共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Aqueous two-phase systems composed of dextran and poly (ethylene glycol) have been successfully used for glucose fermentation, cellulose hydrolysis and bioconversion of cellulose to ethanol. The biocatalysts are confined in the bottom phase whereas the products are extracted by the top phase. 相似文献
2.
Partition coefficients in poly(ethylene glycol)/dextran aqueous two-phase systems are reported for mixed-casein and its components, alpha, beta and kappa casein. Rates of casein proteolysis by alpha-chymotrypsin and by trypsin are reported in single-phase and aqueous two-phase reactor systems. The advantages resulting from selective partitioning of substrates, enzymes, and products are examined in terms of relative volumetric reaction rates. 相似文献
3.
R. A. Santos J. C. G. Caldeira H. M. Pinheiro J. M. S. Cabral 《Biotechnology letters》1991,13(5):349-354
A novel aqueous two-phase system, based on polyethyleneglycol (PEG) and monosodium glutamate, was tested for the 1-dehydrogenation of hydrocortisone-based substrates. This system led to higher substrate solubilities and biocatalyst/steroid separation levels when compared with alternative systems. The addition of short-chain monohydric alcohols resulted in higher solubilities and more favourable partition coefficients for the tested substrates. Bioconversion activities in PEG/glutamate systems with 2,5% (v/v) methanol were comparable to those measured in monophasic buffer-methanol medium. 相似文献
4.
Amylase partitioning and extractive bioconversion of starch using thermoseparating aqueous two-phase systems. 总被引:2,自引:0,他引:2
The effectiveness of thermoseparating polymer-based aqueous two-phase systems (ATPS) in the enzymatic hydrolysis of starch was investigated. In this work, the phase diagrams of PEO-PPO-2500/ammonium sulfate and PEO-PPO-2500/magnesium sulfate systems were determined at 25 degrees C. The partition behavior of pure alpha-amylase and amyloglucosidase in four ATPS, namely, PEO-PPO/(NH(4))(2)SO(4), PEO-PPO/MgSO(4), polyethylene glycol (PEG)/(NH(4))(2)SO(4), and PEG/MgSO(4), was evaluated. The effects of phase-forming component concentrations on the enzyme activity and partitioning were assessed. Partitioning of a recombinant, thermostable alpha-amylase (MJA1) from the hyperthermophile, Methanococcus jannaschii was also investigated. All of the studied enzymes partitioned unevenly in these polymer/salt systems. The PEO-PPO-2500/MgSO(4) system was extremely attractive for starch hydrolysis. Polymer-based starch hydrolysis experiments containing PEO-PPO-2500/MgSO(4) indicated that the use of ATPS had a significant effect on soluble starch hydrolysis. Batch starch hydrolysis experiments with PEO-PPO/salt two-phase systems resulted in higher production of maltose or glucose and exhibited remarkably faster hydrolysis. A 22% gain in maltose yield was obtained as a result of the increased productivity. This work is the first reported application of thermoseparating polymer ATPS in the processing of starches. These results reveal the potential for thermoseparating polymer-enhanced extractive bioconversion of starch as a practical technology. 相似文献
5.
Among the problems associated with the bioconversion of monoterpenes by plant cell suspensions are the toxicity of some substrates and/or products at low concentrations, the transient state of nascent products and the length of time required to obtain the cell suspension. We investigated the extractive bioconversion of geraniol by a Vitis vinifera c.v. Muscat de Frontignan cell suspension in a two-phase system consisting of an aqueous nutrient phase surmounted by a lipid (Miglyol 812) phase. This system proved to be advantageous as it allowed a five-fold increase in the substrate load without causing any detrimental effect on the cell suspension, it improved the persistence of nascent products and it permitted the recycling or re-use of the cell suspension in a monoterpene bioconversion process.CRASH contribution no. 060 相似文献
6.
Bioconversions in aqueous two-phase systems. 总被引:7,自引:0,他引:7
Bioconversions involving enzymes and/or microbial cells in aqueous two-phase systems are reviewed. The partitioning of biocatalysts, substrates, and products is discussed in relation to their size. The efficiency of retaining biocatalysts in aqueous two-phase systems is summarized in relation to other methods of recirculating. The influence of phase components on the activity and the stability of enzymatic biocatalysts is exemplified with penicillin acylase and the cellulolytic enzyme system, and the effect of phase components on biocatalytic living cells is exemplified with the production of alpha-amylase with Bacillus sp. Process design costs in bioconversions in aqueous two-phase systems are briefly summarized. 相似文献
7.
Fabíola Cristina de Oliveira Jane Slia dos Reis Coimbra Luis Henrique Mendes da Silva Edwin Elard Garcia Rojas Maria do Carmo Hespanhol da Silva 《Biochemical Engineering Journal》2009,47(1-3):55-60
This study evaluated the partitioning of ovomucoid from egg white, in aqueous two-phase systems (ATPS) composed of PEG 1500 and inorganic salt (lithium sulfate, sodium sulfate, magnesium sulfate, sodium carbonate or sodium citrate) at 25 °C. The results showed a great effect of the electrolyte nature on the partition coefficient. The partition coefficient value ranges from 0.02 to 6.0. The highest partition coefficients were obtained from systems composed of sodium carbonate and the lowest in systems composed of magnesium sulfate. In the system containing magnesium sulfate, a recovery percentage greater than 90% was obtained. 相似文献
8.
《Biochemical Engineering Journal》2010,48(1-3):55-60
This study evaluated the partitioning of ovomucoid from egg white, in aqueous two-phase systems (ATPS) composed of PEG 1500 and inorganic salt (lithium sulfate, sodium sulfate, magnesium sulfate, sodium carbonate or sodium citrate) at 25 °C. The results showed a great effect of the electrolyte nature on the partition coefficient. The partition coefficient value ranges from 0.02 to 6.0. The highest partition coefficients were obtained from systems composed of sodium carbonate and the lowest in systems composed of magnesium sulfate. In the system containing magnesium sulfate, a recovery percentage greater than 90% was obtained. 相似文献
9.
A study was made to find out maximum partitioning of Bacillus licheniformis alkaline phosphatase in different ATPSs composed of different molecular weight of PEG X (X = 2000, 4000, 6000) with salts (magnesium sulphate, sodium sulphate, sodium citrate) and polymers (dextran 40, dextran T500). Physicochemical factors such as effect of system pH, system temperature and production media were evaluated for partitioning of alkaline phosphatase. PEG 4000 [9.0% (w/v)] and dextran T500 [9.6% (w/v)] were selected as most suitable system components for alkaline phosphatase production by B. licheniformis based on greater partition coefficient (k = 5.23). The two-phase system produced fewer enzymes than the homogeneous fermentation (control) in early stage of fermentation, but after 72 h the enzyme produced in the control system was less than that in the ATPS. Total alkaline phosphatase yield in ATPS fermentation was 3907.01 U/ml and in homogeneous fermentation 2856.50 U/ml. 相似文献
10.
Protein partitioning in two-phase aqueous polymer systems 总被引:1,自引:0,他引:1
Theories of protein partitioning in two-phase polymer systems which account for the effects of different aspects of system composition-such as the choice of materials, protein size, polymer molecular weight, polymer concentration, salt concentration, and affinity ligands-are reviewed. Although the present models provide some information about specific aspects of partitioning, a comprehensive and fundamental theory which can be used to predict protein partitioning behavior has not yet been developed. Some recommendations for future work are given. 相似文献
11.
Bo Mattiasson 《Trends in biotechnology》1983,1(1):16-20
Aqueous two-phase systems can be employed in several areas of biotechnology including the purification of biomolecules, cells and organelles and increasing the speed of product-inhibited fermentations such as the production of acetone, butanol and ethanol. Furthermore, separations in aqueous two-phase systems have been successfully applied in binding assays. 相似文献
12.
da Silva CA Coimbra JS Rojas EE Minim LA da Silva LH 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2007,858(1-2):205-210
This study evaluates the influence of type of salt and temperature on the partition coefficient of caseinomacropetide (CMP) to determine the best conditions for the recovery of CMP in aqueous two-phase systems (ATPS) composed by poly(ethylene glycol) (PEG) 1500 and an inorganic salt (potassium phosphate, sodium citrate, lithium sulfate or sodium sulfate). In all systems, CMP presented affinity for the PEG-rich phase. The PEG1500+lithium sulfate showed the highest values of partitioning coefficient. In addition, thermodynamic parameters (DeltaH degrees , DeltaS degrees , DeltaG degrees) as a function of temperature, were calculated for the system PEG1500-sodium citrate at different PEG concentrations and the results imply thermodynamic differences between partitioning of CMP in this system. 相似文献
13.
C.A.S. da Silva J.S.R. Coimbra E.E.G. Rojas J.A.C. Teixeira 《Process Biochemistry》2009,44(11):1213-1216
The partition behavior of glycomacropeptide (GMP) was determined in polyethylene glycol (PEG) and sodium citrate aqueous two-phase systems (ATPS). It was found that the partitioning of GMP depends on PEG molar mass, tie line length, pH, NaCl concentration and temperature. The obtained data indicates that GMP is preferentially partitioned into the PEG phase without addition of NaCl at pH 8.0. Larger tie line lengths and higher temperatures favor GMP partition to the PEG phase. Furthermore, it was verified that PEG molar mass and concentration have a slight effect on GMP partition. The increase in the molar mass of PEG induces a reduction of the protein solubility in the top PEG rich phase, being shown that the use of PEG1500 is beneficial for the extraction of GMP. A protein recovery higher than 85% was obtained in the top phase of these systems, clearly demonstrating its suitability as a starting point for the separation of GMP. 相似文献
14.
Acoustic demixing of aqueous two-phase systems 总被引:1,自引:0,他引:1
Srinivas ND Barhate RS Raghavarao KS Todd P 《Applied microbiology and biotechnology》2000,53(6):650-654
Aqueous two-phase systems demix slowly due to similar physical properties. This is one of the major drawbacks for their adaptation
for industrial scale extraction of enzymes. In the present work, a method to accelerate the demixing rates of these systems,
employing a traveling acoustic wave field is reported for the first time. Phase-demixing for three systems, viz. polyethylene
glycol (PEG)/sodium sulfate, PEG/potassium phosphate and PEG/maltodextrin were studied. The acoustically assisted process
decreased the demixing time significantly (about 2- to 3-fold in PEG/salt systems and about 2-fold in the PEG/maltodextrin
system), compared to that in gravity alone. Ultrasonication apparently enhanced the coalescence of the dispersed phase droplets
due to the mild circulation currents it caused in the dispersion. This in turn enhanced the rate of demixing due to the increased
migration velocity of the larger droplets.
Received: 3 November 1999 / Received revision: 10 January 2000 / Accepted: 14 January 2000 相似文献
15.
Integration of bioconversion and downstream processing: starch hydrolysis in an aqueous two-phase system 总被引:1,自引:0,他引:1
Integration of bioconversion and the first step(s) of down stream processing can be used as a means to increase the productivity of bioprocesses. This integration also gives the possibility to run the bioconversion in a continuous mode. We demonstrate the use of an aqueous two-phase system in combination with ultrafiltration to accomplish this. Conversion of native starch to glucose by alpha-amylase and glucoamylase was carried out in an aqueous two-phase system in connection with a membrane filtration unit. In this way, a continuous stream of glucose in buffer solution was obtained; the phase-forming polymers as well as the starch-degrading enzymes were recycled, and clogging of the ultrafiltration membrane was avoided. The process was carried out continuously in a mixer-settler reactor for a period of 8 days. The enzyme activities in the top and bottom phases and in the mixing chamber were monitored intermittently throughout the experiment. The optimum pH, temperature, and ionic strength for the activity of the enzyme mixture were determined. The settling time of phase systems containing varying amounts of PEG, crude dextran, and solid starch was studied. The activity and stability of enzyme mixtures was studied both in buffer medium and in the medium containing the polymers. The enzymes were found to be more active and stable in medium containing polymers than in the buffer solutions. 相似文献
16.
Extractive lactic acid fermentation in poly (ethyleneimine)-based aqueous two-phase system 总被引:3,自引:0,他引:3
The potential of an aqueous two-phase system composed of a polycation, poly(ethyleneimine) (PEI), and an uncharged polymer, (hydroxyethyl) cellulose (HEC), for extractive lactic acid fermentation was tested. Batch fermentation with 20 g/L glucose in two-phase medium using Lactococcus lactis without external pH control resulted in 3-4 times higher amount of lactate and biomass produced as compared to that in a conventional one-phase medium. Lactic acid was preferentially partitioned to the PEI-rich bottom phase. However, the cells which favored the HEC-rich top phase in a fresh two-phase medium were partitioned to a significant extent to the bottom phase after fermentation. Addition of phosphate buffer or pH adjustment to 6.5 after fermentation caused fewer cells to move to the bottom phase. With external pH control, fermentation in normal and two-phase medium showed no marked differences in glucose consumption and lactic acid yield, except that about 1.3 times higher cell density was obtained in the two-phase broth, especially at initial glucose concentrations of 50-100 g/L. Use of higher concentration of phosphate during batch fermentation in the two-phase medium with 50 g/L sugar provided a 15% higher yield of lactic acid, but the growth rate of cells was nearly half of the normal, thus affecting the productivity. Continuous fermentation with twice the normal phosphate concentration resulted in higher cell density, product yield, and productivity in two-phase medium than in monophasic medium. (c) 1996 John Wiley & Sons, Inc. 相似文献
17.
Partitioning in aqueous two-phase systems: recent results 总被引:4,自引:0,他引:4
18.
Eui-Chul Kang Kazunari Akiyoshi Junzo Sunamoto 《International journal of biological macromolecules》1994,16(6):348-353
Hydrophobized polysaccharides such as cholesterol-bearing pullulan (CHP), dextran (CHD) and mannan (CHM) effectively coat the liposomal surface. Partition of the hydrophobized polysaccharide-coated liposomes in an aqueous two-phase system (PEO (top)/pullulan (bottom) or PEO (top)/dextran (bottom)) was investigated (PEO = poly(ethylene oxide)). Conventional liposomes without a polysaccharide coat mostly locate at the interface between the two polymer phases. The polysaccharide-coated liposomes, on the other hand, were partly partitioned to the bottom polysaccharide phase depending on the structure of the hydrophobized polysaccharide on the liposomal surface. The affinity between the polysaccharide on the liposomal surface and that in the bulk bottom phase controls the efficiency of partition. The sequence of interaction strength between the two carbohydrates as the following: for the PEO/dextran two-phase system, dextran(liposome)-dextran(bulk) > mannan(liposome)-dextran(bulk) > pullulan(liposome)-dextran(bulk); while for the PEO/pullulan system, the sequence of interaction strength was pullulan(liposome)-pullulan(bulk) > dextran(liposome)-pullulan(bulk) ≈ mannan(liposome)-pullulan(bulk). 相似文献
19.
Partitioning in aqueous two-phase systems: an overview 总被引:2,自引:0,他引:2
20.
Intensification of mass transfer in aqueous two-phase systems 总被引:1,自引:0,他引:1
A novel technique which intensifies conventional aqueous two-phase extraction by conversion of dispersed phase into colloidal gas aphrons (CGAs) has been developed for extraction of an enzyme. In the present work, amyloglucosidase (1,4-alpha-D-glucan glucohydrolase) was extracted using a polyethylene glycol-sodium sulfate-water system. The lighter phase, i.e., polyethylene glycol (PEG) rich phase, was converted into CGAs which were then dispersed into a salt rich phase. The effect of type of surfactant and its concentration, dispersed phase velocity, phase composition, and type of sparger on the dispersed phase mass transfer coefficient was investigated. The results suggests 9-16 times higher values of mass transfer coefficient compared to spray column. The multiorifice sparger at concentrations of 0.33 g/L of cetyl trimethyl ammonium chloride yielded best results. (c) 1993 John Wiley & Sons, Inc. 相似文献