首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leidi  E.O.  Saiz  J.F. 《Plant and Soil》1997,190(1):67-75
Physiological responses to salt stress were studied in two cotton cultivars previously selected on the basis of growth under salinity. Plants were grown in nutrient solutions under controlled conditions. In the first experiment, the genotypes were grown at different salt concentrations (0, 100 and 200 mt M NaCl) and growth rates, water contents and ion accumulation were determined. In a second experiment, both genotypes were grown at the same salt concentration (200 mt M NaCl). Dry matter partitioning in individual leaves, stem and roots, water contents, specific leaf area (SLA), ion accumulation (K+, Na+, Cl) and leaf water potentials were measured. Finally, an experiment with low salt levels (2.7 and 27 mt M NaCl) was run to compare K and Na+ uptake and distribution.There were no differences in growth between the cultivars in the absence of salt stress, whereas under stress genotype Z407 had higher leaf area and dry matter accumulation than P792. Leaf water potential and leaf water content were lower in cv P792 than in cv Z407. There were no significant differences in the levels of Cl accumulation between genotypes. The main feature of the tolerant genotype (Z407) was a higher accumulation of Na+ in leaves and an apparent capacity for K+ redistribution to younger leaves.We postulate that the higher tolerance in Z407 is the result of several traits such as a higher Na+ uptake and water content. Adaptation through adequate, but tightly controlled ion uptake, typical of some halophytes, matched with efficient ion compartmentation and redistribution, would result in an improved water uptake capacity under salt stress and lead to maintenance of higher growth rates.  相似文献   

2.
Physiology of halophytes   总被引:12,自引:0,他引:12  
Summary The cellular basis of salt tolerance in halophytes depends upon the compartmentation of ions necessary for osmoregulation in vacuoles and upon osmotic adjustment of the cytoplasm by compatible solutes. The central role played by Na+ and Cl in osmotic adjustment suggests that the transport of these ions and its regulation must be of primary importance in the physiology of the plant as a whole. There have been few investigations into the regulation of leaf ion concentrations, but such data as are in the literature suggest that limiting xylem Na+ (and Cl) concentrations, together with continued leaf expansion, are particularly important. The role of phloem in retranslocation is uncertain due to lack of data. Decreases in transpiration rate per unit area of leaf help to lower the ion input into leaves. Any linked reductions in photosynthesis appear to be due to decreases in stomatal frequency.  相似文献   

3.
Silberbush  M.  Ben-Asher  J. 《Plant and Soil》2001,233(1):59-69
Soilless plant growth systems are widely used as a means to save irrigation water and to reduce groundwater contamination. While nutrient concentrations in the growth medium are depleted due to uptake by the plants, salinity and toxic substances accumulate due to transpiration. A theoretical model is suggested, to simulate nutrient uptake by plants grown in soilless cultures with recycled solutions. The model accounts for salinity accumulation with time and plant growth, and its effects on uptake of the different nutrients by means of interaction with Na and Cl ions. The sink term occurs due to uptake by a growing root system. Influx as a function of the ion concentration is according to Michaelis–Menten active mechanisms for K+, NO3 -N, NH4 +-N, PO4-P, Ca2+, Mg2+ and SO4 2-, whose influx parameters are affected by Na and Cl, but not with time (age). Sodium influx is passive above a critical concentration. Sum of cations–anions concentrations is balanced by Cl to maintain electro-neutrality of the growth solution. Salinity (by means of Na concentration) suppresses root and leaf growth, which further effect uptake and transpiration. The model accounts for instantaneous transpiration losses, during daytime only and its effect on uptake of nutrients and plant development due to salt accumulation. The model was tested against NO3 and K+ uptake by plants associated with cumulative transpiration and with different NaCl salinity levels. Deviations from observed K+ uptake should be attributed to the salinity tolerance of the plants. In a study with data obtained from published literature, the model indicated that nutrient depletion and salinity buildup might be completely different with fully grown-up plants (that do not grow) and plants that grow with time. Depletion of different nutrients are according to their initial concentration and plant uptake rate, but also affected by their interactions with Na and Cl ions.  相似文献   

4.
Twenty-five genotypes of early CIMMYT hexaploid wheat (Triticum aestivum L.) were screened for salt tolerance in a glasshouse experiment at 150 mol m−3 NaCl in sand culture. The genotypes Na(20)TPP, Penjamo 62, and Inia 66 exceeded all the lines in grain yield per plant under salt stress, whereas Nainari 60 and Norin 10 were the lowest of all genotypes. However, Jaral 66 and Yaqui 54 were the lowest of all the genotypes in all growth and yield attributes. Considerable variation in accumulation of Na+ and Cl in different plant parts of 25 genotypes of early CIMMYT wheat under salt stress was observed. The genotype Noreste 66 was the lowest in leaf Na+ and Cl, and it had highest leaf K/Na ratio and K versus Na selectivity of all the genotypes, but in terms of growth and grain yield, it was moderately tolerant. The other genotype Norin 10 was the highest in leaf Na+ and Cl of all genotypes, but its leaf K/Na ratio and K versus Na selectivity were considerably low. However, in shoot biomass it was the highest and in grain yield the lowest of all genotypes. In view of phylogenetic lineage of the genotypes, most of the genotypes have evolved from Norin 10, so the trait of high uptake of Na+ and Cl in most genotypes may have been inherited from Norin 10. The ion exclusion trait in the moderately salt tolerant genotype Noreste 66 was possibly inherited from Yaqui 50 as it was the only among all putative parents which showed low uptake of toxic ions. Overall, owing to the complex nature of the salt tolerance trait being controlled by polygenes, it was not easy to draw relationships between degree of salt tolerance and pattern of uptake of toxic ions and maintenance of leaf K/Na ratios. However, from the phylogenetic lineage of the 25 genotypes it was possible to draw relationships between degree of salt tolerance and mechanism of ion uptake between parents and progeny.  相似文献   

5.
Summary The coupling of ion transport to energy sources in the light and in the dark in green cells ofAtriplex spongiosa leaves was investigated using light of different qualities, an inhibitor of electron transport (dichlorophenyl dimethyl urea), and an uncoupler (p-CF3O-carbonyl cyanide phenylhydrazone). Two different mechanisms of ion uptake were, distinguished. (1) A light-dependent Cl pump which is linked to light-dependent K+ uptake. The energy for this pump is probably derived from photosynthetic electron transport or from nicotinamide adenine dinucleotide phosphate, reduced form. This mechanism is dichlorophenyl dimethyl urea-sensitive and enhanced by uncouplers. (2) A mechanism independent of light, which operates at the same rate in the light and in the dark. This mechanism is sensitive to uncouplers. It is probably aK–Na exchange mechanism since K+ and Cl uptake and a small net uptake of H+ are balanced by Na+ loss.  相似文献   

6.
Peanut plants (Arachis hypogaea L.) are known to absorb Ca, P and S through the fruiting organs, but information on Zn uptake pattern is lacking. Therefore, a green-house experiment was conducted to study the uptake and translocation of Zn when applied in the rooting and fruiting zones of peanut plants. To locate the pathway and distribution of radioactive Zn, autoradiographs of plants were also taken.Zinc uptake data and autoradiographs indicated that a substantial amount of65Zn was absorbed through the fruiting organs (auxillary system). Of the total65Zn in the whole plant, 55.2 per cent was absorbed through roots and remaining 44.8 per cent through fruiting organs. Zinc was translocated to all the plant parts regardless of its absorption through roots or fruiting organs. The highest zinc concentration was recorded in the kernels, followed by leaves, stem and the shell.Contribution from the Department of Soils, Haryana Agric. Univ., Hissar-India.  相似文献   

7.
Brief pre- and post-irrigation sprinkling treatments using freshwater were tested to determine if these practices could reduce the uptake of salts through leaves when saline water is used to sprinkler irrigate crops. Maize and barley were sprinkler irrigated 2 to 3 times per week for 30 min with saline water (4.2 dS m–1, 30 mmol L–1 NaCl and 2.8 mmoles L–1 CaCl2 for maize and 9.6 dS m–1, 47 mmoles L–1 NaCl and 23.5 mmoles L–1 CaCl2 for barley) in separate experiments with plants grown in pots outdoors. The soil surface of all pots was covered to prevent salinization of the soil by the sprinkling water. One half of the sprinkled plants was grown in nonsaline soil to study the effects of pre-wetting and post-washing when ion uptake was primarily through leaves. The other half of the sprinkled plants was grown in soil salinized by drip irrigation, in order to evaluate the effects of pre-wetting and post-washing when Na+ and Cl- uptake was through both leaves and roots.Post-washing with freshwater (5 min) reduced the leaf sap concentrations of Cl- in saline-sprinkled plants from 56 to 43 mmol L–1 in maize and from 358 to 225 mmol L–1 in barley (averages for plants grown in nonsaline and saline soil). Na+ concentrations in leaf sap were reduced from 93 to 65 mmoles L–1 (maize) and from 177 to 97 mmoles L–1 (barley) by the post-washing. Pre-wetting had a small effect on ion uptake through leaves, the only significant reduction in seasonal means being in leaf Na+ concentrations for plants grown in nonsaline soil. Pre-wetting and post-washing, when combined, reduced leaf Cl- concentrations to levels similar to those of nonsprinkled plants grown in saline soil; however, Na+ concentrations in leaves remained 3.5 times (maize) and 1.5 times (barley) higher than those of nonsprinkled plants. When pre-wetting and post-washing were not applied, sprinkled barley plants grown in saline soil had grain yields which were 58% lower than nonsprinkled plants grown in saline soil, but the reduction in grain yield was only 17% when the freshwater treatments were given. We conclude that a brief period of post-washing with freshwater is essential when saline water is employed in sprinkler irrigation. By comparison, the benefits from pre-wetting were small in these experiments. ei]T J Flowers  相似文献   

8.
Callus tissue was induced in young stem segments cultured on MS based media supplemented with 0.25–0.5 mg l-1 2, 4-D. Shoots were differentiated on media containing 0.5–1.0 mg l-1 BA and 0.5–2.0 mg l-1 IBA or 0.1–0.2 mg l-1 NAA. The same media were suitable for shoot multiplication. Shoot elongation and rooting were strongly inhibited by BA and stimulated by auxins IBA and NAA. Medium containing 0.5 mg l-1 IBA was optimal for rooting. Root elongation was stimulated by light and inhibited in darkness. Transfer of rooted plantlets to outdoor conditions was feasible and special hardening procedures were not required. Among more than 5000 plants produced by this procedure only 9 off-type plants with variegated leaves were found.  相似文献   

9.
The rooting of softwood cuttings of Alnus incana (L.) Moench in nutrient solution was studied under controlled conditions. Cuttings consisting of one internode with the leaf and axillary bud attached rooted easily and more rapidly than shoot tip cuttings. Light was necessary for rooting but good rooting was obtained in photon flux densities of both 40 and 190 μmol m-2s-1. Root number and root length was reduced when light reached the base of the cuttings. Treatment with indolebutyric acid (10-6–10-4M) increased the number of roots but 10-4M delayed rooting and decreased the root length. Debudded internode cuttings rooted as well as intact cuttings, and detached leaves also contained sufficient substances for rooting.  相似文献   

10.
Fifty-two-day old plants of a salt tolerant line, S24 and a salt sensitive, Yecora Rojo were subjected for 15 days to 125 mol·m−3 NaCl in Hoagland’s nutrient solution under glass-house conditions. The dry matter of shoots and roots of the salt tolerant line was significantly greater over all time intervals in saline substrate than the salt sensitive line, Yecora Rojo. In the leaves of salt-treated former line concentration of Na+ and Cl was lower as compared to the latter line. The lower Na+ and Cl concentrations in the leaves of S24 were found to be associated with lower transport of these ions to the shoots whereas the reverse was true for Yecora Rojo. The lines did not differ in accumulation of either ion in roots. It is concluded that salt tolerance in these two genotypes of spring wheat is associated with restricted accumulation of toxic Na+ and Cl ions to the shoots or with restricted transport.  相似文献   

11.
Summary Experiments were performed to determine the presence of a Cl–OH exchange (Cl–H+ cotransport) in the brush-border membranes isolated from the intestinal epithelium of freshwater trout. Determinations of alkaline phosphatase activities have shown that vesicle suspensions had an enrichment factor of about 17 in this enzyme indicating a high degree of purification of the brush-border membrane preparation. Cl uptake by vesicles in the presence of a proton gradient occurs against a concentration gradient with an overshoot ratio of about 2 and is inhibited by SITS. Several lines of evidence suggest that the mechanism involved is electrical in nature: (i) Cl uptake is increased when the proton gradient is increased, but there is a linear relationship between the Cl uptake and the Nernst potential of protons. (ii) Cl uptake is increased when a proton ionophore is added at low concentration and inhibited at high concentration, suggesting that a proton conductance is involved in the Cl uptake. (iii) there is a linear relationship between the initial speed of the uptake of increasing Cl concentrations and the Cl concentration. (iv) Cl uptake can be modulated by different potassium gradients with or without valinomycin. It is concluded that the enterocyte of the freshwater trout is not equipped with a Cl–OH exchange and the Cl uptake by vesicles is realized by a Cl conductance.  相似文献   

12.
R. J. Haynes 《Plant and Soil》1990,126(2):247-264
The processes responsible for maintenance of cation-anion balance in plants and their relation to active ion accumulation and changes in rhizosphere pH are outlined and discussed. The major processes involved are: (1) accumulation and degradation of organic acids which occur in the plant mainly as organic acid anions (and their transfer within the plant) and (2) extrusion of H+ or OH into the rhizosphere. The relative importance of the two processes is determined by the size of the excess anion or cation uptake. Indeed, plants typically absorb unequal quantities of nutritive cations (NH4 ++Ca2++ Mg2++K++Na+) and anions (NO3 +Cl+SO4 2–+H2PO4 ) and charge balance is maintained by excretion of an amount of H+ or OH which is stoichiometrically equal to the respective excess cation or anion uptake. The mechanisms and processes by which H+ and in particular OH ions are excreted in response to unequal cation-anion uptake are, however, poorly understood.The contemporary view is that primary active extrusion of H+, catalyzed by a membrane-located ATPase, is the major driving force for secondary transport of cations and anions across the plasma membrane. However, the fact that net OH extrusion often occurs (since excess anion absorption commonly takes place) implies there is a yet-to-be characterized OH ion efflux mechanism at the plasma membrane that is associated with anion uptake. There is, therefore, a need for future studies of the uptake mechanisms and stoichiometry of anion uptake; particularly that of NO3 which is often the predominant anion absorbed. Another related phenonenon which requires detailed study in terms of cation-anion balance is localized rhizosphere acidification which can occur in response to deficiencies of Fe and P.  相似文献   

13.
Acacia mangium microshoots from juvenile and mature genotypes were micropropagated through a regular subculture regime for more than 3 yr in vitro. Average multiplication rates of 5.5 for the juvenile source and of 3.9 for the mature clone were obtained during this period on the 6-benzylaminopurine-enriched multiplication medium. Although the juvenile material displayed higher potential for axillary shoot and root formation than the mature clone overall, the differences were not statistically significant with noticeable variations in the course of time from one subculture to another. On specific rooting media, the juvenile material rooted overall in greater proportions than the mature material, notwithstanding noteworthy interactions between the age of the plant material and the various experimental factors tested, i.e. sucrose concentration, macrosalt formulation and light regime. The stimulating effect of darkness on juvenile plant material rooting rates was more obvious than for the mature clone, which responded more inconsistently. Addition of 4 μM indole-3-acetic acid, indole-3-butyrie acid, or 1-naphthaleneacetic acid in the rooting medium significantly increased the proportion of rooted microshoots of both origins. The rooting criteria observed were also prone to vary depending on the experimental date. The data indicate that rooting of juvenile and mature Acacia mangium materials have average rates of 90% and 77%, respectively. These are high enough to consides possible applications of these procedures toward operational activities.  相似文献   

14.
Availability of fluoride to plants grown in contaminated soils   总被引:11,自引:0,他引:11  
Two pot experiments were carried out to study uptake of fluoride (F) in clover and grasses from soil. Fluoride concentrations in t Trifolium repens (white clover) and t Lolium multiflorium (ryegrass) were highly correlated with the amounts of H2O– and 0.01 t M CaCl2–extractable F in soil when increasing amounts of NaF were added to two uncontaminated soils (r=0.95–0.98, t p<0.001). The amounts of H2O– or 0.01 t M CaCl2–extractable F did not explain the F concentrations to a similar extent in t Agrostis capillaris (common bent) grown in 12 soils (Cambic Arenosols) collected from areas around the Al smelters at Å: rdal and Sunndal in Western Norway (r=0.68–0.78). This may be due to variation in soil pH and other soil properties in the 12 soils. Soil extraction with 1 t M HCl did not estimate plant–available F in the soil as well as extraction with H2O or 0.01 t M CaCl2. Fluoride and Al concentrations in the plant material were positively correlated in most cases. Fluoride and Ca concentrations in the plant material were negatively correlated in the first experiment. No consistent effects were found on the K or Mg concentrations in the plant material. The F accumulation in clover was higher than in the grasses. The uptake from soil by grasses was relatively low compared to the possible uptake from air around the Al smelters. The uptake of F in common bent did not exceed the recommended limit for F contents in pasture grass (30 mg kg–1) from soil with 0.5–28 mg F(H2O) kg–1 soil. The concentration in ryegrass was about 50 mg F kg–1 when grown in a highly polluted soil (28 mg F(H2O) kg–1 soil). Concentrations in clover exceeded 30 mg F kg–1 even in moderately polluted soil (1.3–7 mg F(H2O) kg–1 soil). Liming resulted in slightly lower F concentrations in the plant material.  相似文献   

15.
Cl absorption by theAplysia californica foregut is effected through an active Cl transport mechanism located in the basolateral membrane of the epithelial absorptive cells. These basolateral membranes contain both Cl-stimulated ATPase and ATP-dependent Cl transport activities which can be incorporated into liposomes via reconstitution. Utilizing the proteoliposomal preparation, it was demonstrated that ATP, and its subsequent hydrolysis, Mg2+, Cl, and a pH optimum of 7.8 were required to generate maximal intraliposomal Cl accumulation, electrical negativity, and ATPase activity. Additionally, an inwardly-directed valinomycininduced K+ diffusion potential, making the liposome interior electrically positive, enhanced both ATP-driven Cl accumulation and electrical potential while an outwardly-directed valinomycininduced K+ diffusion potential, making the liposome interior electrically negative, decreased both ATP-driven Cl accumulation and electrical potential compared with proteoliposomes lacking the ionophore. Either orthovanadate orp-chloromercurobenzene sulfonate inhibited both the ATP-dependent intraliposomal Cl accumulation, intraliposomal negative potential difference, and also Cl-stimulated ATPase activity. Both aspects of Cl pump transport kinetics and its associated catalytic component kinetics were the first obtained utilizing a reconstituted transporter protein. These results strongly support the hypothesis that Cl-ATPase actively transports Cl by an electrogenic process.  相似文献   

16.
Light-Dark Changes in Proline Content of Barley Leaves under Salt Stress   总被引:3,自引:0,他引:3  
Proline accumulation in leaves of barley (Hordeum vulgare L. cv. Alfa) seedlings treated with 150 mM NaCl was promoted in the light and suppressed in the dark. The light/dark changes of proline content was enhanced with each 12 h light/12 h dark cycle and the proline content increased steadily. Root and shoot concentrations of Na+ and Cl in salt treated plants increased about 10 to 25 times as compared to the control. The content of these ions and the content of malondialdehyde were higher in the shoot of seedlings exposed to salt stress for 4 d in the light in comparison with the seedlings exposed to NaCl for 4 d in darkness. Light stimulated both ions and proline accumulation in the leaves and has no effect in the roots. Oxygen uptake was higher in the seedlings kept 4 d in the light which have higher endogenous free proline content. Chlorophyll fluorescence measurements showed that the photochemical activity of PS 2 slightly decreased as a result of salt stress and was not influenced by light regimes during plant growth.  相似文献   

17.
The effects of hydrogel on growth and ion relationships of a salt resistant woody species, Populus euphratica , were investigated under saline conditions. The hydrogel used was Stockosorb K410, a highly cross-linked polyacrylamide with about 40% of the amide group hydrolysed to carboxylic groups. Amendment of saline soil (potassium mine refuse) with 0.6% hydrogel improved seedling growth (2.7-fold higher biomass) over a period of 2 years, even though plant growth was reduced by salinity. Hydrogel-treated plants had approximately 3.5-fold higher root length and root surface area than those grown in unamended saline soil. In addition, over 6% of total roots were aggregated in gel fragments. Tissue and cellular ion analysis showed that growth improvement appeared to be the result of increased capacity for salt exclusion and enhancement of Ca2+ uptake. X-ray microanalysis of root compartments indicated that the presence of polymer restricted apoplastic Na+ in both young and old roots, and limited apoplastic and cytoplastic Cl in old roots while increasing Cl compartmentation in cortical vacuoles of both young and old roots. Collectively, radical transport of salt ions (Na+ and Cl) through the cortex into the xylem was lowered and subsequent axial transport was limited. Hydrogel treatment enhanced uptake of Ca2+ and microanalysis showed that enrichment of Ca2+ in root tissue mainly occurred in the apoplast. In conclusion, enhanced Ca2+ uptake and the increased capacity of P. euphratica to exclude salt were the result of improved Ca2+/Na+ concentration of soil solution available to the plant. Hydrogel amendment improves the quality of soil solutions by lowering salt level as a result of its salt-buffering capacity and enriching Ca2+ uptake, because of the polymers cation-exchange character. Accordingly, root aggregation allows good contact of roots with a Ca2+ source and reduces contact with Na+ and Cl, which presumably plays a major role in enhancing salt tolerance of P. euphratica.  相似文献   

18.
Salt tolerant spinach (Spinacia oleracea) and salt sensitive pea (Pisum sativum) plants were exposed to mild salinity under identical growth conditions. In order to compare the ability of the two species for extra- and intracellular solute compartmentation in leaves, various solutes were determined in intercellular washing fluids and in aqueously isolated intact chloroplasts. In pea plants exposed to 100 millimolar NaCl for 14 days, apoplastic salt concentrations in leaflets increased continuously with time up to 204 (Cl) and 87 millimolar (Na+), whereas the two ions reached a steady concentration of only 13 and 7 millimolar, respectively, in spinach leaves. In isolated intact chloroplasts from both species, sodium concentrations were not much different, but chloride concentrations were significantly higher in pea than in spinach. Together with data from whole leaf extracts, these measurements permitted an estimation of apoplastic, cytoplasmic, and vacuolar solute concentrations. Sodium and chloride concentration gradients across the tonoplast were rather similar in both species, but spinach was able to maintain much steeper sodium gradients across the plasmamembrane compared with peas. Between day 12 and day 17, concentrations of other inorganic ions in the pea leaf apoplast increased abruptly, indicating the onset of cell disintegration. It is concluded that the differential salt sensitivity of pea and spinach cannot be traced back to a single plant performance. Major differences appear to be the inability of pea to control salt accumulation in the shoot, to maintain steep ion gradients across the leaf cell plasmalemma, and to synthesize compatible solutes. Perhaps less important is a lower selectivity of pea for K+/Na+ and NO3/Cl uptake by roots.  相似文献   

19.
Acidification inside the vacuo-lysosome systems is ubiquitous in eukaryotic organisms and essential for organelle functions. The acidification of these organelles is accomplished by proton-translocating ATPase belonging to the V-type H+-ATPase superfamily. However, in terms of chemiosmotic energy transduction, electrogenic proton pumping alone is not sufficient to establish and maintain those compartments inside acidic. Current studies have shown that thein situ acidification depends upon the activity of V-ATPase and vacuolar anion conductance; the latter is required for shunting a membrane potential (interior positive) generated by the positively charged proton translocation. Yeast vacuoles possess two distinct Cl transport systems both participating in the acidification inside the vacuole, a large acidic compartment with digestive and storage functions. These two transport systems have distinct characteristics for their kinetics of Cl uptake or sensitivity to a stilbene derivative. One shows linear dependence on a Cl concentration and is inhibited by 4,4-diisothiocyano-2,2-stilbenedisulfonic acid (DIDS). The other shows saturable kinetics with an apparentK m for Cl of approximately 20 mM. Molecular mechanisms of the chemiosmotic coupling in the vacuolar ion transport and acidification inside are discussed in detail.  相似文献   

20.
The mechanism of a K+-driven Cl accumulation against a concentration gradient was investigated by flow dialysis after addition of K+-Hepes. Non-specific chloride binding, measured in the presence of choline-Hepes, accounted for approximately 50% of the observed uptake in this system. The K+-Hepesdriven Cl uptake was inhibited by poly-l-lysine and by two antibodies raised to the major polypeptides of the Cl-efflux active particle. Poly-l-lysine had no effect on Cl binding estimated with choline-Hepes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号