首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为探究毛竹林下种植茶树对土壤有机碳储量与碳组分的影响,该研究以毛竹纯林、竹茶混交林和常绿阔叶林为研究对象,采集这3种林分类型的表层(0~10 cm)土壤,测定土壤有机碳(SOC)、碳组分、生物与非生物因素指标。结果表明:(1)竹茶混交林林下植物多样性相较于毛竹纯林显著降低,但其土壤有机碳密度(22.54±2.09)t·hm-2、碳组分与毛竹纯林无显著差异(P>0.05)。竹茶混交林的矿物结合态有机碳(MOC)为(20.13±1.83)g·kg-1,占总有机碳的92.66%。常绿阔叶林土壤有机碳密度比竹茶混交林和毛竹纯林高土壤有机碳密度分别高41.15%和41.00%(P<0.05)。(2)3种林分类型土壤微生物量碳(MBC)含量范围为0.58~3.08 g·kg-1,土壤16S rRNA丰度范围为2.18×1010 ~5.65×1010copies·g-1,固碳基因cbbL丰度范围为0.37×108 1.10 ×108 copies·g-1,土壤微生物碳利用效率范围为0.03~0.28; 3种林分类型之间微生物相关指标不存在显著差异(P>0.05)。(3)3种林分类型SOC与土壤pH、砂粒含量和地上凋落物生物量呈显著负相关,与土壤黏粒含量、粉粒含量、总氮、C:N、总磷和铵态氮含量呈显著正相关(P<0.05)。(4)就不同碳组分而言,颗粒有机碳(POC)和MOC均与土壤pH、砂粒含量和根系生物量呈显著负相关,与土壤含水量、黏粒含量、粉粒含量、总氮、C:N、总磷和铵态氮含量呈显著正相关(P<0.05)。综上表明,竹茶混交改造会造成原生毛竹纯林林下植被多样性下降,但并未造成土壤碳储量下降; 而相较于常绿阔叶林,毛竹经营措施需要改进,以提升其碳汇效益。  相似文献   

2.
Carbon sequestration in soils is considered to be an important option for the mitigation of increasing atmospheric CO2 concentrations as a result of climate change. High carbon accumulation was observed in Lei bamboo (Phyllostachys praecox) soils when using large amounts of organic material in a mulching technique. Soil samples were collected from Lei bamboo fields in a chronosequence. The composition and stability of soil organic carbon (SOC) in the bamboo soils was investigated by a combination of 13C CPMAS NMR analysis and with a decomposition incubation experiment in the laboratory. SOC content decreased in the first 5 years after planting of Lei bamboo from the original paddy soil and increased strongly subsequently. The stability of SOC after application of the winter mulch was higher as compared to the original paddy soil with no mulching, indicating that SOC can be stored effectively within Lei bamboo fields under intensive management.  相似文献   

3.
Moso bamboo (Phyllostachys pubescens) has an extremely fast growth rate, however little information is available on the dynamics of carbon accumulation during the fast growth period. Bamboo trunk were sampled at three different stages (1: shoot emergence to first shell detachment; 2: first shell detachment to branch emergence; 3: branch emergence to detachment of all shells) and divided into three parts (upper, middle and lower). The average shoot elongation rate and biomass accumulation rate were 17 cm/d and 96 g/d, respectively. The carbon content increased progressively at the growth stage, and the fixed carbon was partitioned into cell wall hemicellulose and cellulose to meet the demand of rapid cell elongation. Different rates of N, P, K, Ca, and Mg content were found among different parts. These results indicated that the fast growth of the bamboo trunk is related to the extraordinary ability of bamboo to assimilate carbon, but not consistently related to mineral nutrients absorption.  相似文献   

4.
广西马山岩溶次生林群落生物量和碳储量   总被引:1,自引:0,他引:1  
岩溶植被在岩溶生态系统碳循环和全球碳平衡中具有重要的作用。通过对马山县岩溶次生林年龄序列(幼龄林、中龄林和老龄林)3个演替阶段9个样地(20 m×50 m)的系统取样调查,研究了停止人为干扰后岩溶次生林生物量和碳储量的变化。结果表明:沿幼林、中林和老林群落的顺向演替发展,群落生物量显著增加(P0.05),从幼林群落的48.17 t/hm2、到中林群落113.47 t/hm2,再到老林群落242.59 t/hm2。老林生态系统的碳储量较高,平均为236.69 t/hm2,中林和幼林较低且非常相近,分别为225.17 t/hm2和224.76 t/hm2,各次生林生态系统的碳储量差异不显著(P0.05)。土壤碳储量的大小顺序为幼林(198.44 t/hm2)中林(167.39 t/hm2)老林(113.43 t/hm2)。沿群落正向演替,各次生林生态系统中植物碳储量和土壤碳储量的比例发生明显的变化。幼林的土壤碳储量占生态系统碳储量的88.29%,植物碳储量只占11.71%;中林相应为74.34%和25.66%;而老林为47.92%和52.08%。可见,随着岩溶植被的正向演替,土壤碳转变为植物碳的趋势十分明显,这是岩溶森林不同于酸性土森林的一个显著特征。  相似文献   

5.
Dense dwarf bamboo population is a structurally and functionally important component in many subalpine forest systems. To characterize the effects of stem density on biomass, carbon and majority nutrients (N, P, K, Ca and Mg) distribution pattern, three dwarf bamboo (Fargesia denudata) populations with different stem densities (Dh with 220 ± 11 stems m?2, Dm with 140 ± 7 stems m?2, and Dl with 80 ± 4 stems m?2, respectively) were selected beneath a bamboo-fir (Picea purpurea) forest in Wanglang National Nature Reserve, Sichuan, China. Leaf, branch, rhizome, root and total biomass of dwarf bamboo increased with the increase of stem density, while carbon and nutrient concentrations in bamboo components decreased. Percentages of below-ground biomass and element stocks to total biomass and stocks decreased with the increase of stem density, whereas above-ground biomass and element stocks exhibited the opposite tendency. Moreover, more above-ground biomass and elements were allocated to higher part in the higher density population. In addition, percentages of culm biomass, above-ground biomass and element stocks below 100 cm culm height (H100) increased with the increase of stem density, while percentages of branch and leaf biomass below H100 decreased. Pearson’s correlation analyses revealed that root biomass, above-ground biomass, below-ground biomass and total biomass significantly correlated to leaf biomass in H100?200 and total leaf biomass within high density population, while they significantly correlated to leaf biomass in H50?150 within low density population. The results suggested that dwarf bamboo performed an efficient adaptive strategy to favor limited resources by altering biomass, carbon and nutrients distribution pattern in the dense population.  相似文献   

6.
Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15–20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the tree plantations, which had fully developed, closed canopies, allocated more carbon belowground - to their root systems - than did mature forest. This increase in belowground carbon allocation correlated significantly with aboveground tree growth but not with canopy production (i.e., leaf fall or fine litter production). In contrast, there were no correlations between canopy production and either tree growth or belowground carbon allocation. Enhanced allocation of carbon to root systems can enhance plant nutrient uptake, providing nutrients beyond those required for the production of short-lived tissues such as leaves and fine roots, and thus enabling biomass accumulation. Our analyses support this deduction at our site, showing that enhanced allocation of carbon to root systems can be an important mechanism promoting biomass accumulation during forest growth in the moist tropics. Identifying factors that control when, where and for how long this occurs would help us to improve models of forest growth and nutrient cycling, and to ascertain the role that young forests play in mitigating increased atmospheric carbon dioxide.  相似文献   

7.
为了弄清毛竹(Phyllostachys edulis)向针阔林扩张过程中根系的形态可塑性反应,在浙江天目山自然保护区毛竹向针阔林扩张的典型过渡地带,连续区域上设置毛竹纯林、针阔-毛竹混交林(以下简称过渡林)、针阔林3种样地。用根钻法采集样地毛竹根系、针阔树根系并比对其生物量密度、细根比根长、相邻同级侧根节点距等形态特征参数变化。结果表明:随着毛竹的扩张程度增加,林内根系生物量密度增加;且与针阔树竞争过程中毛竹将更多的根系放置于表层;同时在水平方向上随离样株距离的增加未出现明显变化,而针阔树根系则随离样木距离的增加而逐渐减少;毛竹根系比根长明显增加,平均增幅15%;一、二级侧根节点距则均有所下降,毛竹侧根数量增多。这些结果表明毛竹种群可通过根系生物量密度、细根比根长、相邻同级侧根节点距等形态可塑性方式实现向周边森林扩张。  相似文献   

8.
不同林龄麻栎林地下部分生物量与碳储量研究   总被引:1,自引:0,他引:1  
王霞  胡海波  张世豪  卢洪霖 《生态学报》2019,39(22):8556-8564
探讨不同林龄麻栎林地下部分根系的生物量与碳储量,为麻栎林的经营管理及碳汇管理等提供科学依据。以江苏省句容市不同林龄(幼龄林、中龄林、近熟林、成熟林)的麻栎林为研究对象,采用全根挖掘法获取麻栎各级根系及灌草层根系,并测定其生物量、碳含量,构建麻栎根系生物量模型,估算麻栎林地下部分根系碳储量及麻栎林群落碳储量。通过11种数学回归模型的比较,构建麻栎各级根系生物量幂回归模型,计算得到幼龄林、中龄林、近熟林、成熟林麻栎根系生物量分别为14.81t/hm~2、41.15t/hm~2、50.36t/hm~2、53.75t/hm~2,各级根系生物量大小顺序是:根桩粗根大根细根;灌木与草本植物根系生物量分别为0.48—1.71t/hm~2、0.13—0.60t/hm~2;不同林龄麻栎林群落根系生物量为15.42—56.06t/hm~2,且随林龄的增大而增大。麻栎根系碳含量大小顺序为:根桩粗根大根细根,且碳含量差异显著;灌木与草本植物根系碳含量分别为41.84%—43.79%、34.03%—38.48%,随林龄变化均无明显变化规律。麻栎林乔木根系碳储量随林龄增大而增大,幼龄林、中龄林、近熟林、成熟林根系碳储量分别为6.01t/hm~2、17.41t/hm~2、21.79t/hm~2、21.99t/hm~2;灌木与草本植物根系碳储量均随林龄增大而增大;幼龄林、中龄林、近熟林、成熟林群落根系碳储量分别为6.26t/hm~2、17.74t/hm~2、22.37t/hm~2、22.94t/hm~2,且乔木层灌木层草本层。麻栎林地下部分根系生物量与碳储量随林龄的增大而增大,幼龄林到近熟林生长过程中生物量与碳储量增加快速,近熟林后生物量与碳素积累缓慢,且与成熟林接近。  相似文献   

9.
In western and central Japan, the expansion of exotic moso bamboo (Phyllostachys pubescens Mazel ex J. Houz.) populations into neighboring vegetation has become a serious problem. Although the effects of bamboo invasion on biodiversity have been well studied, shifts in nutrient stocks and cycling, which are fundamental for ecosystem functioning, are not fully understood. To explore the effects of P. pubescens invasion on ecosystem functions we examined above‐ and below‐ground dry matter and carbon (C) and nitrogen (N) stocks in a pure broad‐leaved tree stand, a pure bamboo stand, and two tree–bamboo mixed stands with different vegetation mix ratios in the secondary forest of Kyoto, western Japan. In the process of invasion, bamboo shoots offset broad‐leaved tree deaths; thus, no clear trend was apparent in total above‐ or below‐ground biomass or in plant C and N stocks during invasion. However, the ratio of above‐ground to below‐ground biomass (T/R ratio at the stand level) decreased with increasing bamboo dominance, especially in the early stages of invasion. This shift indicates that rapid bamboo rhizomatous growth is a main driver of substantial changes in stand structure. We also detected rises in the C/N ratio of forest‐floor organic matter during bamboo invasion. Thus major impacts of P. pubescens invasion into broad‐leaved forests include not only early shifts in biomass allocation, but also changes in the distribution pattern of C and N stored in plants and soil.  相似文献   

10.
苦竹(Pleioblastus amarus)是优质笋材兼用竹种,分布广。为探究界面区苦竹分株秆形及地上构件生物量分配格局的变化特征,解析苦竹对异质生境适应机制,该研究选取了相邻的苦竹林和苦竹-杉木(Cunninghamia lanceolata)混交林两种林分类型,分别测定了苦竹林和混交林中心区及界面区不同龄级立竹秆形和秆、枝、叶的生物量,分析立竹秆形及地上构件生物量积累、分配、异速生长关系的差异。结果表明:(1)界面区1 a立竹生物量积累及分配差异增大,其中苦竹林界面区各构件相对生物量和叶生物量分配比例提高,而混交林界面区各构件相对生物量和叶生物量分配比例降低; 2 a立竹生物量积累及分配比例的差异缩小,界面区两边2 a立竹各构件相对生物量和生物量分配比例均无明显差异。(2)界面区立竹秆形特征及1 a立竹各构件生物量异速生长关系均无明显变化,而苦竹林界面区2 a立竹秆的增长速率提高,枝、叶的增长速率降低。综上认为,苦竹通过权衡资源分配关系,明显改变界面区立竹秆形及生物量分配格局,以提高克隆分株对异质环境的适合度。  相似文献   

11.
以上海地区黄浦江中上游杨树人工林为研究对象,构建了杨树立木及各器官(根、干、皮、枝、叶)生物量方程,并对杨树人工林林分生物量(乔木层、地表枯落物层)、碳储量和土壤碳储量进行了估测。结果表明:杨树立木及各器官的生物量方程拟合效果较好(R2=0.96~0.99,P0.001)。9年生杨树人工林生态系统碳储量为90.9 t·hm-2。其中乔木层碳储量所占比例为36.6%,乔木层各组分碳储量大小排序为树干树根树枝树皮树叶;地表枯落物层碳储量所占比例仅为1.7%。土壤碳储量(0~50 cm)所占比例最大,为61.6%。这些杨树人工幼龄林正处于快速生长阶段,对上海地区人工林碳汇经营具有重要意义。  相似文献   

12.
Bamboo is a fast-growing renewable biomass that is widely distributed in Asia. Although bamboo is recognised as a useful resource, its utilization is limited and further development is required. Immature bamboo shoots harvested before branch spread were found to be a good biomass resource to achieve a high saccharification yield. The saccharification yield of the shoots increased (up to 98% for immature Phyllostachys bambusoides) when xylanase was used in addition to cellulase. Simultaneous saccharification and fermentation (SSF) processing converted immature shoots of P. bambusoides and Phyllostachys pubescens to ethanol with an ethanol yield of 169 and 139 g kg−1, respectively (98% and 81%, respectively, of the theoretical yields based on hexose conversion) when 12 FPU g−1 enzyme and the yeast Saccharomyces cerevisiae were used.  相似文献   

13.

The hyperaccumulator Sedum alfredii Hance (S. alfredii) may be employed for zinc (Zn) and cadmium (Cd)-polluted soil remediation. However, the low phytoremediation efficiency, related to the low biomass production, limits its use with that purpose. In this experiment, nitrogen (N), phosphorus (P), and potassium (K) fertilizers, and organic manure were applied to investigate the phytoremediation ability of S. alfredii. Hydroponic and pot experiments were conducted using Zn-Cd polluted soil. The hydroponic experiment indicated that appropriate fertilizer application could increase (p < 0.05) the amount of accumulated Zn and Cd in S. alfredii. When N supply ranged from 0.5 to 2.5 mmol L−1, it could improve growth and accumulation of Zn and Cd in whole plants of S. alfredii. The 1 mmol L-1 N was an optimal N dosage for shoot biomass production and Cd accumulation in shoots, while the 2.5 mmol L-1 was an optimal N dosage for Zn accumulation in shoots. Both low (<0.05 mmol L-1) and high (>0.8 mmol L-1) P supply decreased growth, and Zn/Cd accumulation in whole plants of the studied species. The 0.1 mmol L-1 P was an optimal dosage for S. alfredii biomass production and Zn/Cd accumulation in shoots. The supply levels within the range from 0.3 to 1 mmol L-1 K could significantly improve the biomass production of S. alfredii and its capability to accumulate Zn and Cd in the biomass. The 0.5 mmol L-1 K was an optimal dosage for the whole biomass production and Zn accumulation in shoots, while the 1 mmol L-1 was an optimal K dosage for Zn accumulation in shoots, which was 17.2% higher than the control. Moreover, the soil pot experiment showed that the combination of organic (fermented manure) and inorganic fertilizers made significant effects on the Zn and Cd-polluted soil remediation by S. alfredii. These effects varied, however, with the application of different proportions of N, P, K and organic matter. The Zn accumulation by S. alfredii reached the highest efficiency ability under the highest fertilizer mixing rate (N: 50 mg kg-1, P: 40 mg kg-1, K: 100 mg kg-1, organic matter: 1%). Even more, S. alfredii showed the strongest ability to accumulate Cd with a lower fertilizer mixing rate (N: 25mg kg-1, P: 20mg kg-1, K: 50 mg kg-1, organic matter: 0.5%).

  相似文献   

14.
森林在陆地生态系统吸收碳素方面起着主要作用,了解其固碳特征对研究地区之间的碳循环至关重要。油松人工林是黄土高原地区一种典型的退耕还林树种,研究其固碳特征有利于综合分析评价油松人工林的生态效益。为了研究黄土高原西部地区油松人工林碳储量及碳密度空间分布特征因降水量不同引起的差异,以黄土高原西部地区3个典型栽培区域的近成熟油松人工林为对象,研究了群落内各组成部分的生物量和碳库特征。乔木层生物量的估算采用以胸径和树高为基础变量的生物量方程,灌木、草本、凋落物采用样方收获法,土壤碳库依据土壤剖面(1 m)和土钻取样相结合的方法测算。结果表明:在兰州官蘑滩地区(372 mm)、太子山(519 mm)和小陇山(632 mm)3个不同降水量区域,油松人工林生物量碳密度分别为(49.08±2.86)t/hm~2、(73.90±9.36)t/hm~2和(82.55±7.36)t/hm~2。小陇山地区的生态系统总碳密度和生物量碳密度与兰州地区存在显著性差异。在3个不同降水量区域,土壤有机碳密度仅在表层土壤(0—10 cm)差异达到显著水平(P0.05),而土壤总碳密度间差异未达到显著水平(P0.05)。黄土高原半干旱区近成熟油松人工林的生物量碳密度与年均降水量间呈现出显著正相关关系。在半干旱地区,降水量可能成为影响油松人工林生产力和碳固存的关键因素。  相似文献   

15.
Causal analysis of the invasion of broad-leaved forest by bamboo in Japan   总被引:3,自引:0,他引:3  
Abstract. In southwestern Tokyo the area covered by bamboo forest has expanded by a factor of 2.7 over the last 26 years. This has mainly been due to bamboo (Phyllostachyspubescens) invading secondary broad-leaved forests, probably after these were abandoned. In the first stage, bamboo sprouts develop from rhizomes at the periphery of the broad-leaved forest and then grow very quickly into young culms. In the next phase culm density increases annually, while the existing broad-leaved trees gradually lose their vitality and die. Finally, the broad-leaved forest is completely replaced by bamboo forest. The competitive ability of bamboo, based on its morphological and growth features, is suggested as the causal factor for the invasion: (1) bamboo can invade a neighboring broad-leaved forest by its vigorous rhizomes; (2) young bamboo culms can break through the canopy of broad-leaved trees; (3) bamboo quickly forms a crown in or above the canopy of the broad-leaved forest; (4) bamboo is very tolerant of strong wind and heavy snow accumulation; (5) bamboo culms, being very pliable during strong wind mechanically damage neighbouring broad-leaved trees.  相似文献   

16.
毛竹种群向常绿阔叶林扩张的细根策略   总被引:2,自引:0,他引:2       下载免费PDF全文
为了探讨毛竹(Phyllostachys pubescens)种群向常绿阔叶林扩张的根系策略, 该文采用根钻法和内生长法, 在江西大岗山选取毛竹林与阔叶林的交错区——竹阔界面(bamboo-broad-leaved forest interface), 并垂直于界面连续设置毛竹林、毛竹与阔叶树的混交林(以下简称为竹阔混交林)、常绿阔叶林3种样地, 比较分析其细根的空间分布格局、比根长、根长密度、生长速率和周转率等指标。结果表明: 毛竹林细根生物量(1201.60 g·m-2) >竹阔混交林(601.18 g·m -2) >常绿阔叶林(204.88 g·m -2); 在毛竹与阔叶树竞争的混交林中, 毛竹细根分布趋向于上层土壤(与毛竹林细根相比), 且其比根长也显著增加, 平均增幅高达123.42%, 总根长密度比阔叶树大2.1倍; 同时, 毛竹细根生长速率和周转率均高于阔叶树。这些结果说明毛竹可通过广布、精准、灵活、快速等细根竞争策略, 提高资源获取能力, 实现种群扩张。  相似文献   

17.
Using long-term (22 years) measurements from a young and an old-growth subtropical forest in southern China, we found that both forests accumulated carbon from 1982 to 2004, with the mean carbon accumulation rate at 227 ± 59 g C m−2 year−1 for young forest and 115 ± 89 g C m−2 year−1 for the old-growth forest. Allocation of the accumulated carbon was quite different between these two forests: the young forest accumulated a significant amount of carbon in plant live biomass, whereas the old-growth forest accumulated a significant amount of carbon in the soil. From 1982 to 2004, net primary productivity (NPP) increased for the young forest, and did not change significantly for the old-growth forest. The increase in NPP of the young forest resulted from recruitment of some dominant tree species characteristic of the subtropical mature forest in the region and an increase in tree density; decline of NPP of the old-growth forest was caused by increased mortality of the dominant trees.  相似文献   

18.
《农业工程》2020,40(6):478-482
Climbers and lianas occupy an important niche in the forest ecosystem. However, as compared to trees, studies on diversity and ecology of this life form of forest remains neglected. Thus a study was carried out at sub-humid tropical foothill forest of West Bengal, India to document the status of climber and liana diversity, biomass and carbon accumulation. Qualitative and quantitative characters were analysed with the help of random quadrate sampling method. Species richness of the climbers and liana in the forest was 42. The diversity index, concentration of dominance, Shannon and Wiener index and evenness index was estimated at 0.92, 0.038, 1.26 and 1.55, respectively. Density ranged from 15.47 to 722.81 individuals ha−1. IVI values ranged from 0.19 to 4.44. This indicates the climber and liana communities in the forest are diverse but dominance distributed. Biomass and carbon storage was highest with LSDS1.50 and 0.68 Mg ha−1, respectively and lowest with TGDS. Climber and liana ccommunities were recorded with good growth inside the forest which was reflected in their good quantity of biomass accumulation and thus have a great potential to store good quantity of biomass carbon and support the ecosystem. Understanding the forest plant life forms other than trees will be helpful to understand their ecological significance while managing the forests sustainably. The information though in the present study is only baseline and preliminary but can be helpful to plan future research to understand the contribution of these plant life forms in a forest ecosystem holistically.  相似文献   

19.
为探讨不同成林时间扩鞭繁殖毛竹林的碳、氮贮量变化特征,以撂荒地和14年生杉木林为对照,对不同成林时间扩鞭繁殖毛竹林的碳、氮变化动态进行了研究。结果表明,林地的碳、氮贮量均显著高于撂荒地;而14年生杉木林转化为毛竹林后,碳贮量短暂下降后快速上升,成林10年毛竹林的碳贮量达到最大,其后随着“林龄”的增长呈下降的趋势。成林时间超过10年的毛竹林的氮贮量显著高于14年生的杉木林,而成林5年毛竹林的氮贮量低于杉木林。几种类型林分系统的碳、氮贮量均为土壤层>乔木层>凋落物层>林下植被层,且乔木层碳、氮贮量比例越大,土壤层碳氮贮量比例越低。毛竹林凋落物碳、氮贮量高于撂荒地,低于杉木林;但毛竹林凋落物层碳氮贮量随着成林时间的延长而降低,毛竹林较低的凋落物碳氮贮量可能会影响毛竹林的持续固碳能力。因此,平衡乔木层和土壤层的碳氮贮量是森林实现科学经营的关键。  相似文献   

20.
Biometric based carbon flux measurements were conducted over 5 years (1999–2003) in a temperate deciduous broad-leaved forest of the AsiaFlux network to estimate net ecosystem production (NEP). Biometric based NEP, as measured by the balance between net primary production (including NPP of canopy trees and of forest floor dwarf bamboo) and heterotrophic respiration (RH), clarified the contribution of various biological processes to the ecosystem carbon budget, and also showed where and how the forest is storing C. The mean NPP of the trees was 5.4 ± 1.07 t C ha−1 y−1, including biomass increment (0.3 ± 0.82 t C ha−1 y−1), tree mortality (1.0 ± 0.61 t C ha−1 y−1), aboveground detritus production (2.3 ± 0.39 t C ha−1 y−1) and belowground fine root production (1.8 ± 0.31 t C ha−1 y−1). Annual biomass increment was rather small because of high tree mortality during the 5 years. Total NPP at the site was 6.5 ± 1.07 t C ha−1 y−1, including the NPP of the forest floor community (1.1 ± 0.06 t C ha−1 y−1). The soil surface CO2 efflux (RS) was averaged across the 5 years of record using open-flow chambers. The mean estimated annual RS amounted to 7.1 ± 0.44 t C ha−1, and the decomposition of soil organic matter (SOM) was estimated at 3.9 ± 0.24 t C ha−1. RH was estimated at 4.4 ± 0.32 t C ha−1 y−1, which included decomposition of coarse woody debris. Biometric NEP in the forest was estimated at 2.1 ± 1.15 t C ha−1 y−1, which agreed well with the eddy-covariance based net ecosystem exchange (NEE). The contribution of woody increment (Δbiomass + mortality) of the canopy trees to NEP was rather small, and thus the SOM pool played an important role in carbon storage in the temperate forest. These results suggested that the dense forest floor of dwarf bamboo might have a critical role in soil carbon sequestration in temperate East Asian deciduous forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号