首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
Nucleotide sequencing of a 4.15 kb DNA fragment from megaplasmid 2 of Rhizobium meliloti 2011 revealed the location of the genes exoH, exoK and exoL. The putative proteins encoded by these genes have molecular weights of 41, 30, and 44 kDa, respectively. The hydrophobicity profile of the ExoH amino acid sequence resembles that of transmembrane proteins. The predicted exoL gene product does not contain hydrophobic regions, indicating a cytoplasmic localization. The exoK gene product is characterized by a putative signal peptide and exhibits significant homology to endo-β-1,3 1,4-glucanases of bacilli and Clostridium thermocellum. R. meliloti exoK mutants induced pink nodules and synthesized a reduced amount of exopolysaccharide (EPS). Colonies of this mutant showed a delay in the appearance of the Calcofluor white fluorescence. In addition, the formation of the characteristic halo was strongly delayed. R. meliloti exoL and exoH mutants induced pseudonodules. The exoH, but not the exoL mutant, synthesized an EPS that could be precipitated by cetyl pyridinium chloride (CPC) and also by ethanol. Plasmid integration mutagenesis revealed promoter regions preceding exoH, exoK and exoL.  相似文献   

2.
3.
Five exopolysaccharide-deficient mutants were isolated after rhizobial strain 107 was subjected to transposon Tn5 mutagenesis. The amount of EPS produced by the mutants was dramatically decreased to between 3% and 6% of wild-type level. All mutants carried a singel copy of Tn5. Two mutants (NA3 and NA10) were complemented by the R. meliloti exoA gene and the functionally equivalent exoD gene of Rhizobium sp. strain NGR234. Two other mutants (NA7 and NA8) were complemented by the R. meliloti exoB gene and the functionally equivalent NGR234 exoC gene. The remaining mutant (NA11) was not complemented by any exo genes of R. meliloti or Rhizobium NGR234. All mutants induced normal nitrogen-fixing nodules on Astragalus sinicus, an indeterminate nodulating host.  相似文献   

4.
Rhizobium SBS-R100, isolated from the stem nodules ofSesbania procumbens, synthesized -galactosidase constitutively. Transposon mutagenesis by Tn9 induced mutants defective in lactose utilization; the mutations did not interfere with growth, nodulation or N2 fixation. Mouse monoclonal antibody raised against -galactosidase ofEscherichia coli reacted with soluble proteins of wild typeRhizobium SBS-R100. Anin vivo constructed recombinant plasmid pSBS-4 complemented aRhizobium mutant defective in lactose utilization.  相似文献   

5.
    
We report the genetic and biochemical analysis of Rhizobium meliloti mutants defective in symbiotic nitrogen fixation (Fix) and respiratory nitrate reduction (Rnr). The mutations were mapped close to the ade-1 and cys-46 chromosomal markers and the mutated locus proved to be identical to the previously described fix-14 locus. By directed Tn5 mutagenesis, a 4.5 kb segment of the chromosome was delimited in which all mutations resulted in Rnr and Fix phenotypes. Nucleotide sequence analysis of this region revealed the presence of four open reading frames coding for integral membrane and membrane-anchored proteins. Biochemical analysis of the mutants showed that the four proteins were necessary for the biogenesis of all cellular c-type cytochromes. In agreement with the nomenclature proposed for rhizobial genes involved in the formation of c-type cytochromes, the four genes were designated cycH, cycJ, cycK, and cycL, respectively. The predicted protein product of cycH exhibited a high degree of similarity to the Bradyrhizobium japonicum counterpart, while CycK and CycL shared more than 50% amino acid sequence identity with the Rhodobacter capsulatus Ccll and Cc12 proteins, respectively. cycJ encodes a novel membrane anchored protein of 150 amino acids. We suggest that this gene cluster codes for (parts of) a multi-subunit cytochrome c haem lyase. Moreover, our results indicate that in R. meliloti c-type cytochromes are required for respiratory nitrate reduction ex planta, as well as for symbiotic nitrogen fixation in root nodules.  相似文献   

6.
Isogenic strains of Escherichia coli that were defective in either of the two major aerobic terminal respiratory oxidases (cytochromes bo and bd) or in the putative third oxidase (cytochrome bd-II) were studied to elucidate role(s) for oxidases in protecting cells from oxidative stress in the form of H2O2 and paraquat. Exponential phase cultures of all three oxidase mutants exhibited a greater decline in cell viability when exposed to H2O2 stress compared to the isogenic parent wild-type strain. Cytochrome bo mutants showed the greatest sensitivity to H2O2 under all conditions studied indicating that this oxidase was crucial for protection from H2O2 in E. coli. Cell killing of all oxidase mutants by H2O2 was by an uncharacterized mechanism (mode 2 killing) with cell growth rate affected. The expression of (katG-lacZ), an indicator of intracellular H2O2, was 2-fold higher in a cydAB::kan mutant compared to the wild-type strain at low H2O2 concentrations (< 100 M) suggesting that cytochrome bd mutants were experiencing higher intracellular levels of H2O2. Protein fusions to the three oxidase genes demonstrated that expression of genes encoding cytochrome bd, but not cytochrome bo or cytochrome bd-II was increased in the presence of external H2O2. This increase in expression of (cydA-lacZ) by H2O2 was further enhanced in a cyo::kan mutant. The level of cytochrome bd determined spectrally and (cydA-lacZ) expression was 5-fold and 2-fold higher respectively in an rpoS mutant compared to isogenic wild-type cells suggesting that RpoS was a negative regulator of cytochrome bd. Whether the effect of RpoS is direct or indirect remains to be determined.  相似文献   

7.
Mutant rice cells (Oryza sativa L.) grown in liquid suspension cultures exported greater quantities of protein and -glucanases than controls. These mutants were isolated from anther calli resistant to 1 mM lysine plus threonine (LT), regenerated and reestablished as cell suspension cultures from seeds. Cellular protein levels are genetically conditioned, and the levels of extracellular proteins and enzyme activities are inversely related to that of the cellular portions. The rechallenge of cells with 1 mM LT inhibited the expression of both -1,3-glucanases and -1,4-glucosidases but had no significant effect upon the levels of chitinase activity. Mutant cells were more sensitive than controls to stress caused by exogenous LT. In general, under exogenous LT stress the mutant/control ratio for extracellular glucanases increased as the assay conditions were changed from a basic to an acidic pH. The specific activity of glucanases was highest in media and lowest in cells. Both the mutant and control cells exported -glucanases into the suspension medium, but the level of activity in media was greater in that in which the mutant was suspended. The export was probably modulated by the internal protein levels which were highest in mutant cells without LT. Seedlings from mutants with enhanced lysine also had enhanced acidic -glucanase activity.  相似文献   

8.
    
Three phenotypically stable mutants of the extremely thermophilic archaeon Sulfolobus solfataricus have been isolated by screening for -galactosidase negative colonies on plates with X-Gal (5-bromo-4-chloro-3-indolyl-(3-d-galactopyranoside). From one of these mutants an insertion element, designated ISC1217, was isolated and characterized. Sequence analysis of ISC1217 and of the regions adjacent to the insertion site in the -galactosidase gene revealed features typical of a transposable element: ISC1217 contained terminal inverted repeats and was flanked by a direct repeat of 6 bp. The 1147 by sequence contained an open reading frame encoding a putative protein of 354 amino acid residues and, overlapping this, two smaller open reading frames on the opposite strand. There were approximately 8 copies of the insertion element in the S. solfataricus genome. ISC1217 did not cross-hybridize with DNA of other Sulfolobus species. All three independently isolated -galactosidase mutants of S. solfataricus arose by transposition of ISC1217 or a related element.  相似文献   

9.
Summary Rhizoxin and ansamitocin P-3 (a maytansinoid compound), potent inhibitors of mammalian brain tubulin assembly, inhibit growth of a variety of fungi including Aspergillus nidulans. Mutants of A. nidulans, benA10 which is a benomyl resistant -tubulin gene mutant and tubAl which is a benomyl supersensitive a-tubulin gene mutant, were both sensitive to rhizoxin and ansamitocin P-3 to the same extent as wild-type strains. We isolated 18 rhizoxin resistant mutants of A. nidulans. All of these mutants were cross-resistant to ansamitocin P-3, but not to benzimidazole antimitotic drugs. These mutants mapped to two loci, rhiA and rhiB, and all of those with high resistance mapped to rhiA. The fact that the protein extracts of rhiA mutants lost rhizoxin binding affinity and that rhiA was closely linked to benA, the major -tubulin gene in A. nidulans, indicated that rhiA must be a structural gene for -tubulin and that rhiA mutants are a new class of -tubulin gene mutants. All of this suggested that, in A. nidulans, these antimitotic drugs bind to -tubulin, and that rhizoxin and ansamitocin P-3 share the same binding site but the site does not overlap with the benzimidazole binding site. Protein extracts from a rhiB mutant retained rhizoxin binding affinity, therefore this rhizoxin resistance mechanism should not be a tubulin mediated process.  相似文献   

10.
The nucleotide sequence of a 8330-bp DNA fragment from Bradyrhizobium japonicum 110spc4 was determined. Sequence analysis revealed that six ORFs were present and the deduced amino acid sequences were homologous to enzymes involved in exopolysaccharide (EPS) biosynthesis. The genes appear to be organized into at least four different operons. One gene was found to be homologous to exoB, which encodes a UDP-galactose 4′-epimerase. Other ORFs were homologous to UDP-hexose transferases and one ORF showed similarity to Sinorhizobium (Rhizobium) meliloti ExoP, which has been suggested to be involved in EPS chain-length determination. A set of deletion and insertion mutants was constructed and the resulting B. japonicum strains were tested for their symbiotic traits. Deletion mutant ΔP22, which lacks the C-terminal part of ExoP, the UDP-hexose transferase ExoT and the N-terminal part of ExoB, shows a delayed nodulation phenotype and induces symptoms of plant defense reactions; its EPS does not contain galactose and no high molecular weight fraction is synthesized. In contrast, insertion mutant EH3, which expresses an exoP gene product that is truncated in its putative periplasmic domain, produced an EPS containing both HMW and LMW fractions. However, the interaction of EH3 with soybeans was severely perturbed. As a rule, only the initial steps of nodule formation were observed. Received: 2 January 1998 / Accepted: 24 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号