首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: Mutations induced by the integration of a Mu gem 2ts mutant prophage can revert at frequencies around 1 × 10−6, more than 104-fold higher than that obtained with Mu wild-type. Several aspects characterize Mu gem 2ts precise excision: (i) the phage transposase is not involved; (ii) the RecA protein is not necessary; and (iii) revertants remain lysogenic with the prophage inserted elsewhere in the host genome. In addition, prophage re-integration seems to be non-randomly distributed, whereas Mu insertion into the host genome is a transposition event without any sequence specificity. In this paper, we describe that the site of re-integration somehow depends on the original site of insertion. Two alternative models are proposed to explain the strong correlation between donor and receptor sites.  相似文献   

2.
Summary To study the excision of bacteriophage Mu at the DNA sequence level, the Mu-derived phage placMu3 was transposed to the transcribed but non-translated leader region of a plasmid-borne tetracycline (tet) resistance gene. Revertants (excision products) were then selected by Tet+ restoration of Tet+ and characterized. Of 21 independent Tet+ revertants, 17 contained simple deletions of most or all of placMu3, while the other four contained more complex rearrangements in which one end of placMu3 had been transposed, and most of the prophage had been deleted. The deletion endpoints were found in short direct repeats in each of the complex rearrangements and in 11 of the 17 simple deletion excisants. The results suggest models of slipped mispairing of template and nascent DNA strands facilitated by proteins of the Mu transposition machinery.  相似文献   

3.
We have characterized a series of amber mutations in the A gene of bacteriophage Mu encoding the phage transposase. We tested different activities of these mutant proteins either in a sup0 strain or in different sup bacteria. In conjunction with the results described in the accompanying paper by Bétermier et al. (1989) we find that the C-terminus of the protein is not absolutely essential for global transposase function, but is essential for phage growth. Specific binding to Mu ends is defined by a more central domain. Our results also reinforce the previous findings (Bétermier et al., 1987) that more than one protein may be specified by the A gene.  相似文献   

4.
Martin L. Pato  Claudia Reich 《Cell》1984,36(1):197-202
The transposase of bacteriophage Mu (gene A protein) mediates the coupled replication and integration processes that constitute transposition during the lytic cycle. Our previous results showed that the activity of the A protein is unstable, as its continued synthesis is required to maintain Mu DNA replication throughout the lytic cycle. We present here the results of experiments in which the A protein is used stoichiometrically and must be synthesized de novo for each round of Mu DNA replication. Induction of a Mu lysogen in the absence of DNA replication allows accumulation of potential for a single round of Mu DNA replication. Once achieved, this potential is stable even in the absence of further protein synthesis. Release of inhibition of DNA replication leads to a single semi-conservative replicative transposition event, followed by later rounds only if additional synthesis of the A protein is allowed.  相似文献   

5.
The activity of the transposase of bacteriophage Mu is unstable, requiring the protein to be synthesized throughout the lytic cycle (Pato and Reich, 1982). Using Western blot analysis, we analysed the stability of the transposase protein during the lytic cycle and found that it, too, is unstable. The instability of the protein is observed both in the presence and the absence of Mu DNA replication, and is independent of other Mu-encoded proteins and the transposase binding sites at the Mu genome ends. Stability of the protein is enhanced in host strains mutated at the hfl locus; however, stability of the transposase activity is not enhanced in these strains, suggesting that functional inactivation of the protein is not simply a result of its proteolysis.  相似文献   

6.
Summary The crossover sites for Cin-mediated inversion consist of imperfect 12 bp inverted repeats with non-palindomic dinucleotides at the center of symmetry. Inversion is believed to occur in vivo between the homologous central 2 bp crossover sequences at the inversely repeated crossover sites through introduction of 2 bp staggered cuts and subsequent reciprocal strand exchanges. The site-specific Cin recombinase acts not only on the normal crossover sites but also, less efficiently, on quasi crossover sites which have some homology with the normal sites. We identified 15 new quasi sites including 4 sites within the cin structural gene. Homology at the 2 bp crossover sequences between recombining sites favors selection as quasi crossover sites. The Cin enzyme can occasionally mediate inversion between nonidentical crossover sequences and such recombinations often result in localized mutations including base pair substitutions and deletions within the 2 bp crossover sequences. These mutations are explained as the consequences of heteroduplex molecules formed between the staggered dinucleotides and either tubsequent resolution by DNA replication or subsequent mismatch repair. Occasional utilization of quasi crossover sites and localized mutagenesis at the crossover sequences in enzyme-mediated inversion processes would be one of the mechanisms contributing to genetic diversity.  相似文献   

7.
Bacteriophage Mu is a transposon and a temperate phage which has become a paradigm for the study of the molecular mechanism of transposition. As a prophage, Mu has also been used to study some aspects of the influence of the host cell growth phase on the regulation of transposition. Through the years several host proteins have been identified which play a key role in the replication of the Mu genome by successive rounds of replicative transposition as well as in the maintenance of the repressed prophage state. In this review we have attempted to summarize all these findings with the purpose of emphasizing the benefit the virus and the host cell can gain from those phage-host interactions.  相似文献   

8.
The site-specific recombination systems of bacteriophages λ and HK022 share the same mechanism and their integrase proteins show strong homology. Nevertheless the integrase protein of each phage can only catalyze recombination between its own att sites. Previous work has shown that the specificity determinants in the att sites are located within the sequences that bind the integrase to the core of att. DNA fragments that carry attL and attR sites of each phage were challenged with each of the two integrases and the DNA-protein complexes were examined by the gel- retardation technique. The results show that each integrase can form higher-order DNA-protein complexes only with its cognate att sites, suggesting that differences in the mode of binding to the core are responsible for the specificity difference between the two integrases. Received: 16 November 1999 / Accepted: 26 January 2000  相似文献   

9.
The positions of the endonucleolytic cleavages promoted by the integrase protein (Int) of coliphage HK022 within its attB site were determined. The protein catalyses a staggered cut, which defines an overlap sequence of 7 by within the core site. The overlap region is at the center of symmetry of a palindromic sequence which appears in all four putative att core binding sites for Int. We confirm that the order of strand exchange is similar to that in phage .  相似文献   

10.
Bacteriophage Mu DNA, like other transposable elements, requires DNA sequences at both extremities to transpose. It has been previously demonstrated that the transposition activity of various transposons can be influenced by sequences outside their ends. We have found that alterations in the neighboring plasmid sequences near the right extremity of a Mini-Mu, inserted in the plasmid pSC101, can exert an influence on the efficiency of Mini-Mu DNA transposition when an induced helper Mu prophage contains a polar insertion in its semi-essential early region (SEER). The SEER of Mu is known to contain several genes that can affect DNA transposition, and our results suggest that some function(s), located in the SEER of Mu, may be required for optimizing transposition (and thus, replication) of Mu genomes from restrictive locations during the lytic cycle.  相似文献   

11.
We describe below the chemical synthesis of the right and left ends of bacteriophage Mu and characterize the activity of these synthetic ends in mini-Mu transposition. Mini-Mu plasmids were constructed which carry the synthetic Mu ends together with the Mu A and B genes under control of the bacteriophage λ pL promoter. Derepression of pL leads to a high frequency of mini-Mu transposition (5.6 × 10−2) which is dependent on the presence of the Mu ends and the Mu A and B proteins. Five deletion mutants in the Mu ends were tested in the mini-Mu transposition system and their effects on transposition are described.  相似文献   

12.
We have previously reported that the 13 kDa amino terminus of the 70 kDa bacteriophage D108 transposase protein (A gene product) contains a two-component, sequence-specific DNA-binding domain which specifically binds to the related bacteriophage Mu's right end (attR) in vitro. To extend these studies, we examined the ability of the 13 kDa amino terminus of the Mu transposase protein to bind specifically to Mu attR in crude extracts. Here we report that the Mu transposase protein also contains a Mu attR specific DNA-binding domain, located in a putative alpha-helix-turn-alpha-helix region, in the amino terminal 13 kDa portion of the 70 kDa transposase protein as part of a 23 kDa fusion protein with beta-lactamase. We purified for this attR-specific DNA-binding activity and ultimately obtained a single polypeptide of the predicted molecular weight for the A'--'bla fusion protein. We found that the pure protein bound to the Mu attR site in a different manner compared with the entire Mu transposase protein as determined by DNase I-footprinting. Our results may suggest the presence of a potential primordial DNA-binding site (5'-PuCGAAA-3') located several times within attR, at the ends of Mu and D108 DNA, and at the extremities of other prokaryotic class II elements that catalyze 5 base pair duplications at the site of element insertion. The dissection of the functional domains of the related phage Mu and D108 transposase proteins will provide clues to the mechanisms and evolution of DNA transposition as a mode of mobile genetic element propagation.  相似文献   

13.
14.
R Kruklitis  D J Welty    H Nakai 《The EMBO journal》1996,15(4):935-944
During transposition bacteriophage Mu transposase (MuA) catalyzes the transfer of a DNA strand at each Mu end to target DNA and then remains tightly bound to the Mu ends. Initiation of Mu DNA replication on the resulting strand transfer complex (STC1) requires specific host replication proteins and host factors from two partially purified enzyme fractions designated Mu replication factors alpha and beta (MRFalpha and beta). Escherichia coli ClpX protein, a molecular chaperone, is a component required for MRFalpha activity, which removes MuA from DNA for the establishment of a Mu replication fork. ClpX protein alters the conformation of DNA-bound MuA and converts STC1 to a less stable form (STC2). One or more additional components of MRFalpha (MRFalpha2) displace MuA from STC2 to form a nucleoprotein complex (STC3), that requires the specific replication proteins and MRFbeta for Mu DNA synthesis. MuA present in STC2 is essential for its conversion to STC3. If MuA is removed from STC2, Mu DNA synthesis no longer requires MRFalpha2, MRFbeta and the specific replication proteins. These results indicate that ClpX protein activates MuA in STC1 so that it can recruit crucial host factors needed to initiate Mu DNA synthesis by specific replication enzymes.  相似文献   

15.
16.
Assembly of the functional tetrameric form of Mu transposase (MuA protein) at the two att ends of Mu depends on interaction of MuA with multiple att and enhancer sites on supercoiled DNA, and is stimulated by MuB protein. The N-terminal domain I of MuA harbours distinct regions for interaction with the att ends and enhancer; the C-terminal domain III contains separate regions essential for tetramer assembly and interaction with MuB protein (IIIα and IIIβ, respectively). Although the central domain II (the ‘DDE’ domain) of MuA harbours the known catalytic DDE residues, a 26 amino acid peptide within IIIα also has a non-specific DNA binding and nuclease activity which has been implicated in catalysis. One model proposes that active sites for Mu transposition are assembled by sharing structural/catalytic residues between domains II and III present on separate MuA monomers within the MuA tetramer. We have used substrates with altered att sites and mixtures of MuA proteins with either wild-type or altered att DNA binding specificities, to create tetrameric arrangements wherein specific MuA subunits are nonfunctional in II, IIIα or IIIβ domains. From the ability of these oriented tetramers to carry out DNA cleavage and strand transfer we conclude that domain IIIα or IIIβ function is not unique to a specific subunit within the tetramer, indicative of a structural rather than a catalytic function for domain III in Mu transposition.  相似文献   

17.
Random mutagenesis of the gene for bacteriophage T7 RNA polymerase was used to identify functionally essential amino acid residues of the enzyme. A two-plasmid system was developed that permits the straightforward isolation of T7 RNA polymerase mutants that had lost almost all catalytic activity. It was shown that substitutions of Thr and Ala for Pro at the position 563, Ser for Tyr571, Pro for Thr636, Asp for Tyr639 and of Cys for Phe646 resulted in inactivation of the enzyme. It is noteworthy that all these mutations are limited to two short regions that are highly conservative in sequences of monomeric RNA polymerases.  相似文献   

18.
The bacteriophage Mu transposase (the Mu A gene product), which is absolutely required for both integration of Mu and replicative transposition during the lytic cycle, has been overproduced by cloning the gene on a plasmid under the control of the phage lambda PL promoter. The protein has been purified to near homogeneity from the lysate of heat-induced cells of a strain carrying the plasmid. The purified protein is active as judged by its ability to complement Mu A- cell extracts for supporting Mu transposition in a cell-free reaction.  相似文献   

19.
20.
Infection of Escherichia coli with the mutant lig ts2 of bacteriophage Mu at a temperature nonpermissive for this mutant is lethal for the host cells. This effect is insensitive to phage immunity of the host cells, to inhibitors of protein synthesis and is not suppressed in trans in bacterial strains producing the Lig+ active protein. These data suggest that the killing effect of this mutant is different from the other kil functions identified in Mu [1].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号