首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hopanoids are a class of membrane lipids found in diverse bacterial lineages, but their physiological roles are not well understood. The ethanol fermenter Zymomonas mobilis features the highest measured concentration of hopanoids, leading to the hypothesis that these lipids can protect against the solvent toxicity. However, the lack of genetic tools for manipulating hopanoid composition in this bacterium has limited their further functional analysis. Due to the polyploidy (>50 genome copies per cell) of Z. mobilis, we found that disruptions of essential hopanoid biosynthesis (hpn) genes act as genetic knockdowns, reliably modulating the abundance of different hopanoid species. Using a set of hpn transposon mutants, we demonstrate that both reduced hopanoid content and modified hopanoid polar head group composition mediate growth and survival in ethanol. In contrast, the amount of hopanoids, but not their head group composition, contributes to fitness at low pH. Spectroscopic analysis of bacterial‐derived liposomes showed that hopanoids protect against several ethanol‐driven phase transitions in membrane structure, including lipid interdigitation and bilayer dissolution. We propose that hopanoids act through a combination of hydrophobic and inter‐lipid hydrogen bonding interactions to stabilize bacterial membranes during solvent stress.  相似文献   

2.
Zymomonas mobilis (ATCC 29191) was grown either aerobically or anaerobically in the presence of 2% (wt/vol) glucose and 0, 3, or 6% (vol/vol) ethanol. The rates of growth and the composition of hopanoids, cellular fatty acids, and other lipids in the bacterial membranes were quantitatively analyzed. The bacterium grew in the presence of 3% and 6% ethanol and was more ethanol tolerant when grown anaerobically. In the absence of ethanol, hopanoids comprised about 30% (by mass) of the total cellular lipids. Addition of ethanol to the media caused complex changes in the levels of hopanoids and other lipids. However, there was not a significant increase in any of the hopanoid lipid classes as ethanol concentration was increased. As previously reported, vaccenic acid was the most abundant fatty acid in the lipids of Z. mobilis, and its high constitutive levels were unaffected by the variations in ethanol and oxygen concentrations. A cyclopropane fatty acid accounted for 2.6–6.4 wt % of the total fatty acids in all treatments. Received: 12 November 1996 / Accepted: 25 February 1997  相似文献   

3.
Summary The influence of different culture conditions on the hopanoid content of Zymomonas mobilis was investigated in batch cultures. With a gas-liquid chromatographic method it could be shown that the content of 1,2,3,4-tetrahydroxypentane-29-hopane (THBH) reached a maximum value in the stationary phase due to the high level of ethanol accumulated in the medium. The hopanoid content increased sharply with the addition of ethanol to the culture. Ethanol was shown to be the most effective of the alcohols tested in causing an increase of the hopanoid content. Furthermore, an alteration of the incubation temperature from 14° to 37°C also caused an increase of the amount of hopanoids.Abbreviations THBH 1,2,3,4-tetrahydroxy-pentane-29-hopane - HMG-CoA reductase 3-hydroxy-3-methylglutaryl coenzyme A reductase  相似文献   

4.
Wild-type Zymomonas mobilis can utilize only three substrates (sucrose, glucose, and fructose) as sole carbon sources, which are largely converted into ethanol and carbon dioxide. Here, we show that although D-mannose is not used as a growth substrate, it is taken up via the glucose uniport system (glucose facilitator protein) with a Vmax similar to that of glucose. Moreover, D-mannose was phosphorylated by a side activity of the resident fructokinase to mannose-6-phosphate. Fructokinase was purified to homogeneity from an frk-recombinant Z. mobilis strain showing a specific activity of 205 +/- 25 U of protein mg-1 with fructose (K(m), 0.75 +/- 0.06 mM) and 17 +/- 2 U mg-1 (relative activity, 8.5%) with mannose (K(m), 0.65 +/- 0.08 mM). However, no phosphomannoseisomerase activity could be detected for Z. mobilis, and this appeared to be the reason for the lack of growth on mannose. Therefore, we introduced the Escherichia coli gene pmi (manA) in Z. mobilis under the control of a lacIq-Ptac system on a broad-host-range plasmid (pZY507; Cmr). Subsequently, in pmi-recombinant cells of Z. mobilis, phosphomannoseisomerase was expressed in a range of from 3 U (without isopropyl-beta-D-thiogalactopyranoside [IPTG]) to 20 U mg-1 of protein in crude extracts (after IPTG induction). Recombinant cells of different Z. mobilis strains utilized mannose (4%) as the sole carbon source with a growth rate of 0.07 h-1, provided that they contained fructokinase activity. When the frk gene was additionally expressed from the same vector, fructokinase activities of as much as 9.7 U mg-1 and growth rates of as much as 0.25 h-1 were detected, compared with 0.34 h-1 on fructose for wild-type Z. mobilis. Selection for growth on mannose was used to monitor plasmid transfer of pZY507pmi from E. coli to Z. mobilis strains and could replace the previous selection for antibiotic resistance.  相似文献   

5.
Hopanoid lipids have been discovered recently in a number of nitrogen-fixing soil bacteria and in Bradyrhizobium bacteria which fix nitrogen in association with legume plants. We report here an investigation of the hopanoid content in an additional number of soil bacteria capable of living in close association with plants. Of the strains investigated, hopanoids were discovered in phototrophic, nitrogen-fixing bacteria and in an extended number of Bradyrhizobium strains. Strains in which hopanoids so far have not been found belong to the following genera: Rhizobium, Sinorhizobium, Phyllobacterium, Agrobacterium, and Azoarcus. To address the function of hopanoids in Bradyrhizobium, we cloned the gene coding for a key enzyme of hopanoid biosynthesis, the squalene-hopene cyclase, and expressed the gene in E. coli. The recombinant enzyme catalyzed in vitro the cyclization of squalene to hopanoid derivatives.Abbreviations SHC squalene-hopene cyclase - shc squalene-hopene cyclase gene  相似文献   

6.
The sedimentary record of molecular fossils (biomarkers) can potentially provide important insights into the composition of ancient organisms; however, it only captures a small portion of their original lipid content. To interpret what remains, it is important to consider the potential for functional overlap between different lipids in living cells, and how the presence of one type might impact the abundance of another. Hopanoids are a diverse class of steroid analogs made by bacteria and found in soils, sediments, and sedimentary rocks. Here, we examine the trade‐off between hopanoid production and that of other membrane lipids. We compare lipidomes of the metabolically versatile α‐proteobacterium Rhodopseudomonas palustris TIE‐1 and two hopanoid mutants, detecting native hopanoids simultaneously with other types of polar lipids by electrospray ionization mass spectrometry. In all strains, the phospholipids contain high levels of unsaturated fatty acids (often >80 %). The degree to which unsaturated fatty acids are modified to cyclopropyl fatty acids varies by phospholipid class. Deletion of the capacity for hopanoid production is accompanied by substantive changes to the lipidome, including a several‐fold rise of cardiolipins. Deletion of the ability to make methylated hopanoids has a more subtle effect; however, under photoautotrophic growth conditions, tetrahymanols are upregulated twofold. Together, these results illustrate that the ‘lipid fingerprint’ produced by a micro‐organism can vary depending on the growth condition or loss of single genes, reminding us that the absence of a biomarker does not necessarily imply the absence of a particular source organism.  相似文献   

7.
Lipid bilayer membranes were made from hopanoid phosphatidylcholine mixtures dissolved in decane. The specific capacity of the mixed membranes was found to increase with increasing hopanoid content. This indicates an interaction between hopanoids and lipids which leads to a reduction of the chemical potential of the solvent in the membranes.The structural properties of mixtures of hopanoids and phosphatidylcholines were investigated using charged probe molecules, the negatively charged lipophilic ions dipicrylamine (DPA) and tetraphenylborate (TØB) and the positively charged potassium complex PV-K+ (PV, cyclo (D-Val-L-Pro-L-Val-D-Pro)3). The transport properties of the lipophilic ions in the mixed membranes indicate that the electrical properties like dipolar potential and surface potentials of phosphatidylcholine membranes are not changed by the insertion of the hopanoids. The translocation rate constant K of the PV-K+ complex is drastically reduced in the hopanoid phosphatidylcholine membranes with increasing hopanoid content. This effect is discussed on the basis of an alteration of the microviscosity in the mixed membranes. There exists a close analogy between the action of cholesterol and hopanoids in bilayer membranes from phosphatidylcholines.A bilayer membrane composed of di-ω-cyclohexyldodecanoyl-phosphatidylcholine (DCPC) was found to possess a higher specific capacity as compared to other phosphatidylcholines. Also a lower translocation rate constant for PV-K+ was observed which may be caused by the relative high microviscosity of this lipid even above the phase transition temperature.  相似文献   

8.
Growth of the hopanoid-producing bacterium Zymomonas mobilis was inhibited at low concentrations of the cationic detergent octadecyltrimethylammoniumchloride (OTAC). A relationship between sensitivity of Zymomonas mobilis to OTAC, presence of hopanoids and ethanol tolerance was postulated. Mutants resistant to OTAC were isolated from strains ZM1 and ZM4. They did not present any alteration of the hopanoid content and their squalene cyclases showed the same sensitity to OTAC as the parent enzymes. Resistance to OTAC paralleled pleiotropic effects including, enhanced accessibility of the membrane-bound alkaline phosphatase, important release of proteins from cells by Tris/HCl treatment, increased resistance to antibiotics and increased sensitivity to ethanol. In addition, OTACR mutants were also characterized by the synthesis or the overproduction of an outer membrane protein (F53) not detected on 2D-PAGE maps of parent strains and by a normal heat shock response. The role of hopanoids, heat shock proteins, protein F53 and membrane organization in ethanol tolerance is discussed.Abbreviations OTAC octadecyltrimethylammoniumchloride - SLS sodium lauryl sarcosinate  相似文献   

9.
The occurrence of hopanoid lipids in Bradyrhizobium bacteria   总被引:2,自引:0,他引:2  
Abstract Lipid extraction procedures followed by GLC and GLC-MS analysis were used to investigate the triterpenoid content in Bradyrhizobium and Rhizobium bacteria. Unlike the tested strains of Rhizobium bacteria, a range of triterpenoids e.g., squalene and different classes of hopanoid derivatives were detected in bacteria from all Bradyrhizobium strains investigated (different strains from Bradyrhizobium japonicum, Bradyrhizobium elkanii as well as Bradyrhizobium sp.). Furthermore, related compounds were identified from some hopanoid lipids (e.g., diplopterol) that carried an additional methyl group in their molecular structure. The hopanoid content was high in some strains and accounted for more than 40% of the total lipid fraction (e.g., in strains Bradyrhizobium japonicum USDA 110 and USDA 31), while other strains contained only about a tenth of that amount (e.g., Bradyrhizobium japonicum ATCC 10324 and Bradyrhizobium sp. ( Lupinus ) ATCC 10319).  相似文献   

10.
Rick C. Heupel 《Phytochemistry》1985,24(12):2929-2937
The intraspecific similarities and differences among the various polycyclic isopentenoids (sterols and pentacyclic triterpenes) which occur in leaf tissue and surface wax from three varieties of flowering Sorghum bicolor; G499 GBR, BOK 8 and IS 809, have been determined. The three varieties exhibited differences in phenotypic characters (e.g. shoot height) and pest resistance. While sterol and pentacyclic amyroid compositions were similar in the three varieties, significant differences were evident in the qualitative distribution of the migrated hopanoids. One variety, IS 809, which is phenotypically short and resistant, contained a single migrated hopanoid, sorghumol Alternatively, the other two varieties, both phenotypically tall and one-G 499 GBR-resistant, the other-BOK 8-susceptible, contained a mixture of four Δ9(11)-migrated hopanoids, i.e. sorghumol and three of its stereoisomers, and the Δ5(6)-migrated hopanoid simiarenol. While ketones corresponding to the Δ9(11)-migrated hopanoids were detected in the three varieties, the ketone of the Δ5(6)-migrated hopanoid was apparently absent. In contrast to other graminaceous plants, the predominant C-3 derivatives did not include the C-3 methyl ethers, but did include esters and polar conjugates. Significant differences apparent in amounts of pentacyclic triterpenes were not apparent in the total amount of sterols extracted from the leaves (including surface wax) of the three varieties. Since S. bicolor varietal differences occurred only among the migrated hopanoids (found in mature leaves) it would appear that pentacyclic triterpenes, unlike sterols, have greater applicability as chemotaxonomic indices for intraspecific relationships in sorghum.  相似文献   

11.
Hopanes are abundant in ancient sedimentary rocks at discrete intervals in Earth history, yet interpreting their significance in the geologic record is complicated by our incomplete knowledge of what their progenitors, hopanoids, do in modern cells. To date, few studies have addressed the breadth of diversity of physiological functions of these lipids and whether those functions are conserved across the hopanoid‐producing bacterial phyla. Here, we generated mutants in the filamentous cyanobacterium, Nostoc punctiforme, that are unable to make all hopanoids (shc) or 2‐methylhopanoids (hpnP). While the absence of hopanoids impedes growth of vegetative cells at high temperature, the shc mutant grows faster at low temperature. This finding is consistent with hopanoids acting as membrane rigidifiers, a function shared by other hopanoid‐producing phyla. Apart from impacting fitness under temperature stress, hopanoids are dispensable for vegetative cells under other stress conditions. However, hopanoids are required for stress tolerance in akinetes, a resting survival cell type. While 2‐methylated hopanoids do not appear to contribute to any stress phenotype, total hopanoids and to a lesser extent 2‐methylhopanoids were found to promote the formation of cyanophycin granules in akinetes. Finally, although hopanoids support symbiotic interactions between Alphaproteobacteria and plants, they do not appear to facilitate symbiosis between N. punctiforme and the hornwort Anthoceros punctatus. Collectively, these findings support interpreting hopanes as general environmental stress biomarkers. If hopanoid‐mediated enhancement of nitrogen‐rich storage products turns out to be a conserved phenomenon in other organisms, a better understanding of this relationship may help us parse the enrichment of 2‐methylhopanes in the rock record during episodes of disrupted nutrient cycling.  相似文献   

12.
The simultaneous utilization of methanol and glucose by Hansenula polymorpha MH20 was investigated in chemostat (C-limited) cultivation. The mixed-substrate utilization results in biomass yields which are greater up to 20 to 25% as expected assuming an additive growth on both substrates. This is referred to as an auxiliary-substrate effect. Additionally, methanol can be utilized at higher growth rates in the presence of glucose compared to those obtained on this substrate alone. The extend of the auxiliary-substrate effect and the optimum ratio of substrates to reach this effect depend on dilution rate. The greatest stimulation in yield is obtained at D approximately 0.1 h-1, after raising the dilution rate this effect diminishes. At a rate of 0.1 h-1 the optimum mixed-substrate ratio of methanol: glucose is 7:1 (g). By increasing the growth rate the ratio changes toward glucose and reached a value of 1:1 (g) at D = 0.3 h-1. This change in the optimum ratio correlates with diminution in yield coefficient of methanol accompanying an increase in growth rate greater than 0.15 h-1. Energy balances of the utilization of the single substrates are used for interpretation of these results. From this it is evident that methanol does not play the role of an energy-rich substrate in the metabolism of yeast. Rather glucose is the energy-providing substrate in this combination.  相似文献   

13.
14.
Streptomyces coelicolor A3(2) contains a cluster of putative isoprenoid and hopanoid biosynthetic genes. The strain does not produce the pentacyclic hopanoids in liquid culture but produces them on solid medium when sporulating. Mutants defective in the formation of aerial mycelium and spores (bld), with the exception of bldB, do not synthesize hopanoids, whereas mutants, which form aerial mycelium but no spores (whi), do. The membrane condensing hopanoids possibly may alleviate stress in aerial mycelium by diminishing water permeability across the membrane.  相似文献   

15.
The inhibition of the maximum specific growth and fermentation rate of Zymomonas mobilis by ethanol was studied in turbidostat cultures at constant and stepwise changed ethanol concentrations. Up to 50 g/L ethanol, the inhibition kinetics can be approximated by a linear relationship between the specific growth rate and the ethanol concentration. Above this level, deviations from this linearity are observed. The specific fermentation rates were less inhibited by ethanol than was the specific growth rate. The maximum ethanol concentration achieved was 72 g/L.The response time for the adaptation of a turbidstat culture to step changes in the ethanol concentration was markedly dependent on the concentration level, the response time being large at high ethanol concentrations.  相似文献   

16.
Hopanes preserved in both modern and ancient sediments are recognized as the molecular fossils of bacteriohopanepolyols, pentacyclic hopanoid lipids. Based on the phylogenetic distribution of hopanoid production by extant bacteria, hopanes have been used as indicators of specific bacterial groups and/or their metabolisms. However, our ability to interpret them ultimately depends on understanding the physiological roles of hopanoids in modern bacteria. Toward this end, we set out to identify genes required for hopanoid biosynthesis in the anoxygenic phototroph Rhodopseudomonas palustris TIE-1 to enable selective control of hopanoid production. We attempted to delete 17 genes within a putative hopanoid biosynthetic gene cluster to determine their role, if any, in hopanoid biosynthesis. Two genes, hpnH and hpnG, are required to produce both bacteriohopanetetrol and aminobacteriohopanetriol, whereas a third gene, hpnO, is required only for aminobacteriohopanetriol production. None of the genes in this cluster are required to exclusively synthesize bacteriohopanetetrol, indicating that at least one other hopanoid biosynthesis gene is located elsewhere on the chromosome. Physiological studies with the different deletion mutants demonstrated that unmethylated and C(30) hopanoids are sufficient to maintain cytoplasmic but not outer membrane integrity. These results imply that hopanoid modifications, including methylation of the A-ring and the addition of a polar head group, may have biologic functions beyond playing a role in membrane permeability.  相似文献   

17.
Hopanoids are bacterial surrogates of eukaryotic membrane sterols and among earth's most abundant natural products. Their molecular fossils remain in sediments spanning more than a billion years. However, hopanoid metabolism and function are not fully understood. Burkholderia species are environmental opportunistic pathogens that produce hopanoids and also occupy diverse ecological niches. We investigated hopanoids biosynthesis in Burkholderia cenocepacia by deletion mutagenesis and structural characterization of the hopanoids produced by the mutants. The enzymes encoded by hpnH and hpnG were essential for production of all C35 extended hopanoids, including bacteriohopanetetrol (BHT), BHT glucosamine and BHT cyclitol ether. Deletion of hpnI resulted in BHT production, while ΔhpnJ produced only BHT glucosamine. Thus, HpnI is required for BHT glucosamine production while HpnJ is responsible for its conversion to the cyclitol ether. The ΔhpnH and ΔhpnG mutants could not grow under any stress condition tested, whereas ΔhpnI, ΔhpnJ and ΔhpnK displayed wild‐type growth rates when exposed to detergent, but varying levels of sensitivity to low pH and polymyxin B. This study not only elucidates the biosynthetic pathway of hopanoids in B. cenocepacia, but also uncovers a biosynthetic role for the conserved proteins HpnI, HpnJ and HpnK in other hopanoid‐producing bacteria.  相似文献   

18.
Hopanoids are pentacyclic triterpenoids that are thought to be bacterial surrogates for eukaryotic sterols, such as cholesterol, acting to stabilize membranes and to regulate their fluidity and permeability. To date, very few studies have evaluated the role of hopanoids in bacterial physiology. The synthesis of hopanoids depends on the enzyme squalene-hopene cyclase (Shc), which converts the linear squalene into the basic hopene structure. Deletion of the 2 genes encoding Shc enzymes in Burkholderia cenocepacia K56-2, BCAM2831 and BCAS0167, resulted in a strain that was unable to produce hopanoids, as demonstrated by gas chromatography and mass spectrometry. Complementation of the Δshc mutant with only BCAM2831 was sufficient to restore hopanoid production to wild-type levels, while introducing a copy of BCAS0167 alone into the Δshc mutant produced only very small amounts of the hopanoid peak. The Δshc mutant grew as well as the wild type in medium buffered to pH 7 and demonstrated no defect in its ability to survive and replicate within macrophages, despite transmission electron microscopy (TEM) revealing defects in the organization of the cell envelope. The Δshc mutant displayed increased sensitivity to low pH, detergent, and various antibiotics, including polymyxin B and erythromycin. Loss of hopanoid production also resulted in severe defects in both swimming and swarming motility. This suggests that hopanoid production plays an important role in the physiology of B. cenocepacia.  相似文献   

19.
In high cell density batch fermentations, Zymomonas mobilis produced 91 g L(-1) ethanol in 90 min but culture viability fell significantly. Similar viability losses in rapid fermentations by yeast have recently been shown to be attributable in part to the high rate of change of the extracellular ethanol concentration. However, in simulated rapid fermentations in which ethanol was pumped continuously to low cell density Z. mobilis suspensions, increases in the rate of change of ethanol concentration in the range 21-83 g L(-1) h(-1) did not lead to accelerated viability losses. The lag phase of Zymomonas cultures exposed to a 30-g L(-1) step change in ethanol concentration was much shorter than that of Saccharomyces cerevisiae, providing evidence that the comparative insensitivity of Zymomonas to high rates of change of ethanol concentration is due to its ability to adapt to changes in ethanol concentration more rapidly than yeast. (c) 1994 John Wiley & Sons, Inc.  相似文献   

20.
A structured kinetic model for Zymomonas mobilis ATCC10988   总被引:1,自引:0,他引:1  
The inhibitory effects of glucose and ethanol on Zymomonas mobilis ATCC10988 were isolated through kinetic analysis of transient batch fermentation data. Growth of Z. mobilis was inhibited above a glucose concentration of 80 g/L. Growth was mildly inhibited by ethanol to 50 g/L, and severely inhibited above this concentration. Specific rates of ethanol production and glucose uptake were essentially invariant during batch fermentation. A structured kinetic model was developed, by way of augmentation of the Extended Bottleneck model, to quantify the kinetics of the growth and product formation processes. The model successfully describes the transient batch fermentation of Z. mobilis over a wide range of initial glucose concentration in a semidefined medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号