首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Staphostatins constitute a family of staphylococcal cysteine protease inhibitors sharing a lipocalin-like fold and a unique mechanism of action. Each of these cytoplasmic proteins is co-expressed from one operon, together with a corresponding target extracellular cysteine protease (staphopain). To cast more light on staphostatin/staphopain interaction and the evolution of the encoding operons, we have cloned and characterized a staphopain (StpA2aur CH-91) and its inhibitor (StpinA2aur CH-91) from a novel staphylococcal thiol protease operon (stpAB2CH-91) identified in S. aureus strain CH-91. Furthermore, we have expressed a staphostatin from Staphylococcus warneri (StpinBwar) and characterized its target protease (StpBwar). Analysis of the reciprocal interactions among novel and previously described members of the staphostatin and staphopain families demonstrates that the co-transcribed protease is the primary target for each staphostatin. Nevertheless, the inhibitor derived from one species of Staphylococcus can inhibit the staphopain from another species, although the Ki values are generally higher and inhibition only occurs if both proteins belong to the same subgroup of either S. aureus staphopain A/staphostatin A (alpha group) or staphopain B/staphostatin B (beta group) orthologs. This indicates that both subgroups arose in a single event of ancestral allelic duplication, followed by parallel evolution of the protease/inhibitor pairs. The tight coevolution is likely the result of the known deleterious effects of uncontrolled staphopain action.  相似文献   

2.
Staphostatins are the endogenous, highly specific inhibitors of staphopains, the major secreted cysteine proteases from Staphylococcus aureus. We have previously shown that staphostatins A and B are competitive, active site-directed inhibitors that span the active site clefts of their target proteases in the same orientation as substrates. We now report the crystal structure of staphostatin B in complex with wild-type staphopain B at 1.9 A resolution. In the complex structure, the catalytic residues are found in exactly the positions that would be expected for uncomplexed papain-type proteases. There is robust, continuous density for the staphostatin B binding loop and no indication for cleavage of the peptide bond that comes closest to the active site cysteine of staphopain B. The carbonyl carbon atom C of this peptide bond is 4.1 A away from the active site cysteine sulfur Sgamma atom. The carbonyl oxygen atom O of this peptide bond points away from the putative oxyanion hole and lies almost on a line from the Sgamma atom to the C atom. The arrangement is strikingly similar to the "ionmolecule" arrangement for the complex of papain-type enzymes with their substrates but differs significantly from the arrangement conventionally assumed for the Michaelis complex of papain-type enzymes with their substrates and also from the arrangement that is crystallographically observed for complexes of standard mechanism inhibitors and their target serine proteases.  相似文献   

3.
Staphostatins, a novel family of cysteine protease inhibitors with a unique mechanism of action and distinct protein fold has recently been discovered. In this report we describe the properties of Staphylococcus epidermidis staphostatin A (EcpB), a new member of the family. As for other staphostatins, the recombinant S. epidermidis staphostatin A exerted very narrow inhibitory specificity, limited to cysteine protease from the same species. The closely related proteases from S. aureus cleaved the inhibitor at the reactive site peptide bond and inactivated it. The EcpB homologue, S. aureus staphostatin A (ScpB), was also susceptible to proteolytic cleavage at the same site by non-target cysteine proteases. Conversely, S. aureus staphostatin B (SspC) was resistant to such proteolysis. The difference in the susceptibility of individual inhibitors to proteolytic cleavage at the reactive site suggests subtle variations in the mechanism of interaction with cysteine proteases.  相似文献   

4.
The transport of lysosomal proteins is, in general, mediated by mannose 6-phosphate receptors via carbohydrate modifications. Here, we describe a novel class of receptors that regulate the transport of lysosomal hydrolases in the enteric protozoan Entamoeba histolytica, which is a good model organism to investigate membrane traffic. A novel 110 kDa cysteine protease (CP) receptor (CP-binding protein family 1, CPBF1) was initially discovered by affinity co-precipitation of the major CP (EhCP-A5), which plays a pivotal role in the pathogenesis of E. histolytica. We demonstrated that CPBF1 regulates EhCP-A5 transport from the endoplasmic reticulum to lysosomes and its binding to EhCP-A5 is independent of carbohydrate modifications. Repression of CPBF1 by gene silencing led to the accumulation of the unprocessed form of EhCP-A5 in the non-acidic compartment and the mis-secretion of EhCP-A5, suggesting that CPBF1 is involved in the trafficking and processing of EhCP-A5. The CPBF represents a new class of transporters that bind to lysosomal hydrolases in a carbohydrate-independent fashion and regulate their trafficking, processing and activation and, thus, regulate the physiology and pathogenesis of E. histolytica.  相似文献   

5.
Staphylococcus aureus is responsible for a variety of human infections, including life-threatening, systemic conditions. Secreted proteome, including a range of proteases, constitutes the major virulence factor of the bacterium. However, the functions of individual enzymes, in particular SplA protease, remain poorly characterized. Here, we report development of specific inhibitors of SplA protease. The design, synthesis, and activity of a series of α-aminoalkylphosphonate diaryl esters and their peptidyl derivatives are described. Potent inhibitors of SplA are reported, which may facilitate future investigation of physiological function of the protease. The binding modes of the high-affinity compounds Cbz-PheP-(OC6H4−4-SO2CH3)2 and Suc-Val-Pro-PheP-(OC6H5)2 are revealed by high-resolution crystal structures of complexes with the protease. Surprisingly, the binding mode of both compounds deviates from previously characterized canonical interaction of α-aminoalkylphosphonate peptidyl derivatives and family S1 serine proteases.  相似文献   

6.
The SspB cysteine protease of Staphylococcus aureus is expressed in an operon, flanked by the sspA serine protease, and sspC, encoding a 12.9-kDa protein of unknown function. SspB was expressed as a 40-kDa prepropeptide pSspB, which did not undergo autocatalytic maturation. Activity of pSspB was reduced compared with 22-kDa mature SspB, but it was equivalent to mature SspB after incubation with SspA, which specifically removed the pSspB N-terminal propeptide. SspC abrogated the activity of pSspB when incubated in a 1:1 complex but had no effect on SspA or papain. Activity of the pSspB.SspC complex was restored when incubated with SspA, and SspC was cleaved by SspA but not pSspB. Thus, SspC maintains pSspB as an inert zymogen, and SspA is required for removal of the propeptide and inactivation of SspC. Like the papain protease family, SspB cleaved substrates with a hydrophobic amino acid at P2 but had a strong preference for arginine at P1. It did not cleave casein, serum albumin, IgG, or IgA, but it promoted detachment of cultured keratinocytes and cleaved fibronectin and fibrinogen at sites recognized by urokinase plasminogen activator and plasmin, respectively. It also processed high molecular weight kininogen in a manner resembling plasma kallikrein. Thus, SspB exhibits a novel maturation mechanism and mimics the specificity of plasma serine proteases.  相似文献   

7.
Efficient synthesis of two novel analogues of some known protease inhibitors, via the isosteric replacement of oxirane/aziridine moiety of the parent compounds by cyclopropane ring, is described.  相似文献   

8.
The development of a new class of cysteine protease inhibitors utilising the thiosulfonate moiety as an SH specific electrophile is described. This moiety has been introduced into suitable amino acid derived building blocks, which were incorporated into peptidic sequences leading to very potent i.e. sub micromolar inhibitors of the cysteine protease papain in the same range as the vinyl sulfone based inhibitor K11777. Therefore, their inhibitory effect on Schistosoma mansoni, a human blood parasite, that expresses several cysteine proteases, was evaluated. The homophenylalanine side chain containing compounds 2730 and especially 36 showed promising activities compared with K11777 and warrant further investigations of these peptidic thiosulfonate inhibitors as new potential anti-parasitic compounds.  相似文献   

9.
In-silico virtual screening of bacterial surface enzyme Staphylococcus aureus Sortase A against commercial compound libraries using FlexX software package has led to the identification of novel inhibitors. Inhibition of enzyme catalytic activity was determined by monitoring the steady state cleavage of a model peptide substrate. Preliminary structure activity relationship studies on the lead compound resulted in the identification of compounds with improved activity. The most active compound has an IC50 value of 58 microM against the enzyme.  相似文献   

10.
11.
Produced by Staphylococcus aureus, SplB belongs to the chymotrypsin-like serine protease family. Since the biological role of SplB protease is unknown, the design and application of its specific inhibitors may help to reveal the function of this enzyme. Until now no SplB inhibitors have been reported. Herein, we present the design and synthesis of novel α-aminophosphonic analogues of glutamine, as well as their peptidyl derivatives. The inhibitory effects of these compounds towards the newly discovered SplB serine protease from S. aureus are characterized. We have also investigated the influence of aromatic ester substituents on inhibitory potency towards SplB. One of the compounds-Cbz-Glu-Leu-Gln(P)(OC(6)H(4)-4-O-CH(3))(2)-displayed an apparent second-order inhibition rate value of 1400M(-1)s(-1).  相似文献   

12.
Chagas' disease is a parasitic infection widely distributed throughout Latin America, with devastating consequences in terms of human morbidity and mortality. Cruzain, the major cysteine protease from Trypanosoma cruzi, is an attractive target for antitrypanosomal chemotherapy. In the present work, classical two-dimensional quantitative structure-activity relationships (2D QSAR) and hologram QSAR (HQSAR) studies were performed on a training set of 45 thiosemicarbazone and semicarbazone derivatives as inhibitors of T. cruzi cruzain. Significant statistical models (HQSAR, q2 = 0.75 and r2 = 0.96; classical QSAR, q2 = 0.72 and r2 = 0.83) were obtained, indicating their consistency for untested compounds. The models were then used to evaluate an external test set containing 10 compounds which were not included in the training set, and the predicted values were in good agreement with the experimental results (HQSAR, = 0.95; classical QSAR, = 0.91), indicating the existence of complementary between the two ligand-based drug design techniques.  相似文献   

13.
Staphylococcus aureus is a major human pathogen, which can invade and survive in non-professional and professional phagocytes. Uptake by host cells is thought to contribute to pathogenicity and persistence of the bacterium. Upon internalization by epithelial cells, cytotoxic S. aureus strains can escape from the phagosome, replicate in the cytosol and induce host cell death. Here, we identified a staphylococcal cysteine protease to induce cell death after translocation of intracellular S. aureus into the host cell cytoplasm. We demonstrated that loss of staphopain A function leads to delayed onset of host cell death and prolonged intracellular replication of S. aureus in epithelial cells. Overexpression of staphopain A in a non-cytotoxic strain facilitated intracellular killing of the host cell even in the absence of detectable intracellular replication. Moreover, staphopain A contributed to efficient colonization of the lung in a mouse pneumonia model. In phagocytic cells, where intracellular S. aureus is exclusively localized in the phagosome, staphopain A did not contribute to cytotoxicity. Our study suggests that staphopain A is utilized by S. aureus to exit the epithelial host cell and thus contributes to tissue destruction and dissemination of infection.  相似文献   

14.
Degradation of elastin by a cysteine proteinase from Staphylococcus aureus   总被引:3,自引:0,他引:3  
Staphylococcus aureus is known to produce three very active extracellular proteinases. One of these enzymes, a cysteine proteinase, after purification to homogeneity was found to degrade insoluble bovine lung elastin at a rate comparable to human neutrophil elastase. This enzyme had no detectable activity against a range of synthetic substrates normally utilized by elastase, chymotrypsin, or trypsin-like proteinases. However, it did hydrolyze the synthetic substrate carbobenzoxy-phenylalanyl-leucyl-glutamyl-p-nitroanilide (Km = 0.5 mM, kcat = 0.16 s-1). The proteolytic activity of the cysteine proteinase was rapidly and efficiently inhibited by alpha 2-macroglobulin and also by the cysteine-specific inhibitor rat T-kininogen (Ki = 5.2 X 10(-7) M). Human kininogens, however, did not inhibit. Human plasma apparently contains other inhibitors of this enzyme, since plasma depleted of alpha 2-macroglobulin retained significant inhibitory capacity. The elastolytic activity of this S. aureus proteinase and its lack of control by human kininogens or cystatin C may explain some of the connective tissue destruction seen in bacterial infections due to this and related organisms such as may occur in septicemia, septic arthritis, and otitis.  相似文献   

15.
SB-219383 and its analogues are a class of potent and specific inhibitors of bacterial tyrosyl-tRNA synthetases. Crystal structures of these inhibitors have been solved in complex with the tyrosyl-tRNA synthetase from Staphylococcus aureus, the bacterium that is largely responsible for hospital-acquired infections. The full-length enzyme yielded crystals that diffracted to 2.8 A resolution, but a truncated version of the enzyme allowed the resolution to be extended to 2.2 A. These inhibitors not only occupy the known substrate binding sites in unique ways, but also reveal a butyl binding pocket. It was reported that the Bacillus stearothermophilus TyrRS T51P mutant has much increased catalytic activity. The S. aureus enzyme happens to have a proline at position 51. Therefore, our structures may contribute to the understanding of the catalytic mechanism and provide the structural basis for designing novel antimicrobial agents.  相似文献   

16.
The importance of cysteine proteases in parasites, compounded with the lack of redundancy compared to their mammalian hosts makes proteases attractive targets for the development of new therapeutic agents. The binding mode of K11002 to cruzain, the major cysteine protease of Trypanosoma cruzi was used in the design of conformationally constrained inhibitors. Vinyl sulfone-containing macrocycles were synthesized via olefin ring-closing metathesis and evaluated against cruzain and the closely related cysteine protease, rhodesain.  相似文献   

17.
Cysteine proteases of the malaria parasite Plasmodium falciparum, known as falcipains, are promising targets for antimalarial chemotherapy. We evaluated cultured parasites for the stage-specific expression of cysteine proteases and sensitivity to cysteine protease inhibitors. Protease activity and inhibitor sensitivity varied markedly over time. Cysteine protease activity was greatest in early trophozoites, while sensitivity to cysteine protease inhibitors was greatest in mature trophozoites. Our results indicate the importance of considering the stage-specific effects of antimalarials and are consistent with the conclusion that the principal antimalarial activity of cysteine protease inhibitors is due to a block in hemoglobin hydrolysis.  相似文献   

18.
We report herein, design and synthesis of vinylaminophosphonates, a novel class of compounds as possible cysteine protease inhibitors. The synthesis of vinylaminophosphonates has been accomplished employing Tsuji-Trost reaction as a key step. The synthesized compounds were assayed against papain, a model cysteine protease and some of our synthesized compounds showed IC(50) values in the range of 30-54 μM thereby suggesting that these chemical entities thus could constitute an interesting template for the design of potential novel protease inhibitors.  相似文献   

19.
The RNA polymerase holoenzyme is a proven target for antibacterial agents. A high-throughput screening program based on this enzyme from Staphylococcus aureus had previously identified a 2-ureidothiophene-3-carboxylate as a low micromolar inhibitor. An investigation of the relationships between the structures of this class of compounds and their inhibitory- and antibacterial activities is described here, leading to a set of potent RNA polymerase inhibitors with antibacterial activity. Characterization of this bioactivity, including studies of the mechanism of action, is provided, highlighting the power of the reverse chemical genetics approach in providing tools to inhibit the bacterial RNA polymerase.  相似文献   

20.
New organotellurium(IV) compounds with specific cysteine protease inhibitory activity were synthesized. Serine and aspartic protease activity were not affected by any of these compounds. All Te(IV) compounds tested exhibited high specific second-order constant for cathepsin B inactivation. Tellurium(IV) compound 6 was the best inhibitor of the series, showing a second-order constant of 36,000 M(-1)s(-1). This value is about 100-fold higher than the second-order rate for cysteine protease inactivation shown by the historic Te(IV) compound AS 101 (1). The inhibition was irreversible and time and concentration dependent; no saturation kinetics were observed, suggesting a direct bimolecular reaction. The results described in this paper show that the new organotellurium(IV) compounds are powerful inhibitors of cathepsin B, constituting promising potential anti-metastatic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号