首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To understand the structure of the DNA-binding SPXX motif, an analysis of Ser1-Pro2-X3-X4 and Thr1-Pro2-X3-X4 structures observed in proteins is presented. About half (43-46%) of the (S or T) PXX sequences fold into a beta-turn of type (I) or one of a few closely related turn structures. The turn structure has either or both of two compatible hydrogen bonds, one between CO of (Ser or Thr) and NH of X4 (a standard beta-turn type), and the other between OH of (Ser or Thr) and NH of X3 (which we name the sigma type). Within the beta-turn of the TPXX sequence, another type of hydrogen bond (which we name the tau type) occurs between OH of Thr and NH of X4 with the frequency of 72%. These observations support a previous proposal that the (S or T) PXX sequences of DNA-binding proteins fold into a compact beta-turn stabilized by a side-chain-main-chain interaction, which may be suitable to fit into the groove of DNA.  相似文献   

2.
3.
4.
The complete amino acid sequences of two variants of histone H2B of maize were deduced from the cDNAs isolated from a maize cDNA library. The two encoded proteins are 150 (H2B(1)) and 149 (H2B(2)) amino acids long and shows the classical organization of H2B histones. The hydrophobic C-terminal region is highly conserved as compared to that of the animal counterparts with only 21 changes (13 conservative) among the 90 residues. Between the N-terminal part and the C-terminal region we note the presence of a basic cluster (9 residues) characteristic of histones H2B. The N-terminal third is extended as compared to the animal consensus H2B and has the same size as the H2B histone of wheat. Up to 9 acidic residues and a five time repeated pentapeptide PA/KXE/KK are present in this region. Southern-blot hybrization showed that the H2B histones are encoded by a multigenic family like the other core histones (H3 and H4) of plants. The general expression pattern of these genes was not significantly different from that of the H3 and H4 genes neither in germinating seeds nor in different tissues of adult maize.  相似文献   

5.
6.
7.
The structural relationships between histone-binding proteins and DNA-binding proteins are important, since nucleosome-interacting factors possess histone-binding and/or DNA-binding components. S. cerevisiae (Sc) Cia1p/Asf1p, a homologue of human CIA (CCG1-interacting factor A), is the most evolutionarily conserved histone chaperone, which facilitates nucleosome assembly by interacting with the nucleosome entry site of the core histones H3/H4. The crystal structure of the evolutionarily conserved domain (residues 1-169) of Cia1p (ScCia1p-DeltaC2) was determined at 2.95 A resolution. The refined model contains 166 residues in the asymmetric unit. The overall tertiary structure resembles a beta-sandwich fold, and belongs to the "switched" immunoglobulin class of proteins. The crystal structure suggests that ScCia1p-DeltaC2 is structurally related to the DNA-binding proteins, such as NF-kappaB and its family members. This is the first examination of the structural similarities between a histone chaperone and DNA-binding proteins. We discuss the possibilities that the strands beta3 and beta4, which possess highly electronegative surface potentials, are the important regions for the interaction with core histones, and that the histone chaperone ScCia1p/Asf1p and the DNA-binding protein NF-kappaB may have evolved from the same prototypal protein class.  相似文献   

8.
9.
10.
We screened maize (Zea mays) cDNAs for sequences similar to the single myb-like DNA-binding domain of known telomeric complex proteins. We identified, cloned, and sequenced five full-length cDNAs representing a novel gene family, and we describe the analysis of one of them, the gene Single myb histone 1 (Smh1). The Smh1 gene encodes a small, basic protein with a unique triple motif structure of (a) an N-terminal SANT/myb-like domain of the homeodomain-like superfamily of 3-helical-bundle-fold proteins, (b) a central region with homology to the conserved H1 globular domain found in the linker histones H1/H5, and (c) a coiled-coil domain near the C terminus. The Smh-type genes are plant specific and include a gene family in Arabidopsis and the PcMYB1 gene of parsley (Petroselinum crispum) but are distinct from those (AtTRP1, AtTBP1, and OsRTBP1) recently shown to encode in vitro telomere-repeat DNA-binding activity. The Smh1 gene is expressed in leaf tissue and maps to chromosome 8 (bin 8.05), with a duplicate locus on chromosome 3 (bin 3.09). A recombinant full-length SMH1, rSMH1, was found by band-shift assays to bind double-stranded oligonucleotide probes with at least two internal tandem copies of the maize telomere repeat, TTTAGGG. Point mutations in the telomere repeat residues reduced or abolished the binding, whereas rSMH1 bound nonspecifically to single-stranded DNA probes. The two DNA-binding motifs in SMH proteins may provide a link between sequence recognition and chromatin dynamics and may function at telomeres or other sites in the nucleus.  相似文献   

11.
12.
13.
The histones H3 and H2a from calf thymus are homologous to the repressor and cro repressor proteins of bacteriophage lambda in a 22-residue segment that has been implicated by mutational and model-building studies in DNA binding. In the lambda proteins this segment is folded into a helix-turn-helix unit of supersecondary structure, and we propose that the homologous regions in the histones possess the same fold. Homology was quantified with a unified procedure based on criteria of identity of key residues, primary structural homology and similarity of secondary structural potential. It has previously been shown that a set of other prokaryotic DNA-binding proteins have primary structural homology with the two lambda proteins. Homologies detected between the histones H4 and H2b and members of this set suggest that these histones also contain the putative DNA-binding fold.  相似文献   

14.
15.
16.
Nucleotide sequences of the cysB region of Salmonella typhimurium and Escherichia coli have been determined and compared. A total of 1759 nucleotides were sequenced in S. typhimurium and 1840 in E. coli. Both contain a 972-nucleotide open reading frame identified as the coding region for the cysB regulatory protein on the basis of sequence homology and by comparison of the deduced amino acid sequences with known physicochemical properties of this protein. The DNA sequence identity for the cysB coding region in the two species is 80.5%. The deduced amino acid sequences are 95% identical. The predicted cysB polypeptide molecular weights are 36,013 for S. typhimurium and 36,150 for E. coli. For both proteins a helix-turn-helix region similar to that found in other DNA-binding proteins is predicted from the deduced amino acid sequence. Sequences upstream to cysB contain open reading frames which represent the carboxyl-terminal end of the topA gene product, DNA topoisomerase I. A pattern of highly conserved nucleotide sequences in the 151 nucleotides immediately preceding the cysB initiator codon in both species suggests that this region may contain multiple signals for the regulation of cysB expression.  相似文献   

17.
The complete nucleotide sequence derived from a genomic clone and two cDNA clones of the creA gene of Aspergillus nidulans is presented. The gene contains no introns. The derived polypeptide of 415 amino acids contains two zinc fingers of the C2H2 class, frequent S(T)PXX motifs, and an alanine-rich region indicative of a DNA-binding repressor protein. The amino acid sequence of the zinc finger region has 84% similarity to the zinc finger region of Mig1, a protein involved in carbon catabolite repression in yeast cells, and it is related both to the mammalian Egr1 and Egr2 proteins and to the Wilms' tumor protein. A deletion removing the creA gene was obtained, by using in vitro techniques, in both a heterokaryon and a diploid strain but was unobtainable in a pure haploid condition. Evidence is presented suggesting that the phenotype of such a deletion, when not complemented by another creA allele, is leaky lethality allowing limited germination of the spore but not colony formation. This phenotype is far more extreme than that of any of the in vivo-generated mutations, and thus either the gene product may have an activator activity as well as a repressor function or some residual repressor function may be required for full viability.  相似文献   

18.
By analyses of short DNA sequences, we have deduced the overall arrangement of genes in the (A + T)-rich coding sequences of herpesvirus saimiri (HVS) relative to the arrangements of homologous genes in the (G + C)-rich coding sequences of the Epstein-Barr virus (EBV) genome and the (A + T)-rich sequences of the varicella-zoster virus (VZV) genome. Fragments of HVS DNA from 13 separate sites within the 111 kilobase pairs of the light DNA coding sequences of the genome were subcloned into M13 vectors, and sequences of up to 350 bases were determined from each of these sites. Amino acid sequences predicted for fragments of open reading frames defined by these sequences were compared with a library of the protein sequences of major open reading frames predicted from the complete DNA sequences of VZV and EBV. Of the 13 short amino acid sequences obtained from HVS, only 3 were recognizably homologous to proteins encoded by VZV, but all 13 HVS sequences were unambiguously homologous to gene products encoded by EBV. The HVS reading frames identified by this method included homologs of the major capsid polypeptides, glycoprotein H, the major nonstructural DNA-binding protein, thymidine kinase, and the homolog of the regulatory gene product of the BMLF1 reading frame of EBV. Locally as well as globally, the order and relative orientation of these genes resembled that of their homologs on the EBV genome. Despite the major differences in their nucleotide compositions and in the nature and arrangements of reiterated DNA sequences, the genomes of the lymphotropic herpesviruses HVS and EBV encode closely related proteins, and they share a common organization of these coding sequences which differs from that of the neurotropic herpesviruses, VZV and herpes simplex virus.  相似文献   

19.
Among the unicellular protists, several of which are parasitic, some of the most divergent eukaryotic species are found. The evolutionary distances between protists are so large that even slowly evolving proteins like histones are strongly divergent. In this study we isolated cDNA and genomic histone H3 and H4 clones fromTrichomonas vaginalis. Two histone H3 and three histone H4 genes were detected on three genomic clones with one complete H3 and two complete H4 sequences. H3 and H4 genes were divergently transcribed with very short intergenic regions of only 194 bp, which containedT. vaginalis-specific as well as histone-specific putative promoter elements. Southern blot analysis showed that there may be several more histone gene pairs. The two complete histone H4 genes were different on the nucleotide level but encoded the same amino acid sequence. Comparison of the amino acid sequences of theT. vaginalis H3 and H4 histones with sequences from animals, fungi, and plants as well as other protists revealed a significant divergence not only from the sequences in multicellular organisms but especially from the sequences in other protists likeEntamoeba histolytica, Trypanosoma cruzi, andLeishmania infantum.  相似文献   

20.
During dog-fish spermiogenesis, 2 basic nuclear protein transitions occur: the first from histones to spermatid-specific proteins S1 and S2, the second leading to protamines. S1, the most abundant transition protein, is a polypeptide containing 87 residues (Mr = 11,179 Da) whereas S2, the minor transition protein, contains 80 residues (Mr = 9,726 Da). The 2 proteins are mainly characterized by an asymmetry of the molecule, a very high content of basic residues, a relatively high level of hydrophobic residues and a cluster of acidic residues in the carboxy-terminal quarter of the molecule. The 2 proteins are phosphorylated on serine residues and the degree of phosphorylation is relatively important in protein S1. The 2 transition proteins are structurally unrelated to testis histones or sperm protamines and cannot be considered either as their proteolytic degradation products or as their precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号