首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic diversity and structure of populations of the wild progenitor of barleyHordeum spontaneum in Iran was studied by electrophoretically discernible allozymic variation in proteins encoded by 30 gene loci in 509 individuals representing 13 populations of wild barley. The results indicate that: a)Hordeum spontaneum in Iran is extremely rich genetically but, because of predominant self-pollination, the variation is carried primarily by different homozygotes in the population. Thus, genetic indices of polymorphismP-1% = 0.375, range = 0.267–0.500, and of genetic diversity,He = 0.134, range = 0.069–0.198, are very high. b) Genetic differentiation of populations includes clinal, regional and local patterns, sometimes displaying sharp geographic differentiation over short distances. The average relative differentiation among populations isGst = 0.28, range = 0.02–0.61. c) A substantial portion of the patterns of allozyme variation in the wild gene pool is significanctly correlated with the environment and is predictable ecologically, chiefly by combinations of temperature and humidity variables. d) The natural populations studied, on the average, are more variable than two composite crosses, and more variable than indigenous land races of cultivated barely,Hordeum vulgare, in Iran. — The spatial patterns and environmental correlates and predictors of genetic variation ofH. spontaneum in Iran indicate that genetic variation in wild barley populations is not only rich but also at least partly adaptive. Therefore, a much fuller exploitation of these genetic resources by breeding for disease resistance and economically important agronomic traits is warranted.  相似文献   

2.
Allozymic variation in proteins encoded by 22 loci was analyzed electrophoretically in 278 individual plants of wild barley,Hordeum spontaneum, the progenitor of cultivated barley, in four 100 meter transects, in Israel, each equally subdivided into basalt and terra rossa soil types. Significant differentiation according to soil was found in 9 alleles. Our results suggest that allozyme polymorphisms in wild barley are at least partly adaptive, and differentiate by edaphic natural selection rather than by stochastic processes, and/or neutrality of allozymic variants.  相似文献   

3.
From 114 accessions of wild emmer wheat from 11 sites in Israel, known for their allozymic variation (Nevo & al. 1982), individual genotypes were tested for resistance to one isolate of stripe rust both in the seedling stage in a growth chamber and in the adult plant stage in the field. The results indicate that resistance to stripe rust in seedlings and adults are significantly correlated (rs = 0.40, p < 0.001). Genetic polymorphisms of resistance to stripe rust vary geographically and are predictable by climatic, as well as allozymic markers. Three variable combinations of rainfall, evaporation, and temperature explain significantly 0.40–0.53 of the spatial variance in disease resistance to stripe rust, suggesting the operation of natural selection. Several allozyme genotypes are significantly associated with disease resistance. We conclude that natural populations of wild emmer wheat in Israel contain large amounts of disease resistance genes. These populations could be effectively screened and then utilized by the phytopathologist for identifying resistant genotypes and producing new resistant cultivars.Patterns of Resistance of Wild Wheat to Pathogens in Israel II.  相似文献   

4.
Summary Progenies of H. spontaneum plants regenerated from immature embryo derived calli were analysed for somaclonal variation on the following traits: (1) organization of the intergenic spacer of the rRNA genes; (2) B and C hordein pattern on SDS-PAGE; (3) genomic organization of the B and C hordein coding sequences; (4) mitochondrial DNA organization assayed by hybridization of Southern blots of total DNA with mitochondrial coding genes; (5) cytology. One out of twelve progeny plants was characterized as variant for two traits: (a) a loss of 1.8 and 2.5 kb Taq I intergenic rDNA spacer fragments and (b) a variant pattern of hordeins on 1-D SDS-PAGE. No numerical or structural chromosome variation was detected among the control plants therefore it is assumed that the variation was caused by the in vitro culture and transmitted, through sexual reproduction, to the analysed progeny.  相似文献   

5.
To assess the genetic diversity and the genetic structure of Turkish wild barley (Hordeum spontaneum Tell.) populations, 76 genotypes from ten ecologically and geographically different locations were analyzed by means of amplified fragment length polymorphism (AFLP) markers. Five primer combinations produced 187 scorable bands, of which 117 (62.6%) were polymorphic. Several population-specific and genotype-specific bands were identified, which differentiate populations or genotypes. Genetic distance, determined by Nei’s distance coefficient, varied from 0.07 to 0.21 with an average of 0.13. In the UPGMA dendrogram based on Nei genetic distances, the Hordeum spontaneum populations were separated into two major clusters. Genetic diversity was larger among (68%) than within (32%) populations. Eight AFLP bands were strongly correlated to the altitude of the collecting site, while no clear trend was detected between geographical origin and genetic diversity. Our results strongly suggest the need for a change in Hordeum spontaneum sampling strategy: more populations, rather then more individuals within population, should be sampled to appraise and safeguard genetic diversity in the wild barley gene pool.  相似文献   

6.
Four bread wheat (Triticum aestivum L.) cultivars, Aobakomugi, Chinese Spring, Norin 61 and Shinchunaga, were pollinated with five barley lines/cultivars consisting of three cultivated barley (Hordeum vulgare L.) lines, Betzes, Kinai 5 and OHL089, and two wild barley (Hordeum spontaneum C. Koch) lines, OUH602 and OUH324. Crossability, expressed as the percentage of embryo formation, varied from 0 to 55.4% among the cross combinations. The two wild barley lines generally had a higher crossability than the previously reported best pollinator, Betzes, and some Japanese wheat cultivars were better as the female parent than Chinese Spring. Ninety four hybrid plants were obtained from 250 embryos cultured, and their somatic chromosome numbers ranged from 21 to 36. Eighteen plants were mosaic in chromosome number. Twenty one-chromosome plants appeared most frequently (45.7%) followed by 28-chromosome plants (14.9%). C-banding analysis revealed that elimination of barley chromosomes was mainly responsible for the occurrence of aneuploid plants. In hypoploids derived from Betzes-crosses, chromosome 5 was preferentially eliminated as previously reported, while in hypoploids derived from OUH602-crosses, chromosome 4 was preferentially eliminated. The wild barley line OUH602 may be a useful parent for producing a new wheat-barley addition set because of its high crossability with wheat and a different pattern of chromosome elimination.  相似文献   

7.
Wild barley shows a large morphological and phenotypic variation, which is associated with ecogeographical factors and correlates with genotypic differences. Diversity of defense related genes and their expression in wild barley has been recognized and has led to attempts to exploit genes from H. spontaneum in breeding programs. The aim of this study was to determine the variation in the accumulation of hordatines, which are Hordeum-specific preformed secondary metabolites with strong and broad antimicrobial activity in vitro, in 50 accessions of H. spontaneum from different habitats in Israel. Differences in the accumulation of hordatines in the seedling stage were significant between different H. spontaneum genotypes from different regional locations and micro-sites. Variation in the hordatine accumulation within genotypes was between 9% and 45%, between genotypes from the same location between 13% and 38%, and between genotypes from different locations up to 121%. Principal component analysis showed that water related factors explain 39%, temperature related factors explain 33% and edaphic factors account for 11% of the observed variation between the populations of H. spontaneum. Genetic analysis of the tested accessions with LP-PCR primers that are specific for genes involved in the biosynthetic pathway of hordatines showed tight correlations between hordatine abundance and genetic diversity of these markers. Multiple regression analyses indicated associations between genetic diversity of genes directly involved in hordatine biosynthesis, ecogeographical factors and the accumulation of hordatines.  相似文献   

8.
The association of ecological factors and allozymic markers of wild barley,Hordeum spontaneum, with genotypes varying in resistance to 3 cultures of the pathogenErysiphe graminis hordei, which incites the disease powdery mildew of barley, were explored theoretically and practically. The study involved 275 accessions comprising 16 populations largely representing the ecological range ofH. spontaneum in Israel. From earlier studies of allozymic variation and disease resistance it now becomes apparent that genetic polymorphisms for resistance toE. graminis hordei are structured geographically, and are predictable by climatic as well as allozymic variables. Three-variable combinations of temperature and water factors explain significantly 0.32 of the spatial variance in disease resistance between localities. Also, several allozyme genotypes, singly or in combination, are significantly associated with disease resistance. A high correlation was found between the standard deviation of infection types of the culture of the pathogen from Israel, and allozymic polymorphism,P (rs = 0.86, p < 0.001). Consequently, the IsraelH. spontaneum populations, growing in the center of diversity of the species, contain large amounts of unexploited disease resistance polymorphism. These could be effectively screened and utilized for producing resistant barley varieties by using ecological factors and allozymic variants as guidelines.  相似文献   

9.
Samples from 11 populations of wild barley,Hordeum spontaneum, from Israel, were examined for morphological variation in a common garden plot design. Earliness traits had the highest between population variation of all traits studied. No relationship was found between dimensions of leaves and size of seeds.—Using numerical taxonomy methods, four races were found, which correspond to the geographical and environmental range of the species in Israel. It is concluded thatH. spontaneum shows a well developed tendency toward formation of highly adaptive races rather than exhibiting clinical variation.  相似文献   

10.
Samples from eleven populations of wild barley were examined for metric growth and reproductive traits in a common garden field trial. Descendants of these plants were examined for electrophoretically determined genotypes. In most cases each population had one or more predominant electrophoretically detectable genotypes and many infrequent genotypes. Analysis of variance ofHordeum spontaneum shows that the between-population variance component contributed the bulk of the observed variation in metric traits, with only a small proportion of the total variation contributed by the between-genotype within-population variance component. Nevertheless, a full 20% of the F values for the among genotype analysis were significant at the 5% level. In addition, using discriminant analysis, electrophoretically determined genotypes could be easily distinguished on the basis of trait (i.e., metric) measurements. The joint use of electrophoresis (to identify genotypes) and of trait measurements is a powerful tool for investigating intrapopulation genetic variation.  相似文献   

11.
Geographic variation of protein and seed characters of wild emmer wheat,Triticum dicoccoides in Israel and the associations with ecological and allozyme markers were tested in an attempt to derive predictive optimal guidelines for conservation and utilization in breeding programmes. The study involved 46 genotypes of wild emmer from 5 populations in Israel, 2 central and 3 marginal. These populations were tested earlier for allozymic variation (Nevoet al., Theor. appl. Genet. 62: 241–254, 1982). The results indicate that protein percentage, kernel and protein weight (the product of the former two values), vary both within, but particularly between, populations. Notably, the 3 marginal populations exhibit high protein content but low kernel weight, hence low protein weight as compared with the 2 central populations which displayed lower protein percentage but high kernel weight, hence higher protein weight. Three-variable combinations of climatic factors explain R squared=0.70 of the variance in kernel weight and R squared=0.60 of the variance in protein weight. Likewise, 3-variable combinations of allozyme genotypes explained significantly the spatial variances in protein percentage, kernel and protein weight (R squared=0.60, 0.69 and 0.54, respectively). We conclude that natural populations of wild emmer in Israel contain large amounts of yet untapped genes for elite protein and high seed weight. These could be effectively screened and utilized for producing high quantity protein wheat cultivars by means of effectively following ecological and allozymic markers as predictive guidelines in screening natural populations of wild emmer wheat.  相似文献   

12.
Wild barley, Hordeum spontaneum C. Koch, is the progenitor of cultivated barley, Hordeum vulgare. The centre of diversity is in the Fertile Crescent of the Near East, where wild barley grows in a wide range of conditions (temperature, water availability, day length, etc.). The genetic diversity of 39 wild barley genotypes collected from Israel, Turkey and Iran was studied with 33 SSRs of known map location. Analysis of molecular variance (AMOVA) was performed to partition the genetic variation present within from the variation between the three countries of origin. Using classification tree analysis, two (or three) specific SSRs were identified which could correctly classify most of the wild barley genotypes according to country of origin. Associations of SSR variation with flowering time and adaptation to site-of-origin ecology and geography were investigated by two contrasting statistical approaches, linear regression based on SSR length variation and linear regression based on SSR allele class differences. A number of SSRs were significantly associated with flowering time under four different growing regimes (short days, long days, unvernalised and vernalised). Most of the associations observed could be accounted for by close linkage of the SSR loci to earliness per se genes. No associations were found with photoperiodic and vernalisation response genes known to control flowering in cultivated barley suggesting that different genetic factors may be active in wild barley. Novel genomic regions controlling flowering time in wild barley were detected on chromosomes 1HS, 2HL, 3HS and 4HS. Associations of SSRs with site-of-origin ecological and geographic data were found primarily in genomic regions determining plant development. This study shows that the analyses of SSR variation by allele class and repeat length are complementary, and that some SSRs are not necessarily selectively neutral.  相似文献   

13.
The mRNAs encoding the chlorophyll a/b binding (cab) proteins of the light harvesting system were monitored in the wild cereals, wild emmer wheat,Triticum dicoccoides, and wild barley,Hordeum spontaneum, the progenitors of all cultivated wheats and barley, respectively. Significantly different mRNA levels were detected at different time points during the day, with generally low levels around sunrise, sunset and midnight, and maximum levels around noon. These results indicate that a diurnal control of thecab gene expression is present in these ancient species.  相似文献   

14.
The objective of this study was to map new resistance genes against powdery mildew (Blumeria graminis f. sp. hordei L.), leaf rust (Puccinia hordei L.) and scald [Rhynchosporium secalis (Oud.) J. Davis] in the advanced backcross doubled haploid (BC2DH) population S42 derived from a cross between the spring barley cultivar Scarlett and the wild barley accession ISR42-8 (Hordeum vulgare ssp. spontaneum). Using field data of disease severity recorded in eight environments under natural infestation and genotype data of 98 SSR loci, we detected nine QTL for powdery mildew, six QTL for leaf rust resistance and three QTL for scald resistance. The presence of the exotic QTL alleles reduced disease symptoms by a maximum of 51.5, 37.6 and 16.5% for powdery mildew, leaf rust and scald, respectively. Some of the detected QTL may correspond to previously identified qualitative (i.e. Mla) and to quantitative resistance genes. Others may be newly identified resistance genes. For the majority of resistance QTL (61.0%) the wild barley contributed the favourable allele demonstrating the usefulness of wild barley in the quest for resistant cultivars.  相似文献   

15.
The levels of genetic diversity were compared by means of 35 allozyme, 60 RAPD, and 25 microsatellite (SSR) markers for 75–175 individuals of tetraploid wild emmer wheat (Triticum dicoccoides) collected in 1993 from a microgeographic microsite, Ammiad, north of the Sea of Galilee, Israel. This microsite included four major habitats, which showed highly significant differentiation in ecological factors, in particular with respect to rock cover, proximity and height, and surface soil moisture in the early growing season of T. dicoccoides. Higher within-subpopulation genetic diversity was found in the primarily non-coding DNA regions (RAPD and SSR) rather than in the protein-coding (allozymes) regions. However, much larger gene differentiation (G ST) among the subpopulations was observed in the protein-coding allozymes than in the RAPDs and SSRs. Larger genetic distance was found at SSR loci, followed by allozyme and RAPD loci. The subpopulations in drier habitats tend to have higher allozyme, RAPD and SSR diversities (He), the relatively wet Karst subpopulation showed only about half He of the other relatively drier habitats. The subpopulations with larger difference of soil moisture between habitats tend to show larger genetic distances at allozyme, RAPD and SSR loci. These results suggest that climatic selection through aridity stress may be an important factor acting on both structural protein-coding and presumably partly regulatory non-coding DNA regions, resulting in microscale adaptive patterns, although hitchhiking and random drift may also intervene. These results have profound implications for genetic conservation both in situ and ex situ.  相似文献   

16.
17.
A simple tissue culture protocol was developed for efficient plant regeneration from young inflorescence-derived calli in wild barley, Hordeum brevisubulatum (Trin.) Link, an important pasturage grass. Genetic and epigenetic instabilities in the regenerated plants (regenerants) were assessed by three molecular markers AFLP, S-SAP and MSAP. Two pools of calli derived from young inflorescences of a single donor plant and 44 randomly chosen regenerants were subjected to AFLP analysis. Results showed that 74 out of 793 scored bands were polymorphic among the studied samples, giving rise to a genetic variation frequency of 9.3%. The number of variant bands as compared to the donor plant varied greatly among the regenerants, with a small number of regenerants accumulated a large number of variant bands (maximum 55), while the majority of regenerants showed only 2–3 variant bands. A subset of regenerants together with the two pools of calli were selected for S-SAP and MSAP analysis to detect possible retrotranspositional activity of a prominent retroelement family, BARE-1, in the genomes of Hordem species, and possible alterations in cytosine methylation. S-SAP analysis showed that of the 768 scored bands, 151 were polymorphic among the analyzed samples, giving rise to a genetic variation frequency of 19.7%, albeit no evidence for retrotranspositional event was obtained based on locus-specific PCR amplifications. MSAP analysis revealed that tissue culture has caused cytosine methylation alterations in both level and pattern compared with the donor plant. Sequencing of selected variant bands indicated that both protein-coding genes and transposon/retrotransposons were underlying the genetic and epigenetic variations. Correlation analysis of the genetic and epigenetic instabilities indicated that there existed a significant correlation between MSAP and S-SAP (r = 0.8118, 1,000 permutations, P < 0.05), whereas the correlation between MSAP and AFLP (r = 0.1048) is not statistically significant. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Xiaoling Li and Xiaoming Yu contributed equally to this work.  相似文献   

18.
Summary Allozymic variation in proteins encoded by 47 loci was analyzed electrophoretically in 1983/4 and 1984/5 in 356 individual plants of wild emmer wheat, Triticum dicoccoides, from a microsite at Tabigha, north of the Sea of Galilee, Israel. Each year the test involved two 100-meter transects, each equally subdivided into basalt and terra rossa soil types, and comparisons were based on 16 common polymorphic loci. Significant genetic differentiation, genetic phase disequilibria, and genome organization according to soil type were found over very short distances. Our results suggest that allozyme polymorphisms in wild emmer wheat are partly adaptive, and that they differentiate at both single and multilocus structures primarily from environmental stress of such ecological factors as soil type, topography, and temporal changes, probably through aridity stress.  相似文献   

19.
Summary. We used a noninvasive microprobe technique to record in substomatal cavities of barley leaves the apoplastic pH response to different stress situations. When K+ (or Na+) activity at the roots of intact plants was increased from 1 to 50 mM, the leaf apoplastic pH increased by 0.4 to 0.6 units within 8 to 12 min when stomata were open, and within 15 to 20 min when stomata were closed. This reaction was accompanied by a correlative increase in K+ activity. Addition of 1 μM abscisic acid caused an apoplastic alkalinization of 0.5 to 0.8 units, and low temperatures (4 °C) increased pH by 0.2 to 0.3 units. Addition of 100 mM sorbitol or pH changes in the range 4.0 to 7.9 had no effect, ruling out that osmotic potential and/or pH is the carried signal. On detached leaves, the same treatments yielded qualitatively similar results, suggesting that the xylem is the most likely signal path. Following the attack of powdery mildew, the apoplastic pH of barley leaves substantially increases. We demonstrate that in susceptible barley, pretreatment (soil drench) with the resistance-inducing chemical benzo- (1,2,3)thiadiazole-7-carbothioic acid S-methyl ester markedly enhances this pH response. This is consistent with previous finding that apoplastic alkalinization is related to the degree of resistance towards this fungus. Correspondence and reprints: Botanisches Institut I, Justus-Liebig-Universit?t, Senckenbergstra?e 17, 35390 Gie?en, Federal Republic of Germany.  相似文献   

20.
The barley cysteine proteinase B (EPB) is the main protease responsible for the degradation of endosperm storage proteins providing nitrogenous nutrients to support the growth of young seedlings. The expression of this enzyme is induced in the germinating seeds by the phytohormone, gibberellin, and suppressed by another phytohormone, abscisic acid. In situ hybridization experiments indicate that EPB is expressed in the scutellar epithelium within 24 h of seed germination, but the aleurone tissue surrounding the starchy endosperm eventually becomes the main tissue expressing this enzyme. The EPB gene family of barley consists of two very similar genes, EPB1 and EPB2, both of which have been mapped to chromosome 3. The sequences of EPB1 and EPB2 match with the two previously published cDNA clones indicating that both genes are expressed. Interestingly, neither of these genes contain any introns, a rare phenomenon in which all members of a small gene family are active intronless genes. Sequence comparison indicates that the barley EPB family can be classified as cathepsin L-like endopeptidases and is most closely related to two legume cysteine proteinases (Phaseolus vulgaris EP-C1 and Vigna mungo SHEP) which are also involved in seed storage protein degradation. The promoters of EPB1 and EPB2 have been linked to the coding sequence of a reporter gene, GUS, encoding -glucuronidase, and introduced into barley aleurone cells using the particle bombardment method. Transient expression studies indicate that EPB promoters are sufficient to confer the hormonal regulation of these genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号