首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Starch and the Control of Kernel Number in Maize at Low Water Potentials   总被引:1,自引:0,他引:1  
After reproduction is initiated in plants, subsequent reproductive development is sometimes interrupted, which decreases the final number of seeds and fruits. We subjected maize (Zea mays L.) to low water potentials (psi(w)) that frequently cause this kind of failure. We observed metabolite pools and enzyme activities in the developing ovaries while we manipulated the sugar stream by feeding sucrose (Suc) to the stems. Low psi(w) imposed for 5 d around pollination allowed embryos to form, but abortion occurred and kernel number decreased markedly. The ovary contained starch that nearly disappeared during this abortion. Analyses showed that all of the intermediates in starch synthesis were depleted. However, when labeled Suc was fed to the stems, label arrived at the ovaries. Solute accumulated and caused osmotic adjustment. Suc accumulated, but other intermediates did not, showing that a partial block in starch synthesis occurred at the first step in Suc utilization. This step was mediated by invertase, which had low activity. Because of the block, Suc feeding only partially prevented starch disappearance and abortion. These results indicate that young embryos abort when the sugar stream is interrupted sufficiently to deplete starch during early ovary development, and this abortion results in a loss of mature seeds and fruits. At low psi(w), maintaining the sugar stream partially prevented the abortion, but invertase regulated the synthesis of ovary starch and partially prevented full recovery.  相似文献   

2.
The in situ response of photophosphorylation and coupling factor activity to low leaf water potential (ψL) was investigated using kinetic spectroscopy to measure the flash-induced electrochromic absorption change in attached sunflower (Helianthus annuus L. cv IS894) leaves. The electrochromic change is caused by the formation of an electric potential across the thylakoid membrane associated with proton uptake. Since depolarization of the thylakoid membrane following flash excitation is normally dominated by proton efflux through the coupling factor during ATP formation, this measurement can provide direct information about the catalytic activity of the coupling factor. Under low ψL conditions in which a clear nonstomatal limitation of net photosynthesis could be demonstrated, we found a strong inhibition of coupling factor activity in dark-adapted leaves which was probably caused by an increase in the energetic threshold for the activation of the enzyme at low ψL. While this result supported earlier in vitro findings, we further discovered that the light-dependent reduction of coupling factor reversed any observable effect of low ψL on the energetics of activation or on photophosphorylation competence. Furthermore, coupling factor was reduced, even in severely droughted sunflower, almost immediately upon illumination. Based on these measurements, we conclude that the nonstomatal limitation of photosynthesis observed by us and others in droughted plants cannot be explained by impaired coupling factor activity.  相似文献   

3.
Previous work suggested that an increase in cell wall-loosening contributes to the maintenance of maize (Zea mays L.) primary root elongation at low water potentials ([psi]w). It was also shown that root elongation at low [psi]w requires increased levels of abscisic acid (ABA). In this study we investigated the effects of low [psi]w and ABA status on xyloglucan endotransglycosylase (XET) activity in the root elongation zone. XET is believed to contribute to wall-loosening by reversibly cleaving xyloglucan molecules that tether cellulose microfibrils. The activity of XET per unit fresh weight in the apical 10 mm (encompassing the elongation zone) was constant at high [psi]w but increased by more than 2-fold at a [psi]w of -1.6 MPa. Treatment with fluridone to decrease ABA accumulation greatly delayed the increase in activity at low [psi]w. This effect was largely overcome when internal ABA levels were restored by exogenous application. Spatial distribution studies showed that XET activity was increased in the apical 6 mm at low [psi]w whether expressed per unit fresh weight, total soluble protein, or cell wall dry weight, corresponding to the region of continued elongation. Treatment with fluridone progressively inhibited the increase in activity with distance from the apex, correlating with the pattern of inhibition of elongation. Added ABA partly restored activity at all positions. The increase in XET activity at low [psi]w was due to maintenance of the rate of deposition of activity despite decreased deposition of wall material. The loss of activity associated with decreased ABA was due to inhibition of the deposition of activity. The results demonstrate that increased XET activity is associated with maintenance of root elongation at low [psi]w and that this response requires increased ABA.  相似文献   

4.
Nonami H  Wu Y  Boyer JS 《Plant physiology》1997,114(2):501-509
Cell enlargement depends on a growth-induced difference in water potential to move water into the cells. Water deficits decrease this potential difference and inhibit growth. To investigate whether the decrease causes the growth inhibition, pressure was applied to the roots of soybean (Glycine max L. Merr.) seedlings and the growth and potential difference were monitored in the stems. In water-limited plants, the inhibited stem growth increased when the roots were pressurized and it reverted to the previous rate when the pressure was released. The pressure around the roots was perceived as an increased turgor in the stem in small cells next to the xylem, but not in outlying cortical cells. This local effect implied that water transport was impeded by the small cells. The diffusivity for water was much less in the small cells than in the outlying cells. The small cells thus were a barrier that caused the growth-induced potential difference to be large during rapid growth, but to reverse locally during the early part of a water deficit. Such a barrier may be a frequent property of meristems. Because stem growth responded to the pressure-induced recovery of the potential difference across this barrier, we conclude that a decrease in the growth-induced potential difference was a primary cause of the inhibition.  相似文献   

5.
Saab IN  Ho T  Sharp RE 《Plant physiology》1995,109(2):593-601
Previous work indicated that accumulation of abscisic acid (ABA) acts differentially to maintain elongation of the primary root and inhibit elongation of the mesocotyl of maize (Zea mays L.) seedlings at low water potentials ([psi]w). Subsequent results indicated specific locations in the elongation zones where elongation is maintained, inhibited, or unaffected by endogenous ABA at low [psi]w. This information was utilized in this study to identify in vitro translation products of RNA associated with the maintenance or inhibition of elongation in the primary root and mesocotyl, respectively, by endogenous ABA at low [psi]w. The results distinguished products associated specifically with the elongation responses from those nonspecifically associated with ABA accumulation or low [psi]w, as well as normal cell development and maturation. In the primary root, the maintenance of elongation at low [psi]w by ABA was associated with the maintenance of expression of three products that were also expressed during elongation at high [psi]w, the expression of a novel product, and the suppression of two products. In the mesocotyl, the inhibition of elongation by ABA after transplanting to low [psi]w was associated with the induction of a novel translation product. However, the induction of this product, as well as accumulation of ABA and inhibition of elongation, occurred without a decline in tissue water content. The results demonstrate the necessity of examining the association of gene expression with elongation responses to low [psi]w with a high degree of spatial resolution.  相似文献   

6.
Sitka spruce seedlings were subjected to drought in experimentsin a growthroom, a greenhouse, and out of doors. The plantswere grown in a double chamber with the bulk of the roots inthe upper part where they dried out the soil when water waswithheld. A few new roots penetrated into the lower part inwhich the soil remained moist. The double chamber system enabledthe plant to attain a high water psotential by night and theshoot was only periodically under mild water stress. Measurementswere made on soil water potential (solt), leaf water potential(1), transpiration (E), and stomatal conductance (ks). As soildecreased over a period of 4.5 d, E and ks decreased progressively.The decline in E and ks which indicated stomatal closure, occurredat a higher 1 than has been reported for Sitka spruce. The behaviourof the stomata appeared to be modified by conditions at theroot, and it is proposed that differences in the response to1,depend on Whether the latter is reduced by resistances in thexylem between root and leaf, as is known to occur in large treesin moist soil, or by stresses at the root itself.  相似文献   

7.
The relationships between photosynthesis, leaf nitrogen content and water stress were studied in ten genotypes of wheat differing in the presence of dwarfing genes. Net photosynthetic rate (PN) was mostly higher at ear emergence stage than at anthesis stage. PN decreased with water stress (leaf water potential from –2.0 to –2.5 MPa), and with reduced leaf N content in all genotypes studied. Among the various genotypes, single dwarf and wild types showed higher PN rate and maintained higher leaf N content under different N doses and water supply as compared to the other types studied.  相似文献   

8.
Increasing crop yield and water use efficiency (WUE) in dryland farming requires a quantitative understanding of relationships between crop yield and the water balance over many years. Here, we report on a long-term dryland monitoring site at the Loess Plateau, Shanxi, China, where winter wheat was grown for 30 consecutive years and soil water content (0–200 cm) was measured every 10 days. The monitoring data were used to calibrate the AquaCrop model and then to analyse the components of the water balance. There was a strong positive relationship between total available water and mean cereal yield. However, only one-third of the available water was actually used by the winter wheat for crop transpiration. The remaining two-thirds were lost by soil evaporation, of which 40 and 60% was lost during the growing and fallow seasons, respectively. Wheat yields ranged from 0.6 to 3.9 ton/ha and WUE from 0.3 to 0.9 kg/m3. Results of model experiments suggest that minimizing soil evaporation via straw mulch or plastic film covers could potentially double wheat yields and WUE. We conclude that the relatively low wheat yields and low WUE were mainly related to (i) limited rainfall, (ii) low soil water storage during fallow season due to large soil evaporation, and (iii) poor synchronisation of the wheat growing season to the rain season. The model experiments suggest significant potential for increased yields and WUE.  相似文献   

9.
研究了土壤干早胁迫下小麦(Triticum aestivum L.)旗叶和穗光合作用的差异及其与耐旱性的关系。结果表明,穗光合活性对干旱胁迫的敏感性低于旗叶叶片。干旱胁迫下。穗光合速率下降幅度远小于叶片,类胡萝卜素含世较高,色素含量、PSI活性下降幅度均小于叶片。且PEPC活性诱导增强,暗示穗器官较叶片有较强的耐逆性。  相似文献   

10.
轻度土壤干旱下,小麦叶片仍能维持较好的水分状况,高氮营养对叶片光合作用有明显的促进作用。中度以上土壤干旱下,叶片水势和相对含水量明显降低,高氮叶片降低的幅度显著大于低氮,同时叶片净光合率(P_n)也趋于降低,高氮叶片降低的幅度较大。高氮叶片的叶肉光合活性明显大于低氮叶片,干旱下P_n降低与其气孔限制作用较大有关。高氮叶片的渗透调节大于低氮叶片,但渗透调节对气孔导度和P_n的维持有限。  相似文献   

11.
The capacity of plants for hibernation is ensured by the presence of significant food resources, like in hibernating mammals. In plants, these resources are accumulated in autumn due to maintenance of the rates of true CO2 assimilation elevated with reference to the dark respiration. This becomes possible as a result of higher thermoresistance of photosynthesis, as compared to respiration, and low light requirements for photosynthesis saturation at low positive or negative temperatures.  相似文献   

12.
13.
水分亏缺对冬小麦净光合速率影响程度研究   总被引:1,自引:1,他引:1  
水分亏缺对冬小麦净光合速率影响程度研究王慧(西北大学城市与资源学系,西安710069)EffectofWaterDeficitonNetPhotosynthesisRateofWinterWheat.WangHui(DepatmentofUrban...  相似文献   

14.
Cotton plants, Gossypium hirsutum L. were grown in a growth room under incident radiation levels of 65, 35, and 17 Langleys per hour to determine the effects of vapor pressure deficits (VPD's) of 2, 9, and 17 mm Hg at high soil water potential, and the effects of decreasing soil water potential and reirrigation on transpiration, leaf temperature, stomatal activity, photosynthesis, and respiration at a VPD of 9 mm Hg.

Transpiration was positively correlated with radiation level, air VPD and soil water potential. Reirrigation following stress led to slow recovery, which may be related to root damage occurring during stress. Leaf water potential decreased with, but not as fast as, soil water potential.

Leaf temperature was usually positively correlated with light intensity and negatively correlated with transpiration, air VPD, and soil water. At high soil water, leaf temperatures ranged from a fraction of 1 to a few degrees above ambient, except at medium and low light and a VPD of 19 mm Hg when they were slightly below ambient, probably because of increased transpirational cooling. During low soil water leaf temperatures as high as 3.4° above ambient were recorded. Reirrigation reduced leaf temperature before appreciably increasing transpiration. The upper leaf surface tended to be warmer than the lower at the beginning of the day and when soil water was adequate; otherwise there was little difference or the lower surface was warmer. This pattern seemed to reflect transpiration cooling and leaf position effects.

Although stomata were more numerous in the lower than the upper epidermis, most of the time a greater percentage of the upper were open. With sufficient soil water present, stomata opened with light and closed with darkness. Fewer stomata opened under low than high light intensity and under even moderate, as compared with high soil water. It required several days following reirrigation for stomata to regain original activity levels.

Apparent photosynthesis of cotton leaves occasionally oscillated with variable amplitude and frequency. When soil water was adequate, photosynthesis was nearly proportional to light intensity, with some indication of higher rates at higher VPD's. As soil water decreased, photosynthesis first increased and then markedly decreased. Following reirrigation, photosynthesis rapidly recovered.

Respiration was slowed moderately by decreasing soil water but increased before watering. Respiration slowed with increasing leaf age only on leaves that were previously under high light intensity.

  相似文献   

15.
Photosynthesis in the Pericarp of Developing Wheat Grains   总被引:2,自引:1,他引:1  
Oxygen exchange in grains of wheat was measured in both lightand dark over the period of grain development. Between 10 dand 30 d after anthesis, the rate of photosynthesis exceededthe rate of respiration. Peak photosynthetic activity was observedat 20 d after anthesis, coinciding with maximum chlorophyllcontent in the pericarp green layer. Removal of the pericarptransparent layer increased rates of oxygen exchange in boththe light and the dark. Attempts to inhibit photosynthesis withDCMU were only successful with the pericarp transparent layerremoved. Key words: Wheat, pericarp, photosynthesis  相似文献   

16.
Oquist G  Hurry VM  Huner N 《Plant physiology》1993,101(1):245-250
Winter cultivars of rye (Secale cereale L., cv Musketeer) and wheat (Triticum aestivum L. cvs Kharkov and Monopol), but not a spring cultivar of wheat (Glenlea), grown at cold-hardening temperatures showed, at high irradiances, a higher proportion of oxidized to reduced primary, stable quinone receptor (QA) than did the same cultivars grown under nonhardening conditions. In addition, there was a positive correlation between the effects of low-growth temperature on this increased proportion of oxidized QA, and a concomitant increase in the capacity for photosynthesis, and LT50, the temperature at which 50% of the seedlings are killed, in cultivars showing different freezing tolerances. This suggests that low-temperature modulation of the photosynthetic apparatus may be an important factor during the induction of freezing resistance in cereals. Finally, the control of photosystem II photochemistry by nonphotochemical quenching of excitation energy was identical for nonhardened and cold-hardened winter rye. However, examination of measuring temperature effects per se revealed that, irrespective of growth temperature, nonphotochemical quenching exerted a stronger control on photosystem II photochemistry at 10[deg] C rather than at 20[deg] C.  相似文献   

17.
Sharp RE  Hsiao TC  Silk WK 《Plant physiology》1990,93(4):1337-1346
Primary roots of maize (Zea mays L. cv WF9 × Mo17) seedlings growing in vermiculite at various water potentials exhibited substantial osmotic adjustment in the growing region. We have assessed quantitatively whether the osmotic adjustment was attributable to increased net solute deposition rates or to slower rates of water deposition associated with reduced volume expansion. Spatial distributions of total osmotica, soluble carbohydrates, potassium, and water were combined with published growth velocity distributions to calculate deposition rate profiles using the continuity equation. Low water potentials had no effect on the rate of total osmoticum deposition per unit length close to the apex, and caused decreased deposition rates in basal regions. However, rates of water deposition decreased more than osmoticum deposition. Consequently, osmoticum deposition rates per unit water volume were increased near the apex and osmotic potentials were lower throughout the growing region. Because the stressed roots were thinner, osmotic adjustment occurred without osmoticum accumulation per unit length. The effects of low water potential on hexose deposition were similar to those for total osmotica, and hexose made a major contribution to the osmotic adjustment in middle and basal regions. In contrast, potassium deposition decreased at low water potentials in close parallel with water deposition, and increases in potassium concentration were small. The results show that growth of the maize primary root at low water potentials involves a complex pattern of morphogenic and metabolic events. Although osmotic adjustment is largely the result of a greater inhibition of volume expansion and water deposition than solute deposition, the contrasting behavior of hexose and potassium deposition indicates that the adjustment is a highly regulated process.  相似文献   

18.
Effects of nitrogen (N) nutrition level on photosynthesis of wheat were studied using method of quick drying of detached leaves, under rapid water stress. The results showed that in the case, leaf water potential (Ψw), net photosynthetic rate (Pn) and stomatal conductance (Gs) of high N (HN) leaves decreased more quickly than that of low N (LN) leaves. Therefore, the difference of Pn between HN and LN leaves became less and less with increasing water stress. Under severe water stress, the Pn of HN leaves were lower than that of LN leaves. The intercellular concentration of CO2 (Ci) of HN leaves were lower than that of LN leaves, and the value of stomatal limitation of photosynthesis (Ls) of HN leaves were higher during rapid water stress. However, the mesophllous conductance of CO2 (Gm) and photosynthetic activity of mesophyll of HN leaves were still higher than that of LN leaves.  相似文献   

19.
Earlier work (SE Taylor, N Terry [1984] Plant Physiol 75: 82-86) has shown that the rate of photosynthesis may be colimited by photosynthetic electron transport capacity, even at low intercellular CO2 concentrations. Here we monitored leaf metabolites diurnally and the activities of key Calvin cycle enzymes in the leaves of three treatment groups of sugar beet (Beta vulgaris L.) plants representing three different in vivo photochemical capacities, i.e. Fe-sufficient (control) plants, moderately Fe-deficient, and severely Fe-deficient plants. The results show that the decrease in photosynthesis with Fe deficiency mediated reduction in photochemical capacity was through a reduction in ribulose 1,5-bisphosphate (RuBP) regeneration and not through a decrease in ribulose 1,5-bisphosphate carboxylase/oxygenase activity. Based on measurements of ATP and NADPH and triose phosphate/3-phosphoglycerate ratios in leaves, there was little evidence that photosynthesis and RuBP regeneration in Fe-deficient leaves were limited directly by the supply of ATP and NADPH. It appeared more likely that photochemical capacity influenced RuBP regeneration through modulation of enzymes in the photosynthetic carbon reduction cycle between fructose-6-phosphate and RuBP; in particular, the initial activity of ribulose-5-phosphate kinase was strongly diminished by Fe deficiency. Starch and sucrose levels changed independently of one another to some extent during the diurnal period (both increasing in the day and decreasing at night) but the average rates of starch or sucrose accumulation over the light period were each proportional to photochemical capacity and photosynthetic rate.  相似文献   

20.
The daily course of photosynthesis at low temperatures in 2 coniferous species, Pinus ponderosa Laws., and Pseudotsuga menziesii (Mirb.) Franco, were studied using controlled environment facilities. After having been grown at a 23° day, and 19° night for a year, seedlings were acclimatized for 4 months to either a 3°, 7° or 11° day all under 1200 ft-c of light and followed by a 16-hour night at 3°. Measurement of photosynthesis at 1200 ft-c revealed 3 separate responses. First, the rapidity at which the plants attained their maximum photosynthesis when the lights were turned on depended upon the species, the current temperature, and the previous temperature condition to which the plants had become acclimatized. The warmer the day temperature the sooner the daily maximum was reached. Second, fluctuations in the rate of photosynthesis during the day varied with the species and the day temperature. Photosynthesis in both fir and pine kept at an 11° day and pines kept at a 7° day attained a daily peak rate followed by a decline. This decline occurred even though temperature and light were kept constant, the CO2 level was returned to 320 ppm from 290 ppm, and the plants were kept well watered. At a 3° day neither species showed this decline. Third, a plant transferred to another temperature acquired a new stable daily photosynthetic pattern. The number of days required for stabilization depended upon the previous temperature history of the plant. The adjustment rate was faster when the temperature was raised than when it was lowered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号