首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Summary Soluble epoxide hydrolase (sEH) is a bifunctional enzyme with a C-terminal epoxide hydrolase activity and an N-terminal phosphatase activity. Arachidonic acid epoxides, previously suggested to be involved in apoptosis, oncogenesis and cell proliferation, are generated by cytochrome P450 epoxygenases and are good substrates of the sEH C-terminal domain. In addition, the N-terminal phosphatase domain hydrolyzes isoprenoid mono- and pyrophosphates, which are involved in cell signaling and apoptosis. Here we provide a comprehensive analysis of the distribution of sEH, CYP2C8, 2C9 and 2J2 in human neoplastic tissues using tissue micro-arrays. The human neoplastic tissue micro-arrays provide a well-controlled side by side analysis of a wide array of neoplastic tissues and their surrounding normal tissue controls. Many of the neoplastic tissues showed altered expression of these enzymes as compared to normal tissues. Altered expression was not limited to the neoplastic tissues but also found in the surrounding non-neoplastic tissues. For example, sEH expression in renal and hepatic malignant neoplasms and surrounding non-neoplastic tissues was found to be significantly decreased, whereas expression was found to be increased in seminoma as compared to normal tissues. Our study warrants further investigation of the role of altered expression of these enzymes in neoplastic tissues.  相似文献   

2.
A number of structurally unrelated hypolipidaemic agents and certain phthalate-ester plasticizers induce hepatomegaly and proliferation of peroxisomes in rodent liver, but there is relatively limited data regarding the specific effects of these drugs on liver non-parenchymal cells. In the present study, liver parenchymal, Kupffer and endothelial cells from untreated and fenofibrate-fed rats were isolated and the activities of two enzymes associated with peroxisomes (catalase and the peroxisomal fatty acid beta-oxidation system) as well as cytosolic and microsomal epoxide hydrolase were measured. Microsomal epoxide hydrolase, cytosolic epoxide hydrolase and catalase activities were 7-12-fold higher in parenchymal cells than in Kupffer or endothelial cells from untreated rats; the peroxisomal fatty acid beta-oxidation activity was only detected in parenchymal cells. Fenofibrate increased catalase, cytosolic epoxide hydrolase and peroxisomal fatty acid beta-oxidation activities in parenchymal cells by about 1.5-, 3.5- and 20-fold, respectively. The induction of catalase (2-3-fold) and cytosolic epoxide hydrolase (3-5-fold) was also observed in Kupffer and endothelial cells; furthermore, a low peroxisomal fatty acid beta-oxidation activity was detected in endothelial cells. Morphological examination by electron microscopy showed that peroxisomes were confined to liver parenchymal cells in untreated animals, but could also be observed in endothelial cells after administration of fenofibrate.  相似文献   

3.
Soluble epoxide hydrolase (sEH) plays a key role in the metabolic conversion of the protective eicosanoid 14,15-epoxyeicosatrienoic acid to 14,15-dihydroxyeicosatrienoic acid. Accordingly, inhibition of sEH hydrolase activity has been shown to be beneficial in multiple models of cardiovascular diseases, thus identifying sEH as a valuable therapeutic target. Recently, a common human polymorphism (R287Q) was identified that reduces sEH hydrolase activity and is localized to the dimerization interface of the protein, suggesting a relationship between sEH dimerization and activity. To directly test the hypothesis that dimerization is essential for the proper function of sEH, we generated mutations within the sEH protein that would either disrupt or stabilize dimerization. We quantified the dimerization state of each mutant using a split firefly luciferase protein fragment-assisted complementation system. The hydrolase activity of each mutant was determined using a fluorescence-based substrate conversion assay. We found that mutations that disrupted dimerization also eliminated hydrolase enzymatic activity. In contrast, a mutation that stabilized dimerization restored hydrolase activity. Finally, we investigated the kinetics of sEH dimerization and found that the human R287Q polymorphism was metastable and capable of swapping dimer partners faster than the WT enzyme. These results indicate that dimerization is required for sEH hydrolase activity. Disrupting sEH dimerization may therefore serve as a novel therapeutic strategy for reducing sEH hydrolase activity.  相似文献   

4.
Ma XX  Liu Y  Zhu Y 《生理科学进展》2010,41(4):267-271
可溶性表氧化物水解酶(soluble epoxide hydrolase,sEH)在哺乳动物体内广泛存在。研究发现,sEH可以降解表氧二十碳三烯酸(epoxyeicosatrienoic acids,EETs)以及其他脂肪酸表氧化物。EETs具有广泛的心血管系统保护及抗炎作用,故sEH因其与心血管疾病的关系而受到关注。新近研究显示,sEH与脂质代谢密切相关,并与其C端水解酶区域和N端磷酸酶区域的不同活性有关。进一步深入探讨sEH的作用机制,将为研究脂质调节紊乱相关的代谢疾病提供一个新的治疗靶点。本文对sEH两端酶活性,及其与脂质代谢调节的研究进展予以综述。  相似文献   

5.
Immunochemical techniques were used to investigate the biochemical properties of human lung epoxide hydrolases. Two epoxide hydrolases with different immunoreactive properties were identified. These two epoxide hydrolases were found in both cytosolic and microsomal cell fractions. Immunotitration of enzyme activity showed that enzymes that catalyze the hydration of benzo(a)pyrene 4,5-oxide react with antiserum to rat microsomal epoxide hydrolase; those that hydrate trans-stilbene oxide do not. Immunotitration and Western blot experiments showed that microsomal and cytosolic benzo(a)pyrene 4,5-oxide hydrolases have significant structural homology. Immunohistochemical staining of human lung benzo(a)pyrene 4,5-oxide hydrolase showed that the enzyme is localized primarily in the bronchial epithelium. No cell type-specific localization was observed. An enzyme-linked immunosorbent assay was developed which allows direct quantitation of benzo(a)pyrene 4,5-oxide hydrolase protein. Levels of enzyme protein detected by this assay correlated well with enzyme levels determined by substrate conversion assays.  相似文献   

6.
Soluble epoxide hydrolase (sEH) is a bifunctional enzyme with two catalytic domains: a C-terminal epoxide hydrolase domain and an N-terminal phosphatase domain. Epidemiology and animal studies have attributed a variety of cardiovascular and anti-inflammatory effects to the C-terminal epoxide hydrolase domain. The recent association of sEH with cholesterol-related disorders, peroxisome proliferator-activated receptor activity, and the isoprenoid/cholesterol biosynthesis pathway additionally suggest a role of sEH in regulating cholesterol metabolism. Here we used sEH knock-out (sEH-KO) mice and transfected HepG2 cells to evaluate the phosphatase and hydrolase domains in regulating cholesterol levels. In sEH-KO male mice we found a approximately 25% decrease in plasma total cholesterol as compared with wild type (sEH-WT) male mice. Consistent with plasma cholesterol levels, liver expression of HMG-CoA reductase was found to be approximately 2-fold lower in sEH-KO male mice. Additionally, HepG2 cells stably expressing human sEH with phosphatase only or hydrolase only activity demonstrate independent and opposite roles of the two sEH domains. Whereas the phosphatase domain elevated cholesterol levels, the hydrolase domain lowered cholesterol levels. Hydrolase inhibitor treatment in sEH-WT male and female mice as well as HepG2 cells expressing human sEH resulted in higher cholesterol levels, thus mimicking the effect of expressing the phosphatase domain in HepG2 cells. In conclusion, we show that sEH regulates cholesterol levels in vivo and in vitro, and we propose the phosphatase domain as a potential therapeutic target in hypercholesterolemia-related disorders.  相似文献   

7.
Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has a C-terminus epoxide hydrolase domain and an N-terminus phosphatase domain. The endogenous substrates of epoxide hydrolase are known to be epoxyeicosatrienoic acids, but the endogenous substrates of the phosphatase activity are not well understood. In this study, to explore the substrates of sEH, we investigated the inhibition of the phosphatase activity of sEH toward 4-methylumbelliferyl phosphate by using lecithin and its hydrolyzed products. Although lecithin itself did not inhibit the phosphatase activity, the hydrolyzed lecithin significantly inhibited it, suggesting that lysophospholipid or fatty acid can inhibit it. Next, we investigated the inhibition of phosphatase activity by lysophosphatidyl choline, palmitoyl lysophosphatidic acid, monopalmitoyl glycerol, and palmitic acid. Palmitoyl lysophosphatidic acid and fatty acid efficiently inhibited phosphatase activity, suggesting that lysophosphatidic acids (LPAs) are substrates for the phosphatase activity of sEH. As expected, palmitoyl, stearoyl, oleoyl, and arachidonoyl LPAs were efficiently dephosphorylated by sEH (Km, 3-7 μM; Vmax, 150-193 nmol/min/mg). These results suggest that LPAs are substrates of sEH, which may regulate physiological functions of cells via their metabolism.  相似文献   

8.
The peroxisomal targeting sequence 1 (PTS1) is a consensus tripeptide 1 (S/C/A)(K/R/H)(L/M) that is found at the C-terminus of most peroxisomal proteins. However, the only known mammalian protein containing a terminal methionine PTS1 (SKM), human soluble epoxide hydrolase (hsEH), shows both peroxisomal and cytosolic localizations in vivo. Mechanisms regulating the subcellular localization of hsEH thus remain unclear. Here we utilized green fluorescent protein-hsEH fusion constructs to study the peroxisomal targeting of hsEH in transiently and stably transfected Chinese hamster ovary cells. Our results suggest that the peroxisomal import of hsEH is regulated by three factors. First, we show that SKM is required, but not sufficient, for peroxisomal import. Second, by manipulating protein expression levels, we show that SKM mediates peroxisomal import of wild-type hsEH only when expression levels are high. Third, we show that amino acid modifications that decrease subunit oligomerization and presumably enhance accessibility of the SKM motif confer peroxisomal targeting even at low protein expression levels. We conclude that, in hsEH, SKM is a necessary but inefficient and context-dependent PTS1. Peroxisomal import occurs when expression levels are high or when the SKM motif is accessible. These results provide a mechanistic basis for understanding the cell-specific and tissue-specific localization of hsEH in vivo.  相似文献   

9.
Soluble epoxide hydrolase (sEH) contributes to cell growth, but the contribution of sEH to embryonic development is not well understood. In this study, Xenopus sEH cDNA was isolated from embryos of Xenopus laevis. The Xenopus sEH was expressed in Escherichia coli and was purified. The epoxide hydrolase and phosphatase activities of purified sEH were investigated. The Xenopus sEH did not show phosphatase activity toward 4-methylumbelliferyl phosphate or several lysophosphatidic acids although it had EH activity. The amino acid sequence of Xenopus sEH was compared with that reported previously. We found amino acid substitutions of the 29th Thr to Asn and the 146th Arg to His and prepared a sEH mutant (N29T/H146R), designed as mutant 1. Neither wild-type sEH nor mutant 1 had phosphatase activity. Additional substitution of the 11th Gly with Asp was found by comparison with human sEH which has phosphatase activity, but the Xenopus sEH mutant G11D prepared as mutant 2 did not have phosphatase activity. The epoxide hydrolase activity of sEH seemed to be similar to that of human sEH, while Xenopus sEH did not have phosphatase activity toward several substrates that human sEH metabolizes.  相似文献   

10.
11.
P Wang  J Meijer  F P Guengerich 《Biochemistry》1982,21(23):5769-5776
Epoxide hydrolase (EC 3.3.2.3) was purified to electrophoretic homogeneity from human liver cytosol by using hydrolytic activity toward trans-8-ethylstyrene 7,8-oxide (TESO) as an assay. The overall purification was 400-fold. The purified enzyme has an apparent monomeric molecular weight of 58 000, significantly greater than the 50 000 found for human (or rat) liver microsomal epoxide hydrolase or for another TESO-hydrolyzing enzyme also isolated from human liver cytosol. Purified cytosolic TESO hydrolase catalyzes the hydrolysis of cis-8-ethylstyrene 7,8-oxide 10 times more rapidly than does the microsomal enzyme, catalyzes the hydrolysis of TESO and trans-stilbene oxide as rapidly as the microsomal enzyme, but catalyzes the hydrolysis of styrene 7,8-oxide, p-nitrostyrene 7,8-oxide, and naphthalene 1,2-oxide much less effectively than does the microsomal enzyme. Purified cytosolic TESO hydrolase does not hydrolyze benzo[a]pyrene 4,5-oxide, a substrate for the microsomal enzyme. The activities of the purified enzymes can explain the specific activities observed with subcellular fractions. Anti-human liver microsomal epoxide hydrolase did not recognize cytosolic TESO hydrolase in purified form or in cytosol, as judged by double-diffusion immunoprecipitin analysis, precipitation of enzymatic activity, and immunoelectrophoretic techniques. Cytosolic TESO hydrolase and microsomal epoxide hydrolase were also distinguished by peptide mapping. The results provide evidence that physically different forms of epoxide hydrolase exist in different subcellular fractions and can have markedly different substrate specificities.  相似文献   

12.
In the past decade, a predominant peroxisomal localization has been reported for several enzymes functioning in the presqualene segment of the cholesterol/isoprenoid biosynthesis pathway. More recently, however, conflicting results have been reported raising doubts about the postulated role of peroxisomes in isoprenoid biosynthesis, at least in humans. In this study, we have determined the subcellular localization of human phosphomevalonate kinase using a variety of biochemical and microscopic techniques, including conventional subcellular fractionation studies, digitonin permeabilization studies, immunofluorescence, and immunoelectron microscopy. We found an exclusive cytosolic localization of both endogenously expressed human phosphomevalonate kinase (in human fibroblasts, human liver, and HEK293 cells) and overexpressed human phosphomevalonate kinase (in human fibroblasts, HEK293 cells, and CV1 cells). No indication of a peroxisomal localization was obtained. Our results do not support a central role of peroxisomes in isoprenoid biosynthesis.  相似文献   

13.
Soluble epoxide hydrolase (sEH) is highly expressed in human liver and contains a C-terminal epoxide hydrolase activity and an N-terminal phosphatase activity. Endogenous C-terminal hydrolase substrates include arachidonic acid epoxides, however, data are limited regarding possible endogenous substrates for the N-terminal phosphatase. Possible sEH N-terminal substrates include isoprenoid phosphate precursors of cholesterol biosynthesis and protein isoprenylation. Here, we report the kinetic analysis for a range of sEH isoprenoid substrates. We also provide an analysis of the effects of human sEH polymorphisms on isoprenoid hydrolysis. Interestingly, the Arg287Gln polymorphism recently suggested to be involved in hypercholesterolemia was found to possess a higher isoprenoid phosphatase activity than the wild type sEH. Consistent with the finding of isoprenoid phosphates as substrates for sEH, we identified isoprenoid-derived N-terminal inhibitors with IC50 values ranging from 0.84 (+/-0.9) to 55.1 (+/-30.7) microM. Finally, we evaluated the effects of the different isoprenoid compounds on the C-terminal hydrolase activity.  相似文献   

14.
The EPXH2 gene encodes for the soluble epoxide hydrolase (sEH), which has two distinct enzyme activities: epoxide hydrolase (Cterm-EH) and phosphatase (Nterm-phos). The Cterm-EH is involved in the metabolism of epoxides from arachidonic acid and other unsaturated fatty acids, endogenous chemical mediators that play important roles in blood pressure regulation, cell growth, inflammation and pain. While recent findings suggested complementary biological roles for Nterm-phos, its mode of action is not well understood. Herein, we demonstrate that lysophosphatidic acids are excellent substrates for Nterm-phos. We also showed that sEH phosphatase activity represents a significant (20-60%) part of LPA cellular hydrolysis, especially in the cytosol. This possible role of sEH on LPA hydrolysis could explain some of the biology previously associated with the Nterm-phos. These findings also underline possible cellular mechanisms by which both activities of sEH (EH and phosphatase) may have complementary or opposite roles.  相似文献   

15.
Soluble epoxide hydrolase (sEH) hydrolyzes a wide variety of endogenous and exogenous epoxides. Many of these epoxides are believed to be formed by cytochrome P450 epoxygenases. Here we report the distribution of sEH and cytochrome P450 epoxygenases 2C8, 2C9, and 2J2 by immunohistochemistry. A large number of different tissues from different organs were evaluated using high-throughput tissue microarrays. sEH was found in the liver, kidney, and in many other organs, including adrenals, pancreatic islets, pituitary gland, lymphoid tissues, muscles, certain vascular smooth muscles, and epithelial cells in the skin, prostatic ducts, and the gastrointestinal tract. Immunolabeling for sEH was highly specific for particular tissues and individual cell types. CYP2C9 was also found in almost all of these organs and tissues, suggesting that 2C9 and sEH are very similar in their tissue-specific patterns of expression. CYP2C8 and 2J2 were also widely distributed in human tissues but were less frequently associated with sEH. The results suggest potentially distinct pathways of endogenous fatty acid epoxide production and hydrolysis in a variety of human tissues.  相似文献   

16.
Endogenous, constitutive soluble epoxide hydrolase in mice 3T3 cells was localized via immunofluorescence microscopy exclusively in peroxisomes, whereas transiently expressed mouse soluble epoxide hydrolase (from clofibrate-treated liver) accumulated only in the cytosol of 3T3 and HeLa cells. When the C-terminal lie of mouse soluble epoxide hydrolase was mutated to generate a prototypic putative type 1 PTS (-SKI to -SKL), the enzyme targeted to peroxisomes. The possibility that soluble epoxide hydrolase-SKI was sorted slowly to peroxiosmes from the cytosol was examined by stably expressing rat soluble epoxide hydrolase-SKI appended to the green fluorescent protein. Green fluorescent protein soluble epoxide hydrolase-SKI was strictly cytosolic, indicating that -SKI was not a temporally inefficient putative type 1 PTS. Import of soluble epoxide hydrolase-SKI into peroxisomes in plant cells revealed that the context of -SKI on soluble epoxide hydrolase was targeting permissible. These results show that the C-terminal -SKI is a non-functional putative type 1 PTS on soluble epoxide hydrolase and suggest the existence of distinct cytosolic and peroxisomal targeting variants of soluble epoxide hydrolase in mouse and rat.  相似文献   

17.
The present study has confirmed previous findings of long-chain acyl-CoA hydrolase activities in the mitochondrial and microsomal fractions of the normal rat liver. In addition, experimental evidence is presented in support of a peroxisomal localization of long-chain acyl-CoA hydrolase activity. (a) Analytical differential centrifugation of homogenates from normal rat liver revealed that this activity (using palmitoyl-CoA as the substrate) was also present in a population of particles with an average sedimentation coefficient of 6740 S, characteristic of peroxisomal marker enzymes. (b) The subcellular distribution of the hydrolase activity was greatly affected by administration of the peroxisomal proliferators clofibrate and tiadenol. The specific activity was enhanced in the mitochondrial fraction and in a population of particles with an average sedimentation coefficient of 4400 S, characteristic of peroxisomal marker enzymes. Three populations of particles containing lysosomal marker enzymes were found by analytical differential centrifugation, both in normal and clofibrate-treated rats. Our data do not support the proposal that palmitoyl-CoA hydrolase and acid phosphatase belong to the same subcellular particles. In livers from rats treated with peroxisomal proliferators, the specific activity of palmitoyl-CoA hydrolase was also enhanced in the particle-free supernatant. Evidence is presented that this activity at least in part, is related to the peroxisomal proliferation.  相似文献   

18.
Human soluble epoxide hydrolase (sEH), an enzyme directing the functional disposition of a variety of endogenous and xenobiotic-derived chemical epoxides, was characterized at the genomic level for interindividual variation capable of impacting function. RNA was isolated from 25 human liver samples and used to generate full-length copies of soluble epoxide hydrolase cDNA. The resulting cDNAs were polymerase chain reaction amplified, sequenced, and eight variant loci were identified. The coding region contained five silent single nucleotide polymorphisms (SNPs) and two variant loci resulting in altered protein sequence. An amino acid substitution was identified at residue 287 in exon 8, where the more common arginine was replaced by glutamine. A second variant locus was identified in exon 13 where an arginine residue was inserted following serine 402 resulting in the sequence, arginine 403-404, instead of the more common, arginine 403. This amino acid insertion was confirmed by analyzing genomic DNA from individuals harboring the polymorphic allele. Slot blot hybridization analyses of the liver samples indicated that sEH mRNA steady-state expression varied approximately 10-fold. Transient transfection experiments with CHO and COS-7 cells were used to demonstrate that the two new alleles possess catalytic activity using trans-stilbene oxide as a model substrate. Although the activity of the glutamine 287 variant was similar to the sEH wild type allele, proteins containing the arginine insertion exhibited strikingly lower activity. Allelic forms of human sEH, with markedly different enzymatic profiles, may have important physiological implications with respect to the disposition of epoxides formed from the oxidation of fatty acids, such as arachidonic acid-derived intermediates, as well in the regulation of toxicity due to xenobiotic epoxide exposures.  相似文献   

19.
The roles of CYP lipid-metabolizing pathways in endothelial cells are poorly understood. Human endothelial cells expressed CYP2J2 and soluble epoxide hydrolase (sEH) mRNA and protein. The TLR-4 agonist LPS (1 μg/ml; 24 h) induced CYP2J2 but not sEH mRNA and protein. LC–MS/MS analysis of the stable commonly used human endothelial cell line EA.Hy926 showed active epoxygenase and epoxide hydrolase activity: with arachidonic acid (stable epoxide products 5,6-DHET, and 14,15-DHET), linoleic acid (9,10-EPOME and 12,13-EPOME and their stable epoxide hydrolase products 9,10-DHOME and 12,13-DHOME), docosahexaenoic acid (stable epoxide hydrolase product 19,20-DiHDPA) and eicosapentaenoic acid (stable epoxide hydrolase product 17,18-DHET) being formed. Inhibition of epoxygenases using either SKF525A or MS-PPOH induced TNFα release, but did not affect LPS, IL-1β, or phorbol-12-myristate-13-acetate (PMA)-induced TNFα release. In contrast, inhibition of soluble epoxide hydrolase by AUDA or TPPU inhibited basal, LPS, IL-1β and PMA induced TNFα release, and LPS-induced NFκB p65 nuclear translocation. In conclusion, human endothelial cells contain a TLR-4 regulated epoxygenase CYP2J2 and metabolize linoleic acid > eicosapentaenoic acid > arachidonic acid > docosahexaenoic acid to products with anti-inflammatory activity.  相似文献   

20.
Soluble epoxide hydrolase (sEH), a novel therapeutic target for neuropathic pain, is a largely cytosolic enzyme that degrades epoxy-fatty acids (EpFAs), an important class of lipid signaling molecules. Many inhibitors of sEH have been reported, and to date, the 1,3-disubstituted urea has the highest affinity reported for the sEH among the central pharmacophores evaluated. An earlier somewhat water soluble sEH inhibitor taken to the clinic for blood pressure control had mediocre potency (both affinity and kinetics) and a short in vivo half-life. We undertook a study to overcome these difficulties, but the sEH inhibitors carrying a 1,3-disubstituted urea often suffer poor physical properties that hinder their formulation. In this report, we described new strategies to improve the physical properties of sEH inhibitors with a 1,3-disubstituted urea while maintaining their potency and drug-target residence time (a complementary in vitro parameter) against sEH. To our surprise, we identified two structural modifications that substantially improve the potency and physical properties of sEH inhibitors carrying a 1,3-disubstituted urea pharmacophore. Such improvements will greatly facilitate the movement of sEH inhibitors to the clinic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号