首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
We carried out the flash photolysis of oxy complexes of sperm whale myoglobin, cobalt-substituted sperm whale myoglobin, and Aplysia myoglobin. When the optical absorption spectral changes associated with the O2 rebinding were monitored on the nanosecond to millisecond time scale, we found that the transient spectra of the O2 photoproduct of sperm whale myoglobin were significantly different from the static spectra of deoxy form. This was sharply contrasted with the observations that the spectra of the CO photoproduct of sperm whale myoglobin and of the O2 photoproducts of cobalt-substituted sperm whale myoglobin and Aplysia myoglobin are identical to the corresponding spectra of their deoxy forms. These results led us to suggest the presence of a fairly stable transient species in the O2 photodissociation from the oxy complex of sperm whale myoglobin, which has a protein structure different from the deoxy form. We denoted the O2 photo-product to be Mb*. In the time-resolved resonance Raman measurements, the nu Fe-His mode of Mb* gave the same value as that of the deoxy form, indicating that the difference in the optical absorption spectra is possibly due to the structural difference at the heme distal side rather than those of the proximal side. The structure of Mb* is discussed in relation to the dynamic motion of myoglobin in the O2 entry to or exit from the heme pocket. Comparing the structural characteristics of several myoglobins employed, we suggested that the formation of Mb* relates to the following two factors: a hydrogen bonding of O2 with the distal histidine, and the movement of iron upon the ligation of O2.  相似文献   

2.
Resonance Raman spectroscopy has been used to observe changes in the iron-ligand stretching frequency in photoproduct spectra of the proximal cavity mutant of myoglobin H93G. The measurements compare the deoxy ferrous state of the heme iron in H93G(L), where L is an exogenous imidazole ligand bound in the proximal cavity, to the photolyzed intermediate of H93G(L)*CO at 8 ns. There are significant differences in the frequencies of the iron-ligand axial out-of-plane mode nu(Fe-L) in the photoproduct spectra depending on the nature of L for a series of methyl-substituted imidazoles. Further comparison was made with the proximal cavity mutant of myoglobin in the absence of exogenous ligand (H93G) and the photoproduct of the carbonmonoxy adduct of H93G (H93G-*CO). For this case, it has been shown that H2O is the axial (fifth) ligand to the heme iron in the deoxy form of H93G. The photoproduct of H93G-*CO is consistent with a transiently bound ligand proposed to be a histidine. The data presented here further substantiate the conclusion that a conformationally driven ligand switch exists in photolyzed H93G-*CO. The results suggest that ligand conformational changes in response to dynamic motions of the globin on the nanosecond and longer time scales are a general feature of the H93G proximal cavity mutant.  相似文献   

3.
57Fe-enriched complexes of hemoglobin and myoglobin with CO and O2 were photodissociated at 4.2 degrees K, and the resulting spectra were compared with those of the deoxy forms. Differences in both quadrupole splitting and isomer shift were noted for each protein, the photoproducts having smaller isomer shift and larger quadrupole splitting than the deoxy forms. The photoproducts of HbCO and HbO2 had narrow absorption lines, indicating a well-defined iron environment. The corresponding myoglobin species had broader absorption lines, as did both deoxy forms. The weak absorption lines of photodissociated NO complexes appeared to be wide, possibly indicating magnetic interaction with the unpaired electron of the nearby NO.  相似文献   

4.
Resonance Raman spectroscopy and step-scan Fourier transform infrared (FTIR) spectroscopy have been used to identify the ligation state of ferrous heme iron for the H93G proximal cavity mutant of myoglobin in the absence of exogenous ligand on the proximal side. Preparation of the H93G mutant of myoglobin has been previously reported for a variety of axial ligands to the heme iron (e.g., substituted pyridines and imidazoles) [DePillis, G., Decatur, S. M., Barrick, D., and Boxer, S. G. (1994) J. Am. Chem. Soc. 116, 6981-6982]. The present study examines the ligation states of heme in preparations of the H93G myoglobin with no exogenous ligand. In the deoxy form of H93G, resonance Raman spectroscopic evidence shows water to be the axial (fifth) ligand to the deoxy heme iron. Analysis of the infrared C-O and Raman Fe-C stretching frequencies for the CO adduct indicates that it is six-coordinate with a histidine trans ligand. Following photolysis of CO, a time-dependent change in ligation is evident in both step-scan FTIR and saturation resonance Raman spectra, leading to the conclusion that a conformationally driven ligand switch exists in the H93G protein. In the absence of exogenous nitrogenous ligands, the CO trans effect stabilizes endogenous histidine ligation, while conformational strain favors the dissociation of histidine following photolysis of CO. The replacement of histidine by water in the five-coordinate complex is estimated to occur in < 5 micros. The results demonstrate that the H93G myoglobin cavity mutant has potential utility as a model system for studying the conformational energetics of ligand switching in heme proteins such as those observed in nitrite reductase, guanylyl cyclase, and possibly cytochrome c oxidase.  相似文献   

5.
The pH dependence of infrared and NMR spectroscopic parameters for carbon monoxide bound to human, equine, rabbit and Glycera dibranchiata monomer fraction hemoglobins has been examined. In all cases, the vertebrate hemoglobins exhibit CO vibrations and 13CO chemical shifts which are pH dependent, whereas the invertebrate hemoglobin does not. The Glycera dibranchiata monomer fraction exhibits the highest wavenumber CO vibration (1970 cm-1) and the most shielded chemical shift (206.2 ppm). The pH behavior of the vertebrate CO-hemoglobins is that the heme-coordinated carbon monoxide chemical shifts and principal infrared vibrations tend toward the values observed for the G. dibranchiata CO-hemoglobin fraction. These results are interpreted as originating in protonation of the distal histidine (E-7) in the vertebrate hemoglobins. The anomalous values for Glycera dibranchiata are concluded to be due to the absence of a distal histidine (E-7 His----Leu) in the heme pocket and not to gross structural dissimilarities between the proteins of the different species examined. Primary sequence similarity matrices have been constructed to compare the functional classes of amino acids at homologous positions for the CD and E helices and for the primary heme contacts in human, equine, sperm whale myoglobin, and the Glycera dibranchiata monomer hemoglobin to illustrate this point. They reveal a high correspondence for all globins and do not correlate with the spectroscopic parameters of heme-coordinated CO.  相似文献   

6.
The hemoglobin of the marine annelid Glycera dibranchiata possesses several unique features: the hemoglobin consists of multiple monomeric and polymeric components, quaternary structure is lacking, the distal histidine is replaced by leucine in at least one monomeric constituent, and 4) the protein exhibits extremely rapid ligand binding kinetics. The effect of these structural modifications on the ligand binding process has been evaluated using resonance Raman spectroscopy to examine the vibrational modes of the porphyrin macrocycle in deoxy and carbonmonoxy equilibrium species of hemoglobin G. dibranchiata in both the unseparated monomeric and polymeric forms and in a single monomeric component designated Fraction II. Significant differences relative to hemoglobin were found in porphyrin pi electron density, vinyl environment, low frequency vibrational modes, and, in particular, the Fe-proximal histidine stretching mode. Spectra of the deoxy heme transients generated within 10 ns of ligand photolysis have also been examined. These clearly indicate large differences in the heme pocket dynamics subsequent to CO photolysis in G. dibranchiata hemoglobins relative to other hemoglobins. The significance of these results in terms of the kinetics and thermodynamics of ligand binding is discussed.  相似文献   

7.
The geminate rate constants for CO, O2, NO, methyl, ethyl, n-propyl, and n-butyl isocyanide rebinding to soybean leghemoglobin and monomeric component II of Glycera dibranchiata hemoglobin were measured at pH 7, 20 degrees C using a dye laser with a 30-ns square-wave pulse. The results were compared to the corresponding parameters for sperm whale myoglobin and the isolated alpha and beta subunits of human hemoglobin (Olson, J.S., Rohlfs, R.J., and Gibson, Q.H. (1987) J. Biol. Chem., 262, 12930-12938). The rate-limiting step for O2, NO, and isonitrile binding to all five proteins is ligand migration up to the initial geminate state, and the rate of this process determines the overall bimolecular association rate constant for these ligands. In contrast, iron-ligand bond formation limits the overall bimolecular rate for CO binding. The distal pockets in leghemoglobin and in Glycera HbII are approximately 10 times more accessible kinetically to diatomic ligands than that in sperm whale myoglobin. This difference accounts for the much larger association rate constants (1-2 x 10(8) M-1 s-1) that are observed for O2 and NO binding to leghemoglobin and Glycera HbII. The rates of isonitrile migration through leghemoglobin are also very large and indicate a very fluid or open distal structure near the sixth coordination position. In contrast, there is a marked decrease in the rate of migration up to and away from the sixth coordination position in Glycera HbII with increasing ligand size. These results were also used to interpret previously published rate constants and quantum yields for the high (R) and low (T) affinity states of human hemoglobin. In contrast to the differences between the monomeric proteins, the differences between the CO-, O2-, and NO-binding parameters for R and T state hemoglobin appear to be due to a decrease in the geminate reactivity of the heme iron atom, with little or no change in the accessibility of the distal pocket.  相似文献   

8.
The influence of high pressure on the heme protein conformation of myoglobin in different ligation states is studied using Raman spectroscopy over the temperature range from 30 to 295 K. Photostationary experiments monitoring the oxidation state marker bands demonstrate the change of rebinding rate with pressure. While frequency changes of vibrational modes associated with rigid bonds of the porphyrin ring are <1 cm(-1), we investigate a significant shift of the iron-histidine mode to higher frequency with increasing pressure (approximately 3 cm(-1) for deltaP = 190 MPa in Mb). The observed frequency shift is interpreted structurally as a conformational change affecting the tilt angle between the heme plane and the proximal histidine and the out-of-plane iron position. Independent evidence for iron motion comes from measurements of the redshift of band III in the near-infrared with pressure. This suggests that at high pressure the proximal heme pocket and the protein are altered toward the bound state conformation, which contributes to the rate increase for CO binding. Raman spectra of Mb and photodissociated MbCO measured at low temperature and variable pressure further support changes in protein conformation and are consistent with glasslike properties of myoglobin below 160 K.  相似文献   

9.
Histidine-rich glycoprotein (HRG) binds both hemes and metal ions simultaneously with evidence for interaction between the two. This study uses resonance Raman and optical absorption spectroscopies to examine the heme environment of the 1:1 iron-mesoporphyrin.HRG complex in its oxidized, reduced and CO-bound forms in the absence and presence of copper. Significant perturbation of Fe(3+)-mesoporphyrin.HRG is induced by Cu2+ binding to the protein. Specifically, high frequency heme resonance Raman bands indicative of low-spin, six-coordinate iron before Cu2+ binding exhibit monotonic intensity shifts to bands representing high-spin, five-coordinate iron. The latter coordination is in contrast to that found in hemoglobin and myoglobin, and explains the Cu(2+)-induced decrease and broadening of the Fe(3+)-mesoporphyrin.HRG Soret band concomitant with the increase in the high-spin marker band at 620 nm. After dithionite reduction, the Fe(2+)-mesoporphyrin.HRG complex displays high frequency resonance Raman bands characteristic of low-spin heme and no iron-histidine stretch, which together suggest six-coordinate iron. Furthermore, the local heme environment of the complex is not altered by the binding of Cu1+. CO-bound Fe(2+)-mesoporphyrin.HRG exhibits bands in the high and low frequency regions similar to those of other CO-bound heme proteins except that the iron-CO stretch at 505 cm-1 is unusually broad with delta nu approximately 30 cm-1. The dynamics of CO photolysis and rebinding to Fe(2+)-mesoporphyrin.HRG are also distinctive. The net quantum yield for photolysis at 10 ns is low relative to most heme proteins, which may be attributed to very rapid geminate recombination. A similar low net quantum yield and broad iron-CO stretch have so far only been observed in a dimeric cytochrome c' from Chromatium vinosum. Furthermore, the photolytic transient of Fe(2+)-mesoporphyrin.HRG lacks bands corresponding to high-spin, five-coordinate iron as is found in hemoglobin and myoglobin under similar experimental conditions, suggesting iron hexacoordination before CO recombination. These data are consistent with a closely packed distal heme pocket that hinders ligand diffusion into the surrounding solvent.  相似文献   

10.
57Fe-enriched complexes of hemoglobin and myoglobin with CO and O2 were photodissociated at 4.2°K, and the resulting spectra were compared with those of the deoxy forms. Differences in both quadrupole splitting and isomer shift were noted for each protein, the photoproducts having smaller isomer shift and larger quadrupole splitting than the deoxy forms. The photoproducts of HbCO and HbCO2 had narrow absorption lines, indicating a well-defined iron environment. The corresponding myoglobin species had broader absorption lines, as did both deoxy forms. The weak absorption lines of photodissociated NO complexes appeared to be wide, possibly indicating magnetic interaction with the unpaired electron of the nearby NO.  相似文献   

11.
The thermally induced difference spectra of myoglobin (Mb) and Glycera dibranchiata hemoglobin (Hbm) derivatives and of cytochrome-c were recorded between 4 degrees and 30 degrees C in the 390-750 nm range. Thermodynamic parameters were estimated and upper and lower temperature limiting spectra were deduced for the various heme protein derivatives' equilibria. The effective iron d-electron population divides the hemes broadly into two different groups of behavior type. In the first group, Hbm(III)N3, Hbm(III), Mb(III)(H2O), and Cytc(III) show equilibria between two spin states. The weakest coupling between the heme and the globin occurs among the second group, for Hbm(II)CO and Mb(II)CO, which in the higher temperature limit undergoes averaging of the carbonyl tilt, while an axially elongated geometry is probably accessed for Hbm(II)NO and Mb(II)NO. Examples of the less common situation of increased absorption intensity and/or low-spin states at higher temperature were found in both groups. In the case of the methyl thioglycolate low-spin adducts of Hbm(III), an acid/base equilibrium involving thioglycolate deprotonation occurs. Apparent enthalpy-entropy compensation is exhibited by all these heme derivatives, and it is suggested that the delta H degrees and delta S degrees values relate to the intimacy of coupling between the heme structure and the solvent-dependent microconformation of the globin.  相似文献   

12.
The visible and near infrared magnetic circular dichroism (MCD) spectra of equilibrium high-spin ferrous derivatives of myoglobin, hemoglobin, horseradish peroxidase and mitochondrial cytochrome c oxidase at 15 K are compared with those of the corresponding proteins in nonequilibrium conformations produced by low-temperature photodissociation of CO-complexes of these proteins as well as of O2-complexes of myoglobin and hemoglobin. Over all the spectral region (450-800 nm) the intensities of MCD bands of hemoproteins studied in equilibrium conformation are shown to be strongly temperature-dependent, including a negative band at ca. 630 nm and positive bands at ca. 690 nm and at ca. 760 nm. In contrast to the absorption spectra, the low-temperature MCD spectra of high-spin ferrous hemoproteins differ significantly, reflecting the peculiarities in the heme iron coordination sphere which are created by a protein conformation. The MCD spectra reveal clearly the structural changes in the heme environment which occur on ligand binding. On the basis of assignment of d leads to d and charge-transfer transitions in the near infrared region the correlation is suggested between the wavelength position of the MCD band at approx. 690 nm and the value of iron out-of-plane displacement as well as between the location of the band at approx. 760 nm and the Fe-N epsilon (proximal histidine) bond strength (length) in equilibrium and nonequilibrium conformations of the hemoproteins studied. The high sensitivity of low-temperature MCD spectra to geometry at heme iron is discussed.  相似文献   

13.
Cryogenic stabilization of myoglobin photoproducts   总被引:4,自引:0,他引:4  
The low frequency resonance Raman spectra of photodissociated carbon monoxymyoglobin at cryogenic temperatures (4-77 K) differ from those of deoxymyoglobin. Intensity differences occur in several low frequency porphyrin modes, and intensity and frequency differences occur in the iron-histidine stretching mode. This mode appears at about 225 cm-1 in deoxymyoglobin. At the lowest temperature studied, approximately 4 K, the frequency of the iron-histidine stretching mode in the photoproduct is approximately 233 cm-1, and the intensity is very low. When the temperature of the photoproduct is increased, the intensity of the mode increases, but its frequency is unchanged. The differences between the photoproduct and the deoxy preparation persist to 77 K, the highest temperature studied, and are independent of whether samples are frozen in phosphate buffer or a 50:50 ethylene glycol/phosphate buffer mixture. It is proposed that the frequency of the iron-histidine stretching mode is governed by the tilt angle of the histidine with respect to the normal to the heme plane, and the intensity of the mode is governed by the overlap between the sigma orbital of the iron-histidine bond and the pi orbital of the porphyrin macrocycle. This model can account for differences between the resonance Raman spectra of the photoproduct and the deoxy preparations of both hemoglobin and myoglobin. Furthermore, by considering the F-helix motions in going from 6-coordinate to 5-coordinate hemoglobin and myoglobin, the heme relaxation of these proteins at room temperature with 10-ns pulses can be explained. Based on the findings reported here, low temperature relaxation pathways for both hemoglobin and myoglobin are proposed.  相似文献   

14.
The heme-PAS is a specialized domain with which a broad class of signal-transducing heme proteins detect physiological heme ligands. Such domains exhibit a wide range of ligand binding parameters, yet they are all expected to feature an alpha-beta heme binding fold and a predominantly hydrophobic heme distal pocket without a distal histidine. We have compared, for the first time, the resonance Raman spectra of several heme-PASs: the heme-binding domains of Bradyrhizobium japonicum FixL, Escherichia coli Dos, Acetobacter xylinum PDEA1, and Methanobacterium thermoautotrophicum Dos. In all cases, the nu(Fe)-(CO) and nu(C-O) values of the carbonmonoxy forms were consistent with coordination of the heme iron to histidine on the proximal side and binding of the CO without electrostatic interaction with the heme distal pocket. EcDos was unusual in having predominantly hexacoordinate heme iron in the deoxy and met forms. Despite an evident lack of CO interaction with the EcDos heme pocket, relatively low Fe-O(2) (562 cm(-1)) and N-O (1576 cm(-1)) stretching frequencies indicated that strong polar interactions with that heme distal pocket are possible for highly bent ligands such as O(2) or NO. None of the newly studied NO adducts exhibited evidence of the Fe-His rupture and pentacoordination previously noted for Sinorhizobium meliloti FixL. A low Fe-His stretching frequency, formerly interpreted as a strained Fe-His bond, and the slow association of O(2) with S. meliloti FixL failed to correlate with the newly studied proteins having low association rate or low equilibrium association constants for binding of O(2). We conclude that although heme-PASs share some features, they represent distinct signal transduction mechanisms.  相似文献   

15.
Resonance Raman spectroscopy, transient absorption, and fluroescence techniques have been employed to investigate the structure and dynamics of the alpha-cross-linked hemoglobin derivative, HbXL99 alpha. The resonance Raman spectra of the deoxy form of HbXL99 alpha are identical to those of native NbA (VFe-His approximately 222 cm-1), which exhibit a T-state (low affinity) structure regardless of solvent conditions. The resonance Raman spectra of the transient heme photoproduct resulting from CO photolysis from HbXL99 alpha appear to have structures intermediate between deoxy-T and ligand-bound R structures (VFe-His approximately 222 cm-1). Time-resolved resonance Raman data of HbXL99 alpha-CO show that complete CO recombination occurs after approximately 5 ms, with only a small amount of the CO-bound species reforming within approximately 200 ns (geminate recombination). Transient absorption spectra of HbXL99 alpha-O2 indicate that the extent of sub-nanosecond geminate recombination of O2 is also reduced in the cross-linked derivative relative to native HbA. The decrease in tryptophan fluorescence of HbXL99 alpha upon oxygenation further indicates that tertiary structural changes at the alpha 1-beta 2 interface upon ligation are apparently reduced, but not eliminated in the cross-linked derivative relative to HbA.  相似文献   

16.
The X-ray crystal structure of the fluoride derivative of Aplysia limacina ferric myoglobin has been solved and refined at 2.0 A resolution; the crystallographic R-factor is 13.6%. The fluoride ion binds to the sixth co-ordination position of the heme iron, 2.2 A from the metal. Binding of the negatively charged ligand on the distal side of the heme pocket of this myoglobin, which lacks the distal His, is associated with a network of hydrogen bonds that includes the fluoride ion, the residue Arg66 (E10), the heme propionate III, three ordered water molecules and backbone or side-chain atoms from the CD region. A comparison of fluoride and oxygen dissociation rate constants of A. limacina myoglobin, sperm whale (Physeter catodon) myoglobin and Glycera dibranchiata monomeric hemoglobin, suggests that the conformational readjustment of Arg66 (E10) in A. limacina myoglobin may represent the molecular basis for ligand stabilization, in the absence of a hydrogen-bond donor residue at the distal E7 position.  相似文献   

17.
Dynamics of dioxygen and carbon monoxide binding to soybean leghemoglobin   总被引:2,自引:0,他引:2  
The association of dioxygen and carbon monoxide to soybean leghemoglobin (Lb) has been studied by laser flash photolysis at temperatures from 10 to 320 K and times from 50 ns to 100 s. Infrared spectra of the bound and the photodissociated state were investigated between 10 and 20 K. The general features of the binding process in leghemoglobin are similar to the ones found in myoglobin. Below about 200 K, the photodissociated ligands stay in the heme pocket and rebinding is not exponential in time, implying a distributed enthalpy barrier between pocket and heme. At around 300 K, ligands migrate from the solvent through the protein to the heme pocket, and a steady state is set up between the ligands in the solvent and in the heme pocket. The association rate, lambda on, is mainly controlled by the final binding step at the heme, the bond formation with the heme iron. Differences between Lb and other heme proteins show up in the details of the various steps. The faster association rate in Lb compared to sperm whale myoglobin (Mb) is due to a faster bond formation. The migration from the solvent to the heme pocket is much faster in Lb than in Mb. The low-temperature binding (B----A) and the infrared spectra of CO in the bound state A and the photodissociated state B are essentially solvent-independent in Mb, but depend strongly on solvent in Lb. These features can be correlated with the x-ray structure.  相似文献   

18.
Mini-myoglobin, obtained by limited proteolysis of horse heart myoglobin (residues 32 to 139), represents a good model for testing the correlation between an exon and a protein domain. We have shown that ligand binding kinetics, spectral and folding features of mini-myoglobin are very similar to those of native myoglobin. In order to develop further the analysis of the structure-function relationship in this mini-protein, mini-globin was reconstituted with the heme moiety in which iron is replaced by cobalt. The Soret absorption spectra of oxy and deoxy cobaltous mini-myoglobin are very similar to those of cobaltous myoglobin derivatives; in addition. Co-mini-myoglobin binds oxygen reversibly with an n value approximately 1 and a p50 value of 45 to 50 mm Hg (the same as Co-myoglobin). Oxy Co-mini-myoglobin shows a well-resolved electron paramagnetic resonance (e.p.r.) spectrum typical of an oxygenated hemoprotein, while the spectrum of the deoxy derivative, although similar to that of deoxy Co-myoglobin, displays a lower resolution of the complex hyperfine structure. Moreover, photodissociation experiments on oxy Co-mini-myoglobin allow e.p.r. detection of an intermediate state, already observed in most hemoproteins and diagnostic for the interaction of bound oxygen with the distal histidine residue. Thus, reconstitution of mini-globin with cobalt protoprophyrin IX has provided, for the first time, a stable oxygenated complex that reflects a correct folding of the protein surrounding the heme pocket and possesses the functional behaviour typical of a hemoprotein.  相似文献   

19.
The effects of pH upon infrared spectra [CO stretching frequency (vco) region] and visible spectra of the CO complexes of soybean leghemoglobins a, c1, and c2, sperm whale myoglobin, and human hemoglobin A are reported. The vco for leghemoglobin--CO complexes was 1947.5 cm-1 at neutral pH. At acid pH myoglobin-- and hemoglobin--CO complexes developed vco bands at 1966--1968 cm-1, whereas leghemoglobin--CO complexes developed vco bands at approximately 1957 cm-1. All pKapp co values determined by pH-dependent variation of vco fell in the range 4.0--4.6. The pKapp co values determined from visible spectra were consistent with vco-determined values except for that of myoglobin--CO (visible pKapp co = 5.8). The pKapp co values in the 4.0--4.6 range appear to be pK values of the distal histidines, while the visible pKapp co of myoglobin--CO appears to be the pK of a group other than the distal and proximal histidines. The data are consistent with a model in which protonation of the distal histidine permits protein-free heme FeCO geometry in leghemoglobin--CO complexes but not in myoglobin-- or hemoglobin--CO complexes. Thus the heme pockets of leghemoglobins appear to be more flexible than the heme pockets of myoglobin and hemoglobin. The effects of pH upon visible spectra of the O2 complexes of soybean leghemoglobins a, c1, and c2, sperm whale myoglobin, and human hemoglobin A also are reported. pKapp o2 values of approximately 5.5 (leghemoglobins) and 4.4 (hemoglobin) are probably the pK values of the distal histidines. Comparisons of pKapp o2 values with pKapp co values indicate a more flexible heme pocket in leghemoglobins than in hemoglobin. The O2 complex of leghemoglobin c2 differed significantly from the O2 complexes of leghemoglobins a and c1 in visible spectra and titration behavior. These differences might be associated with the small structural differences in the region between the E and F helixes of leghemoglobins.  相似文献   

20.
High-resolution resonance Raman spectra of the ferric, ferrous, and carbonmonoxy (CO)-bound forms of wild-type Escherichia coli-expressed Pseudomonas putida cytochrome P450cam and its P420 form are reported. The ferric and ferrous species of P450 and P420 have been studied in both the presence and absence of excess camphor substrate. In ferric, camphor-bound, P450 (mos), the E. coli-expressed P450 is found to be spectroscopically indistinguishable from the native material. Although substrate binding to P450 is known to displace water molecules from the heme pocket, altering the coordination and spin state of the heme iron, the presence of camphor substrate in P420 samples is found to have essentially no effect on the Raman spectra of the heme in either the oxidized or reduced state. A detailed study of the Raman and absorption spectra of P450 and P420 reveals that the P420 heme is in equilibrium between a high-spin, five-coordinate (HS,5C) form and low-spin six-coordinate (LS,6C) form in both the ferric and ferrous oxidation states. In the ferric P420 state, H2O evidently remains as a heme ligand, while alterations of the protein tertiary structure lead to a significant reduction in affinity for Cys(357) thiolate binding to the heme iron. Ferrous P420 also consists of an equilibrium between HS,5C and LS,6C states, with the spectroscopic evidence indicating that H2O and histidine are the most likely axial ligands. The spectral characteristics of the CO complex of P420 are found to be almost identical to those of a low pH of Mb. Moreover, we find that the 10-ns transient Raman spectrum of the photolyzed P420 CO complex possesses a band at 220 cm-1, which is strong evidence in favor of histidine ligation in the CO-bound state. The equilibrium structure of ferrous P420 does not show this band, indicating that Fe-His bond formation is favored when the iron becomes more acidic upon CO binding. Raman spectra of stationary samples of the CO complex of P450 reveal VFe-CO peaks corresponding to both substrate-bound and substrate-free species and demonstrate that substrate dissociation is coupled to CO photolysis. Analysis of the relative band intensities as a function of photolysis indicates that the CO photolysis and rebinding rates are faster than camphor rebinding and that CO binds to the heme faster when camphor is not in the distal pocket.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号