pathways involved in these mechanisms.  相似文献   

11.
Research on stem cells has developed as one of the most promising areas of neurobiology. In the beginning of the 1990s, neurogenesis in the adult brain was indisputably accepted, eliciting great research efforts. Neural stem cells in the adult mammalian brain are located in the ‘neurogenic’ areas of the subventricular and subgranular zones. Nevertheless, many reports indicate that they subsist in other regions of the adult brain. Adult neural stem cells have arisen considerable interest as these studies can be useful to develop new methods to replace damaged neurons and treat severe neurological diseases such as neurodegeneration, stroke or spinal cord lesions. In particular, a promising field is aimed at stimulating or trigger a self‐repair system in the diseased brain driven by its own stem cell population. Here, we will revise the latest findings on the characterization of active and quiescent adult neural stem cells in the main regions of neurogenesis and the factors necessary to maintain their active and resting states, stimulate migration and homing in diseased areas, hoping to outline the emerging knowledge for the promotion of regeneration in the brain based on endogenous stem cells.  相似文献   

12.
Spinal cord injury (SCI) results in devastating motor and sensory deficits secondary to disrupted neuronal circuits and poor regenerative potential. Efforts to promote regeneration through cell extrinsic and intrinsic manipulations have met with limited success. Stem cells represent an as yet unrealized therapy in SCI. Recently, we identified novel culture methods to induce and maintain primitive neural stem cells (pNSCs) from human embryonic stem cells. We tested whether transplanted human pNSCs can integrate into the CNS of the developing chick neural tube and injured adult rat spinal cord. Following injection of pNSCs into the developing chick CNS, pNSCs integrated into the dorsal aspects of the neural tube, forming cell clusters that spontaneously differentiated into neurons. Furthermore, following transplantation of pNSCs into the lesioned rat spinal cord, grafted pNSCs survived, differentiated into neurons, and extended long distance axons through the scar tissue at the graft-host interface and into the host spinal cord to form terminal-like structures near host spinal neurons. Together, these findings suggest that pNSCs derived from human embryonic stem cells differentiate into neuronal cell types with the potential to extend axons that associate with circuits of the CNS and, more importantly, provide new insights into CNS integration and axonal regeneration, offering hope for repair in SCI.  相似文献   

13.
Given their accessibility, multipotent skin-derived cells might be useful for future cell replacement therapies. We describe the isolation of multipotent stem cell-like cells from the adult trunk skin of mice and humans that express the neural crest stem cell markers p75 and Sox10 and display extensive self-renewal capacity in sphere cultures. To determine the origin of these cells, we genetically mapped the fate of neural crest cells in face and trunk skin of mouse. In whisker follicles of the face, many mesenchymal structures are neural crest derived and appear to contain cells with sphere-forming potential. In the trunk skin, however, sphere-forming neural crest-derived cells are restricted to the glial and melanocyte lineages. Thus, self-renewing cells in the adult skin can be obtained from several neural crest derivatives, and these are of distinct nature in face and trunk skin. These findings are relevant for the design of therapeutic strategies because the potential of stem and progenitor cells in vivo likely depends on their nature and origin.  相似文献   

14.
Hope for a broken heart?   总被引:21,自引:0,他引:21  
Leinwand LA 《Cell》2003,114(6):658-659
Heated debate has surrounded the issue of whether adult stem cells can differentiate into cardiac myocytes and contribute to the function of the heart. In this issue of Cell, demonstrate stem cells in the adult rat heart that differentiate into cardiac myocytes in vitro and, when injected into the adult rat heart, can reconstitute the injured myocardium and improve function. These findings should weigh heavily in future debates about the existence of stem cells in the adult heart and their capacity for functional repair after injury.  相似文献   

15.

Background

The existence of neural stem and progenitor cells (together termed neural precursor cells) in the adult mammalian brain has sparked great interest in utilizing these cells for regenerative medicine strategies. Endogenous neural precursors within the adult forebrain subependyma can be activated following injury, resulting in their proliferation and migration toward lesion sites where they differentiate into neural cells. The administration of growth factors and immunomodulatory agents following injury augments this activation and has been shown to result in behavioural functional recovery following stroke.

Methods and Findings

With the goal of enhancing neural precursor migration to facilitate the repair process we report that externally applied direct current electric fields induce rapid and directed cathodal migration of pure populations of undifferentiated adult subependyma-derived neural precursors. Using time-lapse imaging microscopy in vitro we performed an extensive single-cell kinematic analysis demonstrating that this galvanotactic phenomenon is a feature of undifferentiated precursors, and not differentiated phenotypes. Moreover, we have shown that the migratory response of the neural precursors is a direct effect of the electric field and not due to chemotactic gradients. We also identified that epidermal growth factor receptor (EGFR) signaling plays a role in the galvanotactic response as blocking EGFR significantly attenuates the migratory behaviour.

Conclusions

These findings suggest direct current electric fields may be implemented in endogenous repair paradigms to promote migration and tissue repair following neurotrauma.  相似文献   

16.
Adult stem cells were once thought to produce only the cell lineages characteristic of the tissues in which they reside. Recent studies suggest that cells derived from one adult tissue can be reprogrammed to change into cellular phenotypes not normally found in that tissue. Bone marrow (BM) derived cells have been demonstrated to differentiate into multiple lineages, including glial cells and neurons, both in vivo and in vitro. This unexpected plasticity of BM cells occurs not only under experimental conditions, but also in humans following BM transplantation. As a result, BM transplantation has emerged as a novel approach to enhance neural regeneration and restore injured brain tissue. Several research teams have reported that transplanted BM cells can differentiate into neural derivatives; indeed, some of these cells were capable of integration into the host brain, where they promoted functional recovery after brain injury. Other researchers conducting similar studies were unable to find any evidence of neural differentiation, concluding that differentiation 'from marrow to brain' is not a common phenomenon. More recently, two papers in Nature also cast doubt on the plasticity of adult stem cells, suggesting that the acquisition of different identities by grafted BM cells may merely reflect their fusion with host cells. Reasons for the wide discrepancies among findings in current BM stem cell research are unclear, making it difficult to understand the mechanisms by which transplanted marrow stem cells provide therapeutic benefit. Here, we summarize recent findings on this subject, and address some of the major controversies that have marked the evolution of adult stem cell research.  相似文献   

17.
Neural stem cells (NSC) can be isolated from a variety of adult tissues and become a valuable cell source for the repair of peripheral and central nervous diseases. However, their origin and identity remain controversial because of possible de-differentiation/trans-differentiation or contaminations by hematopoietic stem cells (HSCs) or mesenchymal stem cells (MSCs). We hypothesize that the commonly used NSC culture medium can induce committed cartilage chondrocytes to de-differentiate and/or trans-differentiate into neural cell lineages. Using a biological isolation and purification method with explants culture, we here show that adult rat clavicle cartilage chondrocytes migrate out from tissue blocks, form sphere-like structures, possess the capability of self-renewal, express nestin and p75NTR, markers for neural crest progenitors, and differentiate into neurons, glia, and smooth muscle cells. Comparing with adult cartilage, the spherical-forming neural crest cell-like cells downregulate the chondrocytic marker genes, including collagen II, collagen X, and sox9, as well as neural-lineage repressors/silencers REST and coREST, but upregulate a set of well-defined genes related to neural crest cells and pro-neural potential. Nerve growth factor (NGF) and glial growth factor (GGF) increase glial and neuronal differentiation, respectively. These results suggest that chondrocytes derived from adult clavicle cartilage can become neural crest stem-like cells and acquire neuronal phenotypes in vitro. The possible de-differentiation/trans-differentiation mechanisms underlying the conversion were discussed.  相似文献   

18.
Defects in DNA repair pathways have been involved in collapse of early neurogenesis leading to brain development abnormalities and embryonic lethality. However, consequences of DNA repair defects in adult neural stem and progenitor cells and their potential contribution in ageing phenotype are poorly understood. The Fanconi anaemia (FA) pathway, which functions primarily as a DNA damage response system, has been examined in neural stem and progenitor cells during developmental and adult neurogenesis. We have shown that loss of fanca and fancg specifically provokes neural progenitor apoptosis during forebrain development, related to DNA repair defects, which persists in adulthood leading to depletion of the neural stem cell pool with ageing. In addition, neural stem cells from FA mice had a reduced capacity to self-renew in vitro. Here, we expand upon our recent work and give further data examining possible implication of oxidative stress. Therefore, FA phenotype might be interpreted as a premature ageing of stem cells, DNA damages being among the driving forces of ageing.  相似文献   

19.
In the adult brain, neural stem cells have been found in two major niches: the hippocampus and the olfactory bulb. Neurons derived from these stem cells contribute to learning, memory, and the autonomous repair of the brain under pathological conditions. Hence, the physiology of adult neural stem cells has become a significant component of research on synaptic plasticity and neuronal disorders. In addition, the recently developed induced pluripotent stem cell technique provides a powerful tool for researchers engaged in the pathological and pharmacological study of neuronal disorders. In this review, we briefly summarize the research progress in neural stem cells in the adult brain and in the neuropathological application of the induced pluripotent stem cell technique.  相似文献   

20.
Multipotent mesenchymal stromal cells(MSC),have the potential to differentiate into cells of the mesenchymal lineage and have non-progenitor functions including immunomodulation.The demonstration that MSCs are perivascular cells found in almost all adult tissues raises fascinating perspectives on their role in tissue maintenance and repair.However,some controversies about the physiological role of the perivascular MSCs residing outside the bone marrow and on their therapeutic potential in regenerative medicine exist.In brain,perivascular MSCs like pericytes and adventitial cells,could constitute another stem cell population distinct to the neural stem cell pool.The demonstration of the neuronal potential of MSCs requires stringent criteria including morphological changes,the demonstration of neural biomarkers expression,electrophysiological recordings,and the absence of cell fusion.The recent finding that brain cancer stem cells can transdifferentiate into pericytes is another facet of the plasticity of these cells.It suggests that the perversion of the stem cell potential of pericytes might play an even unsuspected role in cancer formation and tumor progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号