首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A bacterial strain utilizing methanol as the sole source of carbon and energy was isolated from the maize phyllosphere. Cells are nonpigmented gram-negative motile rods that do not form spores or prosthecae and reproduce by binary fission. The strain does not require vitamins or supplementary growth factors. It is obligately aerobic and urease-, oxidase-, and catalase-positive. The optimum growth temperature is 35–40°C; the optimum pH is 7.0–7.5. The doubling time is 2 h. The bacterium implements the ribulose monophosphate pathway and possesses NAD+-dependent 6-phosphogluconate dehydrogenase and enzymes of the glutamate cycle. α-Ketoglutarate dehydrogenase and enzymes of the glyoxylate cycle (isocitrate lyase and malate synthase) are absent. Fatty acids are dominated by palmitic (C16:0) and palmitoleic (C16:1) acids. The major phospholipids are phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylcholine. Cardiolipin is present in minor amounts. The dominant ubiquinone is Q8 The bacterial genome contains genes controlling the synthesis and secretion of cytokinins. The G+C content of DNA is 57.2 mol %, as determined from the DNA thermal denaturation temperature Tm. The bacterium shows low DNA homology (<10%) with restricted facultative methylotrophic bacteria of the genusMethylophilus (M. methylotrophus NCIMB 10515T andM. leisingerii VKM B-20131) and with the obligate methylotrophic bacterium (Methylobacillus glycogenes ATCC 29475T). DNA homology with the type representative of the genusMethylovorus, M. glucosetrophus VKM B-1745T, is high (58%). The new isolate was classified as a new species,Methylovorus mays sp. nov.  相似文献   

2.
A new thermophilic sulfate-reducing bacterium, strain TSB, that was spore-forming, rod-shaped, slightly motile and gram-positive, was isolated from a butyrate-containing enrichment culture inoculated with sludge of a thermophilic methane fermentation reactor. This isolate could oxidize benzoate completely. Strain TSB also oxidized some fatty acids and alcohols. SO inf4 sup2- , SO inf3 sup2- , S2O inf3 sup2- and NO inf3 sup- were utilized as electron acceptors. With pyruvate or lactate the isolate grew without an external electron acceptor and produced acetate. The optimum temperature for growth was 62°C. The G+C content of DNA was 52.8 mol%. This isolate is described as a new species, Desulfotomaculum thermobenzoicum.  相似文献   

3.
An obligately chemolithoautotrophic and aerobic hydrogen-oxidizing bacterium was isolated from a seaside saline hot spring in Izu Peninsula, Japan. The isolate was a Gram-negative, non-motile, non-spore-forming rod cell measuring 0.3 to 0.5 by 1.0 to 2.5 m. The optimal temperature for growth was around 70°C, and no growth was observed at 40°C or 80°C. Elemental sulfur or thiosulfate could be an alternative to molecular hydrogen as the sole energy source. The DNA base composition of the isolate was 46.0 mol% G+C. 2-Methylthio-3-VI,VII-tetrahydromultiprenyl7-1,4-naphthoquinone (methionaquinone) was the major component of the quinone system. C18:0, C18:1 and C20:1 were the major components of the cellular fatty acids. These properties clearly indicate that the isolate belongs to genus Hydrogenobacter, but differed from H. thermophilus in some respects. Specifically, the isolate was a halophile which grew optimally at around 0.3–0.5 M NaCl, while H. thermophilus could not grow at such NaCl concentration levels. A new species name H. halophilus is proposed for this new halophilic isolate.  相似文献   

4.
A decrease in citric acid and increases in acetic acid, acetoin and diacetyl were found in the test red wine after inoculation of intact cells of Leuconostoc mesenteroides subsp. lactosum ATCC 27307. a malo-lactic bacterium, grown on the malate plus citrate-medium. Citric acid in the buffer solution was transformed to acetic acid, acetoin and diacetyl in the pH range of 2 to 6 after inoculation with intact cells of this bacterial species. It was concluded that citric acid in wine making involving malolactic fermentation, at first, was converted by citrate lyase to acetic and oxaloacetic acids, and the latter was successively transformed by decarboxylation to pyruvic acid which was subsequently converted to acetoin, diacetyl and acetic acid.

Both the activities of citrate lyase and acetoin formation from pyruvic acid in the dialyzed cell-free extract were optimal at pH 6.0. Divalent cations such as Mn2+, Mg2+, Co2+ and Zn2+ activated the citrate lyase. The citrate lyase was completely inhibited by EDTA, Hg2+ and Ag2+ . The acetoin formation from pyruvic acid was significantly stimulated by thiamine pyrophosphate and CoCl2, and inhibited by oxaloacetic acid. Specific activities of the citrate lyase and acetoin formation were considerably variable among the six strains of malo-lactic bacteria examined. Some activities of irreversible reduction of diacetyl to acetoin were found in the cell-free extracts of four of the malo-lactic bacteria strains and the optimal pH was 6.0 for this activity of Leu. mesenteroides.  相似文献   

5.
An ultraviolet-radiation-resistant, Gram-positive, orange-pigmented, thermophilic and strictly aerobic cocci was isolated from Saharan water hot spring in Tunisia. The newly isolated bacterium, designated HAN-23T, was identified based on polyphasic taxonomy including genotypic, phenotypic and chemotaxonomic characterization. Phylogenetic analysis based on 16S rRNA gene sequences placed this strain within Deinococcus genus. However, strain HAN-23T is different from recognized species of the genus Deinococcus, showing less than 94.0% similarity values to its closest relatives. The predominant cellular fatty acids determined by gas chromatography were iso-C15:0, iso-C17:0 and iso C17:1 ω9c. The major respiratory quinone was MK-8. The DNA G + C content was 66.9 mol%. DNA–DNA hybridization measurements revealed low DNA relatedness (6%) between the novel isolate and its closest neighbor, the type strain Deinococcus geothermalis DSM 11300. On the basis of the phenotypic, chemotaxonomic and phylogenetic data, strain HAN-23T represents a novel species of the genus Deinococcus, for which the name Deinococcus sahariens sp. nov. is proposed, the type strain being HAN-23T (=DSM 18496T; LMG 23756T).  相似文献   

6.
A novel plant-associated obligate methylotrophic bacterium, designated strain Ca-68T, was isolated from the rhizosphere soil of field-grown red pepper from India. The isolates are strictly aerobic, Gram negative, motile rods multiplying by binary fission and formaldehyde is assimilated via the ribulose monophosphate pathway. A comparative 16S rRNA gene sequence-based phylogenetic analysis placed the strain in a clade with the species Methylobacillus flagellatus, Methylobacillus glycogens and Methylobacillus pratensis, with which it showed pairwise similarity of 97.8, 97.4 and 96.2 %, respectively. The major fatty acids are C16:0, C10:0 3OH and C16:1 ω7c. The G+C content of the genomic DNA is 59.7 mol%. The major ubiquinone is Q-8. Dominant phospholipids are phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Based on 16S rRNA gene sequence analysis and DNA–DNA relatedness (14–19 %) with type strains of the genus Methylobacillus, the novel isolate was classified as a new species of this genus and named Methylobacillus rhizosphaerae Ca-68T (=KCTC 22383T = NCIMB 14472T).  相似文献   

7.
A Gram-positive bacterium which was isolated from a Finnish soil and identified as a Nocardia sp., was able to decompose lignin and to assimilate lignin degradation products as a carbon source. It could release 14CO2 from 14C-labelled methoxyl groups, side chains or ring carbons of coniferyl alcohol dehydropolymers (DHP) and from specifically 14C-labelled lignin of plant material. Furthermore, it could release 14CO2 from phenolcarboxylic and cinnamic acids and alcohols labelled in the OCH3, COOH groups, side chain or aromatic ring carbons.Non-Common Abbreviations Used DHP dehydropolymers of coniferyl alcohol  相似文献   

8.
A novel anaerobic, thermophilic, Gram-positive, spore-forming, and sugar-fermenting bacterium (strain TLO) was isolated from a geothermal spring in Ayaş, Turkey. The cells were straight to curved rods, 0.4–0.6 μm in diameter and 3.5–10 μm in length. Spores were terminal and round. The temperature range for growth was 40–80°C, with an optimum at 70°C. The pH optimum was between 6.3 and 6.8. Strain TLO has the capability to ferment a wide variety of mono-, di-, and polysaccharides and proteinaceous substrates, producing mainly lactate, next to acetate, ethanol, alanine, H2, and CO2. Remarkably, the bacterium was able to grow in an atmosphere of up to 25% of CO as sole electron donor. CO oxidation was coupled to H2 and CO2 formation. The G + C content of the genomic DNA was 35.1 mol%. Based on 16S rRNA gene sequence analysis and the DNA–DNA hybridization data, this bacterium is most closely related to Thermoanaerobacter thermohydrosulfuricus and Thermoanaerobacter siderophilus (99% similarity for both). However, strain TLO differs from Thermoanaerobacter thermohydrosulfuricus in important aspects, such as CO-utilization and lipid composition. These differences led us to propose that strain TLO represents a subspecies of Thermoanaerobacter thermohydrosulfuricus, and we therefore name it Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans.  相似文献   

9.
A taxonomic study was carried out on Gsoil 142T, a bacterial strain isolated from the soil collected in a ginseng field in Pocheon province, South Korea. Comparative 16S rRNA gene sequence studies showed a clear affiliation of this bacterium to the Gammaproteobacteria, and it was most closely related to Hydrocarboniphaga effusa ATCC BAA 332T (94.4%, 16S rRNA gene sequence similarity), Nevskia ramosa DSM 11499T (94.1%) and Alkanibacter difficilis MN154.3T (92.0%). Strain Gsoil 142T was a Gram-negative, strictly aerobic, motile, and rod-shaped bacterium. The G+C content of the genomic DNA was 69.9% and predominant ubiquinone was Q-8. Major fatty acids were summed feature 8 (C18:1 ω7c and/or ω6c, 36.3%), summed feature 3 (iso-C15:0 2-OH and/or C16:1 ω7c, 20.6%) and C16:0 (17.4%). The major polar lipids detected in strain Gsoil 142T were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, and an unknown glycolipid. On the basis of polyphasic evidence, it is proposed that strain Gsoil 142T should be placed in a novel genus and species, for which the name Panacagrimonas perspica gen. nov., sp. nov. is proposed. The type strain is Gsoil 142T (= KCTC 12982T = LMG 23239T).  相似文献   

10.
An anaerobic, motile, gram-negative, rod-shaped bacterium is described which degrades benzoate in coculture with an H2-utilizing organism and in the absence of exogenous electron acceptors such as O2, SO 4 = or NO 3 - . The bacterium was isolated from a municipal primary, anaerobic sewage digestor using anaerobic roll-tube medium with benzoate as the main energy source and in syntrophic association with an H2-utilizing sulfate-reducing Desulfovibrio sp. which cannot utilize benzoate or fatty acids apart from formate as energy source. The benzoate utilizer produced acetate (3 mol/mol of substrate degraded) and presumably CO2 and H2, or formate from benzoate. In media without sulfate and with Methanospirillum hungatei (a methanogen that utilizes only H2–CO2 or formate as the energy source) added, 3 mol of acetate and 0.7 mol of methane were produced per mol of benzoate and CO2 was probably formed. Low numbers of Desulfovibrio sp. were present in the methanogenic coculture and a pure coculture of the benzoate utilizer with M. hungatei was not obtained. The generation times for growth of the sulfate-reducing and methanogenic cocultures were 132 and 166h, respectively. The benzoate utilizer did not utilize other common aromatic compounds, C 3 - –C7 monocarboxylic acids, or C4-C6 dicarboxylic acids for growth, nor did it appear to use SO 4 = , NO 3 - or fumarate as alternative electron acceptors. Addition of H2 inhibited growth and benzoate degradation.  相似文献   

11.
F G Walz  B Terenna  D Rolince 《Biopolymers》1975,14(4):825-837
Spectrophotometric binding studies were undertaken on the interaction of neutral red with native and heat-denatured, sonicated, calf thymus DNA in a 0.2M ionic strength buffer containing Tris–sodium acetate–potassium chloride at 25°C. The pKA of neutral red was found to be 6.81. At pH 5 the binding of protonated neutral red was complicated even at low concentration ratios of dye to DNA. In the pH range 7.5–8.5 the tight binding process could be studied and it was found that both protonated and free base species of neutral red significantly bind with DNA having association constants (in terms of polynucleotide phosphate) of 5.99 × 103 M?1 and 0.136 × 103 M?1, respectively, for native DNA and 7.48 × 103 M?1 and 0.938 × 103 M?1, respectively, for denatured DNA. The pKA value of the neutral red–DNA complexes were 8.46 for native DNA and 7.72 for denatured DNA. These results are discussed in terms of possible binding mechanisms.  相似文献   

12.
A moderately psychrophilic bacterium Corynebacterium paurometabolum MTCC 6841 (gram positive, short rod type) producing extracellular alkaline lipase was isolated from Lake Naukuchiatal, Uttaranchal, India. The bacterium was able to grow within a broad range of pH (5–10). Soyabean oil and olive oil served as the best carbon sources for lipase production. The bacterium preferred inorganic nitrogenous compounds, NaNO3 and KNO3, over organic nitrogenous compound for its growth. Maximum lipase production occurred at 25°C and 8.5 pH. The enzyme activity was found to be maximum at the same values of temperature and pH. The enzyme was reasonably stable in the presence of various organic solvents. No significant effect of Ca+, Cu++, Fe++, Na+, K+, Mg++, Mn+, NH4+, Co++ ions over enzyme activity was detected. Treatment with EDTA reduced the activity to nearly one half.  相似文献   

13.
An exo-symbiotic bacterium capable of hydrolyzing xylan was isolated from the gut of the mole cricket, Gryllotalpa orientalis, and identified as Cellulosimicrobium sp. HY-12. The xylanase (XylA CspHY-12) of this organism bound tightly to both DEAE and mono Q resins, and its molecular mass (M r) was about 39.0 kDa. The highest xylanase activity was observed at pH 6.0 and 60°C. The enzyme was greatly suppressed by Ca2+, Cu2+, Co2+, and Fe2+ ions but not by Mg2+ and Mn2+. Although XylA CspHY-12 was capable of hydrolyzing various types of xylosic compounds, it could not decompose carboxymethyl cellulose or xylobiose. The xylA CspHY-12 gene consisted of an 1,188 bp open reading frame that encoded a polypeptide of 395 amino acids with a deduced molecular mass of 42,925 Da. The domain structure of XylA CspHY-12 was most similar to those of the glycoside hydrolase (GH) family 10 endoxylanases. However its sequence identity with any of the enzymes in this family was below 52%. The results of this study suggest that the XylA CspHY-12 is a new cellulase-free endo-β-1,4-xylanase with some properties that are distinct from those of GH family 10.  相似文献   

14.
Heavy-metal chromium [Cr(VI)] is a ubiquitous environmental pollutant. Comparing with chemical reduction, microbiological reduction is considered to be a friendly and cheaper way to decrease the damage caused by chromate. A bacterial strain, CR-07, which is resistant to and capable of reducing chromate was isolated from a mud sample of iron ore and identified as a Microbacterium sp. The bacterium had a high degree of tolerance to chromate, and could grow in LB medium containing 4.08 mM of K2Cr2O7. It also had a degree of resistance to other heavy metals, e.g. Cd2+, Pb2+, Zn2+, Cu2+, Co2+, Hg2+ and Ag+. The bacterium could remove 1.02 mM of Cr(VI) from LB medium within 36 h of incubation. Chromate removal was achieved in the supernatant from the bacterial cultures, and corresponded to chromate reduction. The activity of chromate reduction by the bacterium was not related to enzymes or reducing sugars, while fluorometric assay suggested that glutathione, a chromate-reducing substance which was produced by the bacterium, was one of the factors that contributed to the reduction of Cr(VI).  相似文献   

15.
A gene encoding glutamate racemase has been cloned from Aquifex pyrophilus, a hyperthermophilic bacterium, and expressed in Escherichia coli. The A. pyrophilus glutamate racemase is composed of 254 amino acids and shows high homology with glutamate racemase from Escherichia coli, Bacillus subtilis, or Lactobacillus brevis. This racemase converts l- or d-glutamate to d- or l-glutamate, respectively, but not other amino acids such as alanine, aspartate, and glutamine. The cloned gene was expressed and the protein was purified to homogeneity. The A. pyrophilus racemase is present as a dimer but it oligomerizes as the concentration of salt is increased. The K m and kcat values of the overexpressed A. pyrophilus glutamate racemase for the racemization of l-glutamate to the d-form and the conversion of d-glutamate to the l-form were measured as 1.8 ± 0.4 mM and 0.79 ± 0.06 s−1 or 0.50 ± 0.07 mM and 0.25 ± 0.01 s−1, respectively. Complete inactivation of the racemase activity by treatment with cysteine-modifying reagents suggests that cysteine residues may be important for activity. The protein shows strong thermostability in the presence of phosphate ion, and it retains more than 50% of its activity after incubation at 85°C for 90 min. Received: September 11, 1998 / Accepted: January 12, 1999  相似文献   

16.
Aims: Our goal was to find a novel, biosurfactant‐producing bacterium from Pacific Ocean deep‐sea sediments. Methods and Results: An oil‐degrading biosurfactant‐producing bacterium TW53 was obtained from deep‐sea sediment, and was identified through 16S rDNA analysis as belonging to the genus Rhodococcus. It lowered the surface tension of its culture to 34·4 mN m?1. Thin layer chromatography (TLC) showed that the crude biosurfactants of TW53 were composed of lipopeptides and free fatty acids (FA). The lipopeptides were purified with column chromatography and then hydrolysed with 6 mol l?1 HCl. Gas chromatography‐mass spectrometry analysis showed that the hydrolyte in the hydrophobic fraction contained five kinds of FA with chain lengths of C14–C19, and C16H32O2 was a major component making up 59·18% of the total. However, 3‐hydroxyl FA was not found, although it is usually found in lipopeptides. Silica gel TLC revealed that the hydrolyte in the hydrophilic fraction was composed of five kinds of amino acids; consistently, ESI‐Q‐TOF‐MS analysis confirmed the composition results and provided their sequence tentatively as Ala‐Ile‐Asp‐Met‐Pro. Furthermore, the yield and CMC (critical micelle concentrations) of purified lipopeptides were examined. The purified product reduced the surface tension of water to 30·7 mN m?1 with a CMC value of 23·7 mg l?1. These results suggest that Rhodococcus sp. TW53 produces a novel lipopeptide that we have named rhodofactin. Conclusion: The deep‐sea isolate Rhodococcus sp. TW53 was the first reported lipopeptide‐producing bacterium of this genus. The lipopeptides had novel chemical compositions. Significance and Impact of the Study: Rhodococcus sp. TW53 has potential in the exploration of new biosurfactants and could be used in bioremediation of marine oil pollution.  相似文献   

17.

A marine, facultatively anaerobic, nitrogen-fixing bacterium, designated strain DNF-1T, was isolated from the lagoon sediment of Dongsha Island, Taiwan. Cells grown in broth cultures were Gram-negative rods that were motile by means of monotrichous flagella. Cells grown on plate medium produced prosthecae and vesicle-like structures. NaCl was required and optimal growth occurred at about 2–3% NaCl, 25–30 °C and pH 7–8. The strain grew aerobically and was capable of anaerobic growth by fermenting D-glucose or other carbohydrates as substrate. Both the aerobic and anaerobic growth could be achieved with NH4Cl as a sole nitrogen source. When N2 served as the sole nitrogen source only anaerobic growth was observed. Major cellular fatty acids were C14:0, C16:0 and C16:1 ω7c, while major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. The DNA G+C content was 42.2 mol% based on the genomic DNA data. Phylogenetic analyses based on 16S rRNA genes and the housekeeping genes, gapA, pyrH, recA and gyrB, revealed that the strain formed a distinct lineage at species level in the genus Vibrio of the family Vibrionaceae. These results and those from genomic, chemotaxonomic and physiological studies strongly support the assignment of a novel Vibrio species. The name Vibrio salinus sp. nov. is proposed for the novel species, with DNF-1T (=?BCRC 81209T?=?JCM 33626T) as the type strain. This newly proposed species represents the second example of the genus Vibrio that has been demonstrated to be capable of anaerobic growth by fixing N2 as the sole nitrogen source.

  相似文献   

18.
A Gram-negative, non-motile, catalase- and oxidase- positive, strictly aerobic, and short rod-shaped bacterium that was designated strain KOPRI 25157T was isolated from coastal seawater sample in Antarctica. The temperature and pH ranges for growth on R2A agar were 10–20°C, and 5.0–10.0, respectively. Phylogenetic analyses of the 16S rRNA gene sequence of strain KOPRI 25157T showed it to belong to the family Oxalobacteraceae of the class Betaproteobacteria, and it formed a distinct clade from other recognized members of the family. DNA G + C content was 65.9 mol%. Major ubiquinone was Q-8. Predominant cellular fatty acids were C16:1 ω7c/15 iso 2OH (56.4%) and C16:1 (30.5%). Major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, and unknown lipid. On the basis of these data, it is proposed that strain KOPRI 25157T is the representative of a novel genus, for which the name Actimicrobium gen. nov. is proposed in the family Oxalobacteraceae. The type strain for Actimicrobium antarcticum sp. nov. is KOPRI 25157T (=JCM 16673T=KCTC 23040T).  相似文献   

19.
20.

A nitrogen-fixing isolate of facultatively anaerobic, marine bacterium, designated strain NFV-1T, was recovered from the lagoon sediment of Dongsha Island, Taiwan. It was a Gram-negative rod which exhibited motility with monotrichous flagellation in broth cultures. The strain required NaCl for growth and grew optimally at about 25–35 °C, 3% NaCl and pH 7–8. It grew aerobically and could achieve anaerobic growth by fermenting d-glucose or other carbohydrates as substrates. NH4Cl could serve as a sole nitrogen source for growth aerobically and anaerobically, whereas growth with N2 as the sole nitrogen source was observed only under anaerobic conditions. Cellular fatty acids were predominated by C16:1 ω7c, C16:0, and C18:1 ω7c. The major polar lipids consisted of phosphatidylethanolamine and phosphatidylserine. Strain NFV-1T had a DNA G?+?C content of 42.5 mol%, as evaluated according to the chromosomal DNA sequencing data. Analyses of sequence similarities and phylogeny based on the 16S rRNA genes, together with the housekeeping genes, gyrB, ftsZ, mreB, topA and gapA, indicated that the strain formed a distinct species-level lineage in the genus Vibrio of the family Vibrionaceae. These phylogenetic data and those from genomic and phenotypic characterisations support the establishment of a novel Vibrio species, for which the name Vibrio nitrifigilis sp. nov. (type strain NFV-1T?=?BCRC 81211T?=?JCM 33628T) is proposed.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号