首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Growth tests and enzyme determinations strongly suggest that the acetamidase of Aspergillus nidulans is induced by a product of acetate metabolism rather than the substrate, acetamide. The cis-dominant mutation, amdI9, which is closely linked to amdS, the structural gene for the acetamidase, results in greatly increased sensitivity to induction by acetate metabolism. Propionate, L-threonine, and ethanol also result in acetamidase induction. Mutations in the facA, facB, and facC genes, which lead to low levels of acetyl-coenzyme A synthase, are epistatic to the amdI9 mutation for strong growth on acetamide medium and abolish acetamide and propionamide induction of the acetamidase and isocitrate lyase enzymes. Acetate, L-threonine, and ethanol, however, can induce these enzymes in strains containing facA and facC lesions but not in strains containing a facB lesion. The evidence suggests that acetamidase and isocitrate lyase may be induced by a similar mechanism.  相似文献   

2.
3.
The highly inducible acetamidase promoter from Mycobacterium smegmatis has been used as a tool in the study of mycobacterial genetics. The 4.2 kb acetamidase operon contains four putative open reading frames (ORFs) (amiC, amiA, amiD, and amiS) upstream of the 1.2 kb acetamidase ORF (amiE). In this article, using electrophoretic mobility shift assay and promoter probe analyses with a lacZ reporter system, we show the position of three putative operators within the acetamidase operon in M. smegmatis. Results from these studies reinforce previous findings about the involvement of multiple promoters in the regulation of acetamidase gene expression. Each of the identified operators are positioned upstream of the respective promoter reported in previous studies. We also found that the crude cell lysate of M. smegmatis containing potential regulators, obtained from bacteria grown under inducing or noninducing conditions, binds to specific operators. The binding affinity of each operator with its cognate regulator is significantly different from the other. This supports not only the previous model of acetamidase gene regulation in M. smegmatis but also explains the role of these operators in controlling the expression of respective promoters under different growth conditions.  相似文献   

4.
Summary Mutants of Aspergillus nidulans with temperature sensitive growth on various amides have been isolated. Three of these mutants have a lesion in the amdS gene and their properties indicate that this is the structural gene for the acetamidase enzyme. In addition one of these mutants appears to be temperature sensitive for assembly of enzyme sub-units. The fourth mutant has a lesion in the amdR gene and, while producing a normal enzyme, is temperature sensitive for synthesis of the acetamidase. The properties of these mutants provide support for a model in which amdR codes for a protein which acts positively to activate synthesis of the acetamidase. A discussion of the present knowledge concerning acetamidase regulation is presented.  相似文献   

5.
The acetamidase of Mycobacterium smegmatis is an inducible enzyme which enables the organism to utilise several amides as sole carbon sources. The acetamidase structural gene (amiE) is located downstream of four other genes, of which three form a probable operon with amiE; the fourth (amiC) is divergently transcribed. We constructed deletion mutants in two of these genes in order to determine their role in acetamidase expression. Both AmiC and AmiD were shown to be positive regulators of acetamidase expression required for induction. Combinations of regulatory gene deletions were made which revealed that AmiC interacts with the previously characterised negative regulator AmiA, whereas AmiD does not.  相似文献   

6.
Aspergillus nidulans produces acetamidase and formamidase enzymes. The acetamidase is produced in reduced amounts during growth on glucose, whereas the formamidase is not greatly affected. Mutations in a gene, amdT, which affect glucose repression of amidases are described. One of these, amdT102, causes the acetamidase to be no longer subject to glucose repression and also affects ability to synthesize formamidase. The other, amdT19, results in both the formamidase and the acetamidase being subject to abnormally strong glucose repression, and also in increased maximal acetamidase activities. The dominance relationships at the amdT locus have been investigated. It is suggested that the amdT gene may play a positive role in controlling amidase synthesis.  相似文献   

7.
Induction and Repression of Amidase Enzymes in Aspergillus nidulans   总被引:7,自引:5,他引:2       下载免费PDF全文
Aspergillus nidulans can grow on acetamide as both a carbon and nitrogen source and can also grow on formamide as a nitrogen source. Two distinct enzymes, an acetamidase and a formamidase, are produced. The control of the synthesis of these two enzymes in a wild-type strain was investigated. The formamidase is induced by acetamide and formamide and repressed by ammonia. The acetamidase is induced by formamide and acetamide, repressed by carbon metabolites derived from glucose and acetate, and repressed by ammonia. Repression of the acetamidase by ammonia depends on the carbon source; growth on glucose but not on acetate or acetamide allows repression to occur. The pattern of acetamidase repression is compared with that of histidine catabolic enzymes in various bacteria.  相似文献   

8.
《Microbiological research》2014,169(11):873-880
Regulation of gene expression is one of the mechanisms of virulence in pathogenic organisms. In this context, we would like to understand the gene regulation of acetamidase enzyme of Mycobacterium smegmatis, which is the first reported inducible enzyme in mycobacteria. The acetamidase is highly inducible and the expression of this enzyme is increased 100-fold when the substrate acetamide is added. The acetamidase structural gene (amiE) is found immediately downstream of three predicted open reading frames (ORFs). Three of these genes along with a divergently expressed ORF are predicted to form an operon and involved in the regulation of acetamidase enzyme. Here we report expression, purification and functional characterization of AmiA which is one of these predicted ORFs. Electrophoretic mobility shift assays showed that AmiA binds to the region between the amiA and amiD near the predicted promoter (P2). Over-expression of AmiA significantly lowered the expression of acetamidase compared to the wild type as demonstrated by qRT-PCR and SDS-PAGE. We conclude that AmiA binds near P2 promoter and acts as a repressor in the regulation of acetamidase operon. The described work is a further step forward toward broadening the knowledge on understanding of the complex gene regulatory mechanism of Mycobacterium sp.  相似文献   

9.
Transformation by integration in Aspergillus nidulans   总被引:26,自引:0,他引:26  
DNA-mediated genetic transformation of Aspergillus nidulans has been achieved by incubating protoplasts from a strain of A. nidulans carrying a deletion in the acetamidase structural gene with DNA of derivatives of plasmid pBR322 containing the cloned structural gene for acetamidase [Hynes et al., Mol. Cell. Biol. 3 (1983) 1430-1439; p3SR2] in the presence of polyethylene glycol and CaCl2. The highest frequency obtained was 25 transformants per microgram of DNA. No enhancement of the transformation frequency was observed when DNAs of plasmids carrying either a fragment of the A. nidulans ribosomal repeat (p3SR2rr) or a fragment containing a possible A. nidulans mitochondrial origin of replication (p3SR2mo) in addition to the acetamidase gene were used. Both pBR322 and acetamidase gene sequences become integrated into the genome of A. nidulans in transformant strains. Integration events into the residual sequences adjacent to the deletion in the acetamidase gene, and probably (for p3SR2rr and p3SR2mo) into the ribosomal repeat unit are described.  相似文献   

10.
Brown AC  Parish T 《Plasmid》2006,55(1):81-86
The Escherichia coli-mycobacterium shuttle vector pJAM2 has been used to inducibly express genes in mycobacteria. The vector carries the promoter region from the highly inducible acetamidase gene of Mycobacterium smegmatis which is used to drive expression of heterologous genes. We used pJAM2 to over-express the Mycobacterium tuberculosis gene Rv2868c, a homologue of gcpE. In M. smegmatis the plasmid was stable, but the promoter region was readily deleted when the parental vector or recombinant plasmids were transformed into M. tuberculosis. We mapped the deletion by sequencing and found that it encompassed the entire acetamidase promoter and adjacent sequence totalling approximately 7.3 kb and occurred very soon after introduction into M. tuberculosis. This is the first report of instability of a vector carrying the acetamidase promoter in M. tuberculosis.  相似文献   

11.
In Aspergillus nidulans the acetamidase enzyme is inducible by omega-amino acids, sources of acetyl-coenzyme A, and benzoate. The amdR (or intA) gene is a positive-control gene involved in omega-amino acid induction only. A cis-acting mutation amdI93 located in a complex controlling region adjacent to the acetamidase structural gene was found to abolish induction by omega-amino acids but not induction by other sources of induction. As predicted, this mutation was epistatic to constitutive amdR alleles but did not affect the expression of mutations in other regulatory genes.  相似文献   

12.
Summary Aspergillus nidulans uses an acetamidase enzyme to grow on acetamide as a carbon or as a nitrogen source. Acrylamide is a substrate for the enzyme but does not induce its synthesis. Mutants capable of growing on acrylamide as a nitrogen source have been isolated. Two classes of mutant have been found —amdR c mutants on linkage group II andamdT c on linkage group III.amdR c mutants produce high constitutive acetamidase levels. The enzyme is still inducible by amides, but to a lesser extent than wild type, and is still subject to repression by ammonia and by carbon metabolites derived from glucose.amdR c mutants are semi-dominant to the wild type allele in heterozygous, diploids. TheamdT c mutant is not subject to carbon metabolite repression, of the acetamidase. The enzyme is inducible by amides and repressible by ammonia. TheamdT c mutation also results in reduced ability to grow on formamide as a nitrogen source and to lowered levels of a second amidase enzyme.amdT c is semi-dominant in heterozygous diploids.  相似文献   

13.

Background  

The acetamidase of Mycobacterium smegmatis is a highly inducible enzyme. Expression of this enzyme is increased 100-fold when the substrate acetamide is present. The acetamidase gene is found immediately downstream of three open reading frames. Two of these are proposed to be involved in regulation.  相似文献   

14.
Mycobacterium smegmatis, a rapidly growing non-pathogenic mycobacterium, is currently used as a model organism to study mycobacterial genetics. Acetamidase of M. smegmatis is the highly inducible enzyme of Mycobacteria, which utilizes several amide compounds as sole carbon and nitrogen sources. The acetamidase operon has a complex regulatory mechanism, which involves three regulatory proteins, four promoters, and three operator elements. In our previous study, we showed that over-expression of AmiA leads to a negative regulation of acetamidase by blocking the P2 promoter. In this study, we have identified a new positive regulatory protein, AmiC that interacts with AmiA through protein-protein interaction. Gel mobility shift assay showed that AmiC protein inhibits AmiA from binding to the P2 promoter. Interaction of AmiC with cis-acting elements identified its binding ability to multiple regulatory regions of the operon such as P3, OP3, and P1 promoter/operator. Consequently, the addition of inducer acetamide to AmiC complexe trips the complexes, causing AmiC to appear to be the sensory protein for the amides. Homology modeling and molecular docking studies suggest AmiC as a member of Periplasmic binding proteins, which preferentially bind to the inducers and not to the suppressor. Over-expression of AmiC leads to down-regulation of the negative regulator, amiA, and constitutive up-regulation of acetamidase. Based on these findings, we conclude that AmiC positively regulates the acetamidase operon.  相似文献   

15.
16.
Aspergillus niger grows poorly on acetamide as a nitrogen or carbon source and lacks sequences detectably homologous to the amdS gene encoding the acetamidase of Aspergillus nidulans. We have taken advantage of these observations to develop a transformation system for A. niger using the amdS gene as a dominant heterologous marker for selecting transformants on the basis of acetamide utilization. Transformants varied in their ability to grow on amide media and the number of integrated copies of the amdS plasmid ranged from 1 or 2 to greater than 100. Southern analysis of transformants revealed that the multiple copies were integrated into the chromosome in tandem arrays. This result indicates that transformation of A. niger is more similar to mammalian cells than to yeast. Analysis of enzyme activity levels and RNA levels showed that most of the copies of amdS were expressed. Mitotic stabilities of transformants were found to be high. A transformant containing greater than 100 copies of the amdS gene was impaired in omega-amino acid utilization, a result that has also been found in A. nidulans. Since, in A. nidulans, omega-amino acids induce acetamidase via a characterizied regulatory gene (amdR/intA) this observation implies that titration of an analogous A. niger regulatory gene product by multiple amdS copies has occurred. Additional evidence suggested that the amdS gene is regulated in A. niger. It has also been shown that an unselected plasmid can be co-transformed with the amdS plasmid into A. niger.  相似文献   

17.
Summary The acetamidase of Aspergillus nidulans is induced by sources of acetyl CoA, benzoate and benzamide and by -alanine and other -amino acids. The effects of these groups of inducers are approximately additive. The cis-acting control site mutant, amdI9, affects induction by sources of acetyl-CoA specifically. Lesions in the amdR and gatA genes affect induction by -amino acids specifically. Mutations in the amdA gene can lead to elevated acetamidase levels which still respond to the various inducers. The induction controls act independently of repression control by nitrogen metabolites and are not altered by the areA102 mutation. The properties of double mutants with lesions affecting the different control mechanisms also indicate their independence of each other. It is suggested that the acetamidase is subject to complex control by multiple regulatory circuits and that functionally independent control sites adjacent to the structural gene occur.  相似文献   

18.
Physiological regulation of proteins involved in the transport and metabolism of methanol and short-chain amides by Methylophilus methylotrophus was investigated following growth in continuous culture at various input C:N ratios. The concentrations of the methanol porin and methanol dehydrogenase were highest during C-limited growth (C:N<4.6), but declined gradually as a function of the increasing C:N ratio and were lowest during N-limited growth (C:N>16.3). In contrast, the concentrations of the amide-urea porin, the amide-urea binding protein, formamidase and acetamidase (together with formamidase and acetamidase activities) were lowest during C-limited growth, but increased sharply as a function of the C:N ratio and were highest during dual CN-limited and N-limited growth (C:N 4.6–16.3). The results are discussed in terms of the physiological and biochemical requirements of growth at varying C:N ratios.  相似文献   

19.
Summary Growth of Aspergillus nidulans in the presence of methylammonium leads to lowered levels of the enzymes, acetamidase, formamidase, benzamidase, histidase, nitrate reductase and urate oxidase. This phenomenon is not altered in strains that are insensitive to ammonium repression due to a lesion in the gdhA gene. Similarly repression of acetamidase, formamidase and histidase by high concentrations of caesium ion is not affected in these strains. The results indicate that caesium ion and methylammonium may not act as direct analogues of ammonium in repression of enzyme synthesis.  相似文献   

20.
A chemically inducible acetamidase promoter-sigF fusion gene was integrated into the chromosome of Mycobacterium bovis BCG. Two-dimensional protein gel analysis permitted the identification of a number of protein spots whose expression was SigF related. One spot upregulated by inappropriate induction of sigF expression corresponded to the 16-kDa antigen alpha-crystallin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号