首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A behavioral and physiological resistance mechanism of the Asian honey bee (Apis cerana) to an ectoparasitic mite, Varroa jacobsoni, which causes severe damage to the European honey bee (Apis mellifera) in the beekeeping industry worldwide, is reported here for the first time. Parasitism by the mite induced Asian worker bees to perform a series of cleaning behaviors that effectively removed the mites from the bodies of the adult host bees. The mites were subsequently killed and removed from the bee hives in a few seconds to a few minutes. The grooming behavior consists of self-cleaning, grooming dance, nestmate cleaning, and group cleaning. Worker bees can also rapidly and effectively remove the mites from the brood. The European bee showed cleaning behavior at low frequency and generally failed to remove the mites from both the adult bees and the brood.  相似文献   

2.
Summary Pollen-collecting bumble bees (Bombus spp.) detect differences between individual flowers in pollen availability and alter their behavior to capitalize on rewarding flowers. Specific responses by bees to increased pollen availability included: longer visits to flowers; visits to more flowers within an inflorescence, including an increased frequency of revisits; an increased likelihood of grooming while the bee flow between flowers within the inflorescence; and more protracted inter-flower flights, probably because of longer grooming bouts. The particular suite of responses that a bee adopted depended on the pollen-dispensing mechanism of the plant species involved. Bees buzzed previously-unvisited Dode-catheon flowers longer than empty flowers. In contrast, pollen availability did not significantly affect the duration of visits to Lupinus flowers, which control the amount of pollen that can be removed during a single visit. Simulation results indicate that the observed movement patterns of bumble bees on Lupinus inflorescences would return the most pollen per unit of expended energy. The increased foraging efficiency resulting from facultative responses by bees to variation in pollen availability, especially changes in the frequency and intensity of grooming, could correspondingly decrease pollen dispersal between plants.  相似文献   

3.
The objective of this study was to demonstrate genotypic variability and analyze the relationships between the infestation levels of the parasitic mite Varroa destructor in honey bee (Apis mellifera) colonies, the rate of damage of fallen mites, and the intensity with which bees of different genotypes groom themselves to remove mites from their bodies. Sets of paired genotypes that are presumably susceptible and resistant to the varroa mite were compared at the colony level for number of mites falling on sticky papers and for proportion of damaged mites. They were also compared at the individual level for intensity of grooming and mite removal success. Bees from the "resistant" colonies had lower mite population rates (up to 15 fold) and higher percentages of damaged mites (up to 9 fold) than bees from the "susceptible" genotypes. At the individual level, bees from the "resistant" genotypes performed significantly more instances of intense grooming (up to 4 fold), and a significantly higher number of mites were dislodged from the bees' bodies by intense grooming than by light grooming (up to 7 fold) in all genotypes. The odds of mite removal were high and significant for all "resistant" genotypes when compared with the "susceptible" genotypes. The results of this study strongly suggest that grooming behavior and the intensity with which bees perform it, is an important component in the resistance of some honey bee genotypes to the growth of varroa mite populations. The implications of these results are discussed.  相似文献   

4.
Bees exposed to 60-Hz electric (E) fields greater than 150 kV/m show field-induced vibrations of wings, antennae, and body hairs. They also show altered behavior if exposed while in contact with a conductive substrate. Measurements indicate that approximately 240 nA is coupled to a bee standing on a conductive substrate in a 100-kV/m E field. In lab experiments, bee disturbance and sting result from exposure to E field greater than 200 kV/m (bee current greater than 480 nA) and reduced voluntary movements at greater than 300 kV/m (greater than 720 nA bee current) only if the bee is on a conductive substrate. It is hypothesized that in the latter situation coupled bee current drains through the lower thorax and legs to the conductive substrate, and that the resulting enhanced current density in these regions is the cause of observed responses. The observation that bees exposed to intense E fields on an insulator show vibration of body parts but no behavioral response suggests that vibration contributes little to the disturbance of bees in intense E fields. Lab measurements of bee impedance from front-to-rear leg pairs were made on wet and dry conductors. Measurements validate the selection of 1 M omega as a middle value for bee impedance used in the design of devices used to generate step-potential-induced currents in bees.  相似文献   

5.
Hydrocarbons emitted by waggle-dancing honey bees are known to reactivate experienced foragers to visit known food sources. This study investigates whether these hydrocarbons also increase waggle-dance recruitment by observing recruitment and dancing behavior when the dance compounds are introduced into the hive. If the hydrocarbons emitted by waggle-dancing bees affect the recruitment of foragers to a food source, then the number of recruits arriving at a food source should be greater after introduction of dance compounds versus a pure-solvent control. This prediction was supported by the results of experiments in which recruits were captured at a feeder following introduction of dance-compounds into a hive. This study also tested two nonexclusive behavioral mechanism(s) by which the compounds might stimulate recruitment; 1) increased recruitment could occur by means of increasing the recruitment effectiveness of each dance and/or 2) increased recruitment could occur by increasing the intensity of waggle-dancing. These hypotheses were tested by examining video records of the dancing and recruitment behavior of individually marked bees following dance-compound introduction. Comparisons of numbers of dance followers and numbers of recruits per dance and waggle run showed no significant differences between dance-compound and solvent-control introduction, thus providing no support for the first hypothesis. Comparison of the number of waggle-dance bouts and the number of waggle runs revealed significantly more dancing during morning dance-compound introduction than morning solvent-control introduction, supporting the second hypothesis. These results suggest that the waggle-dance hydrocarbons play an important role in honey bee foraging recruitment by stimulating foragers to perform waggle dances following periods of inactivity.  相似文献   

6.
Sodium channels, found ubiquitously in animal muscle cells and neurons, are one of the main target sites of many naturally-occurring, insecticidal plant compounds and agricultural pesticides. Pyrethroids, derived from compounds found only in the Asteraceae, are particularly toxic to insects and have been successfully used as pesticides including on flowering crops that are visited by pollinators. Pyrethrins, from which they were derived, occur naturally in the nectar of some flowering plant species. We know relatively little about how such compounds—i.e., compounds that target sodium channels—influence pollinators at low or sub-lethal doses. Here, we exposed individual adult forager honeybees to several compounds that bind to sodium channels to identify whether these compounds affect motor function. Using an assay previously developed to identify the effect of drugs and toxins on individual bees, we investigated how acute exposure to 10 ng doses (1 ppm) of the pyrethroid insecticides (cyfluthrin, tau-fluvalinate, allethrin and permethrin) and the nectar toxins (aconitine and grayanotoxin I) affected honeybee locomotion, grooming and wing fanning behaviour. Bees exposed to these compounds spent more time upside down and fanning their wings. They also had longer bouts of standing still. Bees exposed to the nectar toxin, aconitine, and the pyrethroid, allethrin, also spent less time grooming their antennae. We also found that the concentration of the nectar toxin, grayanotoxin I (GTX), fed to bees affected the time spent upside down (i.e., failure to perform the righting reflex). Our data show that low doses of pyrethroids and other nectar toxins that target sodium channels mainly influence motor function through their effect on the righting reflex of adult worker honeybees.  相似文献   

7.
How do flying insects monitor foraging efficiency? Honeybees (Apis mellifera) use optic flow information as an odometer to estimate distance travelled, but here we tested whether optic flow informs estimation of foraging costs also. Bees were trained to feeders in flight tunnels such that bees experienced the greatest optic flow en route to the feeder closest to the hive. Analyses of dance communication showed that, as expected, bees indicated the close feeder as being further, but they also indicated this feeder as the more profitable, and preferentially visited this feeder when given a choice. We show that honeybee estimates of foraging cost are not reliant on optic flow information. Rather, bees can assess distance and profitability independently and signal these aspects as separate elements of their dances. The optic flow signal is sensitive to the nature of the environment travelled by the bee, and is therefore not a good index of flight energetic costs, but it provides a good indication of distance travelled for purpose of navigation and communication, as long as the dancer and recruit travel similar routes. This study suggests an adaptive dual processing system in honeybees for communicating and navigating distance flown and for evaluating its energetic costs.  相似文献   

8.
The Brief Piping Signal of the Honey Bee: Begging Call or Stop Signal?   总被引:2,自引:0,他引:2  
For over 40 yr, investigators have recognized that the brief piping signal plays a role in the foraging operation of a honey bee colony. The function of this signal, however, remains uncertain. The main objective of this study was to determine whether, under normal foraging conditions, bees following waggle dancers produce brief piping signals to beg nectar samples from the dancers. We made observations on waggle dancers and their followers in an undisturbed colony whose foragers gathered nectar and pollen from flowers. We found that waggle dancers do often receive brief piping signals, that the bees producing these signals are generally dance followers, and that these signals increase a waggle dancer's tendency to stop dancing. We also found, however, that the brief piping signal is clearly not a begging call; 0 of 41 waggle dancers that received a piping signal from a dance follower gave a nectar sample to the bee that produced the signal. Our results support the hypothesis that the brief piping signal is a stop signal; it serves to shut off waggle dancing. But why some dance followers pipe the dancer they are following, thereby inhibiting her dancing, remains unclear and warrants further investigation.  相似文献   

9.
Honeybees, like other insects, accumulate electric charge in flight, and when their body parts are moved or rubbed together. We report that bees emit constant and modulated electric fields when flying, landing, walking and during the waggle dance. The electric fields emitted by dancing bees consist of low- and high-frequency components. Both components induce passive antennal movements in stationary bees according to Coulomb''s law. Bees learn both the constant and the modulated electric field components in the context of appetitive proboscis extension response conditioning. Using this paradigm, we identify mechanoreceptors in both joints of the antennae as sensors. Other mechanoreceptors on the bee body are potentially involved but are less sensitive. Using laser vibrometry, we show that the electrically charged flagellum is moved by constant and modulated electric fields and more strongly so if sound and electric fields interact. Recordings from axons of the Johnston organ document its sensitivity to electric field stimuli. Our analyses identify electric fields emanating from the surface charge of bees as stimuli for mechanoreceptors, and as biologically relevant stimuli, which may play a role in social communication.  相似文献   

10.
The ocelli control the flight course in honeybees   总被引:1,自引:0,他引:1  
Abstract Fully-sighted honeybees and bees with all ocelli occluded were trained to fly through an arena to arrive at a feeding place. After training, the bees were exposed to side-light flashes during their feeding flights. The flight paths were recorded on video and analysed frame by frame at 40 ms intervals with reference to the main parameters, the coordinates of the thorax and the yaw angle of the bee. Course angles, translational course velocities and accelerations were calculated, and the responses to side light flashes evaluated with respect to 'on' and 'off.
Immediately after light on, fully-sighted bees respond slightly positively by yawing and flying toward the side light. Bees in which all ocelli are occluded are greatly disturbed and respond with negative yawing and flight path directions.
The ocelli apparently help to control phototactic alertness in the bee. They determine whether phototactic orienting or pattern-induced orienting behaviour is more important in a particular state of motivation. They help to minimize the level of disturbance in flight course control, obviously by activating a neuronal circuit with comparator attributes. It is assumed that this kind of compensation or suppression of phototactically guided reflexes occurs only for a few 100 ms. Consequently, the biological significance of light flashes shorter than 400 ms is very slight.
Fully-sighted bees decelerate strongly when a side light is switched on. Bees in which the ocelli are occluded behave less cautiously: they generally fly faster and need more reaction time. Thus, the ocelli help the bee to react photokinetically to photic stimuli in a much shorter time than do the compound eyes alone.  相似文献   

11.

Premise

Bees provision most of the pollen removed from anthers to their larvae and transport only a small proportion to stigmas, which can negatively affect plant fitness. Though most bee species collect pollen from multiple plant species, we know little about how the efficiency of bees' pollen transport varies among host plant species or how it relates to other aspects of generalist bee foraging behavior that benefit plant fitness, such as specialization on individual foraging bouts.

Methods

We compared the pollen collected and transported by three bee species for 46 co-occurring plant species. Specifically, we compared the relative abundance of pollen taxa in the individual bees' scopae, structures where bees store pollen to provision larvae, with the relative abundance of pollen taxa on the rest of bees' bodies, which is more likely to be transferred to stigmas.

Results

Bees carried five times more pollen grains in their scopae than elsewhere on their bodies. Within foraging bouts, bees were relatively specialized in their pollen collection, but transported proportionally less pollen for the host plants on which they specialized. Across foraging bouts, two bee species transported proportionally less pollen for some of their host plants than for others, though differences didn't consistently follow the same trend as at the foraging bout scale.

Conclusions

Our results suggest that foraging-bout specialization, which is known to reduce heterospecific pollen transfer, also results in less-efficient pollen transport. Thus, bee foragers that visit predominantly one plant species may have contrasting effects on that plant's fitness.
  相似文献   

12.
Grooming is a fundamental component of sociality in many gregarious animal species, and elucidating the costs and benefits of this behaviour is crucial for understanding its function. There is evidence that animals giving grooming pay a cost in terms of the time and energy they invest, while recipients benefit not just from the removal of dirt and parasites, but also from the relaxing effects of being groomed. Recently, however, studies of primates have indicated that giving grooming may also provide such hedonic benefits, reducing levels of stress or anxiety in the groomer. In this study of free‐ranging adult female Barbary macaques at Trentham Monkey Forest (Stoke‐on‐Trent, UK), we tested the hypothesis that grooming reduces anxiety in the donor and/or the recipient. During focal follows, we quantified females' rates of self‐scratching as a behavioural index of their anxiety levels. Self‐scratching rates in the 2‐min periods after bouts of grooming (given, received and reciprocated) were compared to overall mean self‐scratching rates; we predicted that if grooming reduces anxiety, self‐scratching rates would be significantly lower after grooming bouts than mean levels. We first analysed all grooming bouts and then analysed separately grooming bouts with adult males, with all adult females, with subordinate adult females and with dominant adult females. Contrary to our prediction, self‐scratching rates were never seen to be lower after grooming than mean levels. In fact, for the majority of grooming partner–direction combinations, we found significantly higher rates of self‐scratching after grooming compared to mean levels. The hypothesis that grooming reduces anxiety was therefore not supported. Grooming seems in some cases to increase, not alleviate, anxiety. We explore possible explanations for these unexpected results.  相似文献   

13.
Pollen and nectar are usually lumped together as floral rewards for pollinating bees, but they play totally different roles for flowers and bees (Table 1), as well as in the relationship between them. While flowers are specialized for certain pollinators via nectar, bees specialize on certain flowers via pollen. While flowers need pollen as a prerequisite for pollination, it is the essential larval food in bees. Thus, there is a strong competition between them for pollen. Foraging for pollen must be divided into three phases: uptake in the flower, reloading into and homeward transport within a carrying container. Bees have specializations for transport but hardly any for pollen uptake - and thus for pollination. Bees actively harvesting pollen usually do not pollinate. This only happens as a consequence of contamination of the bee by pollen. From these data a scenario is provided for the evolution of bees and bee flowers. Specialized bee flowers are often characterized by their ability to hide pollen from the bees and at the same time use them as optimal pollinators. If the relationship of bees and flowers is mutualistic at all it is best described as a balanced mutual exploitation.  相似文献   

14.
Bees are considered the most important plant pollinators in many ecosystems, yet little is known about pollination of native plants by bees in many Australian ecosystems including the alpine region. Here we consider bee pollination in this region by constructing a bee visitation network and investigating the degree of specialism and network ‘nestedness’, which are related to the robustness of the network to perturbations. Bees and flowers were collected and observed from 10 sites across the Bogong High Plains/Mt Hotham region in Victoria. Low nestedness and a low degree of specialism were detected, consistent with patterns in other alpine regions. Twenty‐one native and one non‐indigenous bee species were observed visiting 46 of the 67 flower species recorded. The introduced Apis mellifera had a large floral overlap with native bees, which may reduce fecundity of native bees through competition. The introduced plant, Hypochaeris radicata (Asteraceae), had the largest and most sustained coverage of any flower and had the most visitations and bee species of any flower. The network developed in this study is a first step in understanding pollination patterns in the alpine/subalpine region and serves as a baseline for future comparisons.  相似文献   

15.
We hypothesize two functions of the vibration signal (dorsal ventral abdominal vibration = DVAV) during swarming in honey bees: 1. it enhances recruitment to the specific sites advertised by the waggle dancers which also perform the vibration signal; and 2. it acts as a nonspecific modulatory signal to stimulate activity in other bees. The stimulation of activity invoked by the second hypothesis might include increasing nest-site scouting and dance following early in the house-hunting process or rousing quiescent bees to prepare them for lift-off late in the process, or both. In studies of neotropical African bee swarms in Costa Rica and European bees in California we tested these hypotheses by looking for associations between production of vibration signals by nest-site recruiters and site attractiveness (indicated by which site was ultimately chosen and by distance from the swarm since swarms may have a distance preference). Overall, bees dancing for the chosen sites performed vibration signals to the same extent as those dancing for the other sites. There were no distance differences between sites whose scouts did and did not vibrate other bees. These results are inconsistent with the hypothesis that the vibration signal enhances recruitment to especially high quality sites and they support the hypothesis that it plays a general excitatory role in the context of house hunting by swarming bees.  相似文献   

16.
Tropical forest loss and fragmentation can change bee community dynamics and potentially interrupt plant–pollinator relationships. While bee community responses to forest fragmentation have been investigated in a number of tropical regions, no studies have focused on this topic in Australia. In this study, we examine taxonomic and functional diversity of bees visiting flowers of three tree species across small and large rainforest fragments in Australian tropical landscapes. We found lower taxonomic diversity of bees visiting flowers of trees in small rainforest fragments compared with large forest fragments and show that bee species in small fragments were subsets of species in larger fragments. Bees visiting trees in small fragments also had higher mean body sizes than those in larger fragments, suggesting that small‐sized bees may be less likely to persist in small fragments. Lastly, we found reductions in the abundance of eusocial stingless bees visiting flowers in small fragments compared to large fragments. These results suggest that pollinator visits to native trees living in small tropical forest remnants may be reduced, which may in turn impact on a range of processes, potentially including forest regeneration and diversity maintenance in small forest remnants in Australian tropical countryside landscapes.  相似文献   

17.
Recruitment-related behaviours such as waggle dances enable honey bee foragers to inform their nestmates about the location of important resources. However, it is still not known how the information contained in a dance performed in the darkness of the nest is transferred to followers. Although, there are findings indicating that dancing honey bees produce airborne sounds which may convey the information, there has only been indirect evidence that moving wings are the source of these airborne sounds. In this study, honey bee dances were recorded using a high-speed camera in order to directly observe and precisely measure the frequency of wing beats and abdomen wags of dancers. Dancing bees moved their wings for 40.4% of the duration of a waggle run and for only 8.1% of the duration of a circle run. The episodes of wing movements consisted of one to five wing beats and were separated by intervals of motionless wings. The mean frequency of wing beats was 167.0 Hz and significantly differed depending on the number of wing beats in one episode (p < 0.001) and the position of the wings (p = 0.007). The mean frequency of abdomen wags was 14.6 Hz. The mean number of followers was 7.9 and significantly more of them gathered around the abdomens of dancers than around their heads and thoraxes (p = 0.001). The results of this study support the assumption that moving wings are the source of airborne sounds emitted during honey bee dances.  相似文献   

18.
The diversity and abundance of wild bees ensures the delivery of pollination services and the maintenance of ecosystem diversity. As previous studies carried out in Central Europe and the US have shown, bee diversity and abundance is influenced by the structure and the composition of the surrounding landscape. Comparable studies have so far not been carried out in the Mediterranean region. The present study examines the influence of Mediterranean landscape context on the diversity and abundance of wild bees. To do this, we sampled bees in 13 sites in olive groves on Lesvos Island, Greece. Bees were assigned to five categories consisting of three body size groups (small, medium and large bees), the single most abundant bee species (Lasioglossum marginatum) and all species combined. The influence of the landscape context on bee abundance and species richness was assessed at five radii (250, 500, 750, 1000 and 1250 m) from the centre of each site. We found that the abundance within bee groups was influenced differently by different landscape parameters and land covers, whereas species richness was unaffected. Generally, smaller bees' abundance was impacted by landscape parameters at smaller scales and larger bees at larger scales. The land cover that influenced bee abundance positively was olive grove, while phrygana, conifer forest, broad-leaved forest, cultivated land, rock, urban areas and sea had mostly negative or no impact. We stress the need for a holistic approach, including all land covers, when assessing the effects of landscape context on bee diversity and abundance in the Mediterranean.  相似文献   

19.
Antenna grooming in more than 100 species of bees (Apoidea), representing 34 genera of the 7 major bee families is recorded and quantitatively analysed. Most species of bees fall into one of two groups with respect to repetitive antenna cleaning: “Uniscrapers” predominantly clean their antennae with one stroke, “biscrapers” mostly with two subsequent strokes. Uniscrapers are more consequent in their behaviour than biscrapers. Most biscrapers occasionally clean their antenna with one or three strokes. Individual variation in the ratio of stroke repetition is considerably larger in bi- than in uniscrapers. In several species males and females differ with respect to their antenna cleaning behaviour, females tend to be more uniscraping. Most species of the families Colletidae, Halictidae, and Andrenidae, as well as the species of the genera Ceratina and Nomada (Anthophoridae) are biscrapers. Almost all species of Melittidae, Megachilidae, Apidae, and Anthophoridae (except Ceratina and Nomada) are uniscrapers. Bees with an antenna cleaner with ancestral (plesiomorphic) morphology are mostly, but not always, biscrapers, those with a derived antenna cleaner are always uniscrapers. Bees with a derived antenna cleaner perform on average less cleaning actions and strokes than those with an ancestral antenna cleaner. Uniscrapers with an ancestral strigilis do on average more cleaning actions per minute than biscrapers, thus they compensate partly for the fewer number of strokes. But nevertheless the uniscrapers do fewer strokes than the biscrapers (both with an ancestral strigilis). Females clean their antennae on average more often than males. It is interpreted that the behaviour of uniscraping and a derived morphology of the antenna cleaner result in greater efficiency than the status which is ancestral for Apoidea (biscraping and a plesiomorphic antenna cleaner).  相似文献   

20.
E. K. Eskov 《Biophysics》2018,63(3):431-435
A static electric charge that foraging bees gain by rubbing their body parts against the substrate surface plays a role in social communication of bees. Vibrations of the charged body of a forager with a frequency of approximately 14 Hz indicate the location of the forager bee in a rich variety of bees within a poorly lit nest. The perception of vibrations of the charged ventral body surface of a forager occurs due to the antennal sensory organs of hive mates. An electric charge produced as the foraging bee moves its wings enhances vibrations of the trichoid sensilla, which act as mechanoreceptors. This provides reliable communication between foraging bees and their hive mates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号