首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human populations are increasingly exposed to a number of environmental pollutants such as polycyclic aromatic hydrocarbons, polychlorinated biphenyls and dioxins. These compounds are activators of the aryl hydrocarbon receptor (AhR) that controls the expression of many genes including those for detoxification enzymes. The regulatory mechanisms of AhR are multi-factorial and include phosphorylation by various protein kinases. Significant progress in the research of mitogen-activated protein kinases (MAPKs) has been achieved in the last decade. Isolated reports have been published on the role of MAPKs in AhR functions and vice versa, with activation of MAPKs by AhR ligands. This mini-review summarizes current knowledge on the mutual interactions between MAPKs and AhR. The majority of studies has been done on cancer-derived cell lines that have impaired cell cycle regulation and lacks the complete detoxification apparatus. We emphasize the importance of the future studies that should be done on non-transformed cells to distinguish the role of MAPKs in cancer and normal cells. Primary cultures of human or rodent hepatocytes that are equipped with a fully functional biotransformation battery or xenobiotics-metabolizing extra-hepatic tissues should be the models of choice, as the results in our experiments confirm.  相似文献   

2.
The mitogen-activated protein kinase (MAPK) Erk1/2 has been implicated to modulate the activity of nuclear receptors, including peroxisome proliferator activator receptors (PPARs) and liver X receptor, to alter the ability of cells to export cholesterol. Here, we investigated if the Ras-Raf-Mek-Erk1/2 signaling cascade could affect reverse cholesterol transport via modulation of scavenger receptor class BI (SR-BI) levels. We demonstrate that in Chinese hamster ovary (CHO) and human embryonic kidney (HEK293) cells, Mek1/2 inhibition reduces PPARα-inducible SR-BI protein expression and activity, as judged by reduced efflux onto high density lipoprotein (HDL). Ectopic expression of constitutively active H-Ras and Mek1 increases SR-BI protein levels, which correlates with elevated PPARα Ser-21 phosphorylation and increased cholesterol efflux. In contrast, SR-BI levels are insensitive to Mek1/2 inhibitors in PPARα-depleted cells. Most strikingly, Mek1/2 inhibition promotes SR-BI degradation in SR-BI-overexpressing CHO cells and human HuH7 hepatocytes, which is associated with reduced uptake of radiolabeled and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyane-labeled HDL. Loss of Mek1/2 kinase activity reduces SR-BI expression in the presence of bafilomycin, an inhibitor of lysosomal degradation, indicating down-regulation of SR-BI via proteasomal pathways. In conclusion, Mek1/2 inhibition enhances the PPARα-dependent degradation of SR-BI in hepatocytes.  相似文献   

3.
Dopamine D2 receptor activation of extracellular signal-regulated kinases (ERKs) in non-neuronal human embryonic kidney 293 cells was dependent on transactivation of the platelet-derived growth factor (PDGF) receptor, as demonstrated by the effect of the PDGF receptor inhibitors tyrphostin A9 and AG 370 on quinpirole-induced phosphorylation of ERKs and by quinpirole-induced tyrosine phosphorylation of the PDGF receptor. In contrast, ectopically expressed D2 receptor or endogenous D2-like receptor activation of ERKs in NS20Y neuroblastoma cells, which express little or no PDGF receptor, or in rat neostriatal neurons was largely dependent on transactivation of the epidermal growth factor (EGF) receptor, as demonstrated using the EGF receptor inhibitor AG 1478 and by quinpirole-induced phosphorylation of the EGF receptor. The D2 receptor agonist quinpirole enhanced the coprecipitation of D2 and EGF receptors in NS20Y cells, suggesting that D2 receptor activation induced the formation of a macromolecular signaling complex that includes both receptors. Transactivation of the EGF receptor also involved the activity of a matrix metalloproteinase. Thus, although D2 receptor stimulation of ERKs in both cell lines was decreased by inhibitors of ERK kinase, Src-family protein tyrosine kinases, and serine/threonine protein kinases, D2-like receptors activated ERKs via transactivation of the EGF receptor in NS20Y neuroblastoma cells and rat embryonic neostriatal neurons, but via transactivation of the PDGF receptor in 293 cells.  相似文献   

4.
5.
6.
The accumulation of misfolded proteins in the endoplasmic reticulum (ER) evokes the ER stress response. The resultant outcomes are cytoprotective but also proapoptotic. ER chaperones and misfolded proteins exit to the secretory pathway and are retrieved to the ER, during which process the KDEL receptor plays a significant role. Using an expression of a mutant KDEL receptor that lacks the ability for ligand recognition, we show that the impairment of retrieval by the KDEL receptor led to a mis-sorting of the immunoglobulin-binding protein BiP, an ER chaperone that has a retrieval signal from the early secretory pathway, which induced intense ER stress response and an increase in susceptibility to ER stress in HeLa cells. Furthermore, we show that the ER stress response accompanied the activation of p38 mitogen-activated protein (MAP) kinases and c-Jun amino-terminal kinases (JNKs) and that the expression of the mutant KDEL receptor suppressed the activation of p38 and JNK1 but not JNK2. The effect of the expression of the mutant KDEL receptor was consistent with the effect of a specific inhibitor for p38 MAP kinases, because the inhibitor sensitized HeLa cells to ER stress. We also found that activation of the KDEL receptor by the ligand induced the phosphorylation of p38 MAP kinases. These results indicate that the KDEL receptor participates in the ER stress response not only by its retrieval ability but also by modulating MAP kinase signaling, which may affect the outcomes of the mammalian ER stress response.  相似文献   

7.
The death of midbrain dopaminergic neurons in sporadic Parkinson disease is of unknown etiology but may involve altered growth factor signaling. The present study showed that leptin, a centrally acting hormone secreted by adipocytes, rescued dopaminergic neurons, reversed behavioral asymmetry, and restored striatal catecholamine levels in the unilateral 6-hydroxydopamine (6-OHDA) mouse model of dopaminergic cell death. In vitro studies using the murine dopaminergic cell line MN9D showed that leptin attenuated 6-OHDA-induced apoptotic markers, including caspase-9 and caspase-3 activation, internucleosomal DNA fragmentation, and cytochrome c release. ERK1/2 phosphorylation (pERK1/2) was found to be critical for mediating leptin-induced neuroprotection, because inhibition of the MEK pathway blocked both the pERK1/2 response and the pro-survival effect of leptin in cultures. Knockdown of the downstream messengers JAK2 or GRB2 precluded leptin-induced pERK1/2 activation and neuroprotection. Leptin/pERK1/2 signaling involved phosphorylation and nuclear localization of CREB (pCREB), a well known survival factor for dopaminergic neurons. Leptin induced a marked MEK-dependent increase in pCREB that was essential for neuroprotection following 6-OHDA toxicity. Transfection of a dominant negative MEK protein abolished leptin-enhanced pCREB formation, whereas a dominant negative CREB or decoy oligonucleotide diminished both pCREB binding to its target DNA sequence and MN9D survival against 6-OHDA toxicity. Moreover, in the substantia nigra of mice, leptin treatment increased the levels of pERK1/2, pCREB, and the downstream gene product BDNF, which were reversed by the MEK inhibitor PD98059. Collectively, these data provide evidence that leptin prevents the degeneration of dopaminergic neurons by 6-OHDA and may prove useful in the treatment of Parkinson disease.  相似文献   

8.
9.
Jasmonic acid signaling modulates ozone-induced hypersensitive cell death   总被引:15,自引:0,他引:15  
Recent studies suggest that cross-talk between salicylic acid (SA)-, jasmonic acid (JA)-, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O(3)) exposure activates a hypersensitive response (HR)-like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O(3)-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O(3)-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O(3)-induced H(2)O(2) content and SA concentrations and completely abolished O(3)-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O(3) exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O(3) of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O(3)-induced HR-like cell death.  相似文献   

10.
Stimulation of mitogen-activated protein kinases (MAPKs) or extracellular signal regulated protein kinases (ERKs) after exposure of mammalian cells to ultraviolet (UV) and X-irradiation occurs through activation of receptor tyrosine kinases via Ras/Raf/Mek/ERKs cascade. This activation of MAPKs is proposed to play a role in the replacement of damaged proteins during these stresses. Heat shock also activates MAPKs; however, the signaling cascade and the biochemical and physiological links between activation by heat and downstream effects are unknown. In this report we demonstrate that, unlike irradiation, heat induces MAPKs through ceramide metabolism to sphingosine with stimulation of Raf-1 protein kinase. The activation of MAPKs by heat does not occur in all cell types, because the step(s) downstream of ceramide to activation of Raf-1 protein kinase is missing in myeloid leukemic cells such as HL-60, U937, and K562, while it is present in NIH3T3 fibroblasts. Heat-induced MAPK activation may enhance the ability of cells to survive a severe heat shock. Blocking 60-70% of the activity of MAPK (ERK1) by stable overexpression of the dominant negative allele ERK1-KR renders NIH3T3 and K562 cells up to 100-fold more sensitive to cytotoxic effects of heat. Conversely, NIH3T3 and K562 cells stably overexpressing the wild-type ERK1 develop resistance to killing by heat. These results suggest that increased thermal sensitivity of leukemic cells to thermal stress or other cancer therapy regimens could be attributable to lack of pertinent activation of the MAPK pathway by such stresses.  相似文献   

11.
The EGF-like membrane protein dlk plays a crucial role in the control of cell differentiation. Overexpression of the protein prevents, whereas inhibition of its expression increases, adipocyte differentiation of 3T3-L1 cells in response to Insulin-like Growth Factor I (IGF-1) or insulin. We have investigated whether dlk modulates the signaling pathways known to control this process. We found that the levels of dlk expression modulated signaling through the IGF-1 receptor, causing changes in the activation levels and kinetics of Extracellular-Regulated Kinase/Mitogen-Activated Protein Kinase (ERK/MAPK) that correlated with differentiation outcome. These changes occurred in response to IGF-1 or insulin but not in response to Epidermal Growth Factor. However, the levels of expression of IGF-1 receptor, or the activation of Insulin Receptor Substrate-1 in response to IGF-1, were not affected by the levels of dlk expression. Therefore, dlk appears to modulate ERK/MAPK signaling in response to specific differentiation signals.  相似文献   

12.
13.
Mitogen activated protein (MAP) kinases and their target ribosomal protein S6 (RSK) kinases have been recognized as shared components in the intracellular signaling pathways of many diverse cytokines. Recent studies have extended this protein kinase cascade by identifying the major activator of vertebrate MAP kinases as a serine/threonine/tyrosine-protein kinase called MEK, which is related to yeast mating factor-regulated protein kinases encoded by the STE7 and byr1 genes. MEK, in turn, may be activated following its phosphorylation on serine by either of the kinases encoded by proto-oncogenesraf1 ormos, as well as by p78 mekk , which is related to the yeast STE11 and byr2 gene products. Isoforms of all of these protein kinases may specifically combine to assemble distinct modules for intracellular signal transmission. However, the fundamental architecture of these protein kinase cascades has been highly conserved during eukaryotic evolution.  相似文献   

14.
Mitogen-activated protein kinase (MAPK) cascades play pivotal roles in plant innate immunity. Overexpression of StMEK1(DD), a constitutively active MAPK kinase that activates salicylic acid-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK), provokes hypersensitive response-like cell death in Nicotiana benthamiana. Here we purified a 51-kD MAPK, which was activated in potato (Solanum tuberosum) tubers treated with hyphal wall elicitor of a plant pathogen, and isolated the cDNA designated StMPK1. The deduced amino acid sequence of the StMPK1 showed strong similarity to stress-responsive MAPKs, such as tobacco (Nicotiana tabacum) SIPK and Arabidopsis (Arabidopsis thaliana) AtMPK6. To investigate the downstream signaling of StMPK1, we identified several proteins phosphorylated by StMPK1 (PPSs) using an in vitro expression cloning method. To dissect the biological function of PPSs in the plant defense, we employed virus-induced gene silencing (VIGS) in N. benthamiana. VIGS of NbPPS3 significantly delayed cell death induced by the transient expression of StMEK1(DD) and treatment with hyphal wall elicitor. Furthermore, the mobility shift of NbPPS3 on SDS-polyacrylamide gel was induced by transient expression of StMEK1(DD). The mobility shift of NbPPS3 induced by StMEK1(DD) was not compromised by VIGS of WIPK or SIPK alone, but drastically reduced by the silencing of both WIPK and SIPK. This work strongly supports the idea that PPS3 is a physiological substrate of StMPK1 and is involved in cell death activated by a MAPK cascade.  相似文献   

15.
Plants respond to biotic and abiotic stresses by inducing overlapping sets of mitogen-activated protein kinases (MAPKs) and response genes. To define the mechanisms of how different signals can activate a common signaling pathway, upstream activators of SIMK, a salt stress- and pathogen-induced alfalfa MAPK, were identified. Here, we compare the properties of SIMKK, a MAPK kinase (MAPKK) that mediates the activation of SIMK by salt stress, with those of PRKK, a distantly related novel MAPKK. Although both SIMKK and PRKK show strongest interaction with SIMK, SIMKK can activate SIMK without stimulation by upstream factors. In contrast, PRKK requires activation by an upstream activated MAPKK kinase. SIMKK mediates pathogen elicitor signaling and salt stress, but PRKK transmits only elicitor-induced MAPK activation. Of four tested MAPKs, PRKK activates three of them (SIMK, MMK3, and SAMK) upon elicitor treatment of cells. However, PRKK is unable to activate any MAPK upon salt stress. In contrast, SIMKK activates SIMK and MMK3 in response to elicitor, but it activates only SIMK upon salt stress. These data show that (1) MAPKKs function as convergence points for stress signals, (2) MAPKKs activate multiple MAPKs, and (3) signaling specificity is obtained not only through the inherent affinities of MAPKK-MAPK combinations but also through stress signal-dependent intracellular mechanisms.  相似文献   

16.
17.
The molecular mechanisms underlying H(2)O(2)-induced toxicity were characterized in rat oligodendrocyte cultures. While progenitor cells were more sensitive than mature oligodendrocytes to H(2)O(2), the antioxidant, N-acetyl-L-cysteine, blocked toxicity at both stages of development. Differentiated oligodendrocytes contained more glutathione than did progenitors and were less susceptible to decreases in glutathione concentration induced by H(2)O(2) stress. As free radicals have been considered to serve as second messengers, we examined the effect of H(2)O(2) on activation of the mitogen-activated protein kinases (MAPK), extracellular signal-regulated kinases (ERK) 1/2 and p38. H(2)O(2) caused a time- and concentration-dependent increase in MAPK phosphorylation, an effect that was totally blocked by N-acetyl-L-cysteine. Further exploration of potential mechanisms involved in oligodendrocyte cell death showed that H(2)O(2) treatment caused DNA condensation and fragmentation at both stages of development, whereas caspase 3 activation and poly (ADP-ribose) polymerase cleavage were significantly increased only in oligodendrocyte progenitors. The pan-caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone, blocked DNA fragmentation in progenitors and produced a small but significant level of protection from H(2)O(2) toxicity in progenitors and mature oligodendrocytes. In contrast, inhibitors of both p38 and MEK reduced H(2)O(2)-induced death most significantly in oligodendrocytes. The poly (ADP-ribose) polymerase inhibitor, PJ34, reduced H(2)O(2)-induced toxicity on its own but was most effective when combined with benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone or PD169316. The finding that molecular mechanisms conferring resistance to reactive oxygen species toxicity are regulated during oligodendrocyte differentiation may be of importance in designing therapies for certain neurological diseases affecting white matter.  相似文献   

18.
Cdk5, a cyclin-dependent kinase, is critical for neuronal development, neuronal migration, cortical lamination, and survival. Its survival role is based, in part, on "cross-talk" interactions with apoptotic and survival signaling pathways. Previously, we showed that Cdk5 phosphorylation of mitogen-activated protein kinase kinase (MEK)1 inhibits transient activation induced by nerve growth factor (NGF) in PC12 cells. To further explore the nature of this inhibition, we studied the kinetics of NGF activation of extracellular signal-regulated kinase (Erk)1/2 in cortical neurons with or without roscovitine, an inhibitor of Cdk5. NGF alone induced an Erk1/2-transient activation that peaked in 15 min and declined rapidly to baseline. Roscovitine, alone or with NGF, reached peak Erk1/2 activation in 30 min that was sustained for 48 h. Moreover, the sustained Erk1/2 activation induced apoptosis in cortical neurons. Significantly, pharmacological application of the MEK1 inhibitor PD98095 to roscovitine-treated cortical neurons prevented apoptosis. These results were also confirmed by knocking down Cdk5 activity in cortical neurons with Cdk5 small interference RNA. Apoptosis was correlated with a significant shift of phosphorylated tau and neurofilaments from axons to neuronal cell bodies. These results suggest that survival of cortical neurons is also dependent on tight Cdk5 modulation of the mitogen-activated protein kinase signaling pathway.  相似文献   

19.
Studies in murine models of cancer as well as in cancer patients have demonstrated that the immune response to cancer is often compromised. This paradigm is viewed as one of the major mechanisms of tumor escape. Many therapies focus on employing the professional antigen presenting dendritic cells (DC) as a strategy to overcome immune inhibition in cancer patients. Death receptor 6 (DR6) is an orphan member of the tumor necrosis factor receptor superfamily (TNFRSF21). It is overexpressed on many tumor cells and DR6−/− mice display altered immunity. We investigated whether DR6 plays a role in tumorigenesis by negatively affecting the generation of anti-tumor activity. We show that DR6 is uniquely cleaved from the cell surface of tumor cell lines by the membrane-associated matrix metalloproteinase (MMP)-14, which is often overexpressed on tumor cells and is associated with malignancy. We also demonstrate that >50% of monocytes differentiating into DC die when the extracellular domain of DR6 is present. In addition, DR6 affects the cell surface phenotype of the resulting immature DC and changes their cytokine production upon stimulation with LPS/IFN-γ. The effects of DR6 are mostly amended when these immature DC are matured with IL-1β/TNF-α, as measured by cell surface phenotype and their ability to present antigen. These results implicate MMP-14 and DR6 as a mechanism tumor cells can employ to actively escape detection by the immune system by affecting the generation of antigen presenting cells.  相似文献   

20.
Although the Arabidopsis thaliana genome contains genes encoding 20 mitogen-activated protein kinases (MAPKs) and 10 MAPK kinases (MAPKKs), most of them are still functionally uncharacterized. In this work, we analyzed the function of the group B MAPK kinase, MKK3. Transgenic ProMKK3:GUS lines showed basal expression in vascular tissues that was strongly induced by Pseudomonas syringae pv tomato strain DC3000 (Pst DC3000) infection but not by abiotic stresses. The growth of virulent Pst DC3000 was increased in mkk3 knockout plants and decreased in MKK3-overexpressing plants. Moreover, MKK3 overexpression lines showed increased expression of several PR genes. By yeast two-hybrid analysis, coimmunoprecipitation, and protein kinase assays, MKK3 was revealed to be an upstream activator of the group C MAPKs MPK1, MPK2, MPK7, and MPK14. Flagellin-derived flg22 peptide strongly activated MPK6 but resulted in poor activation of MPK7. By contrast, MPK6 and MPK7 were both activated by H(2)O(2), but only MPK7 activation was enhanced by MKK3. In agreement with the notion that MKK3 regulates the expression of PR genes, ProPR1:GUS expression was strongly enhanced by coexpression of MKK3-MPK7. Our results reveal that the MKK3 pathway plays a role in pathogen defense and further underscore the importance and complexity of MAPK signaling in plant stress responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号