首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R P Wharton  E L Brown  M Ptashne 《Cell》1984,38(2):361-369
It has been suggested that many DNA-binding proteins use an alpha-helix for specific sequence recognition. We have used amino acid sequence homologies to identify the presumptive DNA-recognition helices in two related proteins whose structures are unknown--the repressor and cro protein of bacteriophage 434. The 434 repressor and cro protein each bind to three similar sites in the rightward phage 434 operator, OR, and they make different contacts in each binding site, as revealed by the chemical probe dimethyl sulfate. We substituted the putative recognition alpha-helix of 434 repressor with the putative recognition alpha-helix of 434 cro protein to create a hybrid protein named repressor*. The specific DNA contacts made by repressor* are like those of 434 cro protein.  相似文献   

2.
The IS30 transposase exhibits significant amino acid sequence homology to the phage Mu repressor c in the amino- and carboxy-terminal regions of the proteins. The conserved sequences include the proposed Mu repressor DNA binding site, which is also related to the proposed Mu and D108 transposase DNA binding sites. The carboxy-terminal homologies are characterised by two almost complete, and one partial, somewhat diverged amino acid sequence repeats. Only weak homologies to this domain are present in the Mu transposase (Mu A). Nevertheless, a clear link between an insertion sequence and a bacteriophage has been established.  相似文献   

3.
4.
W Mandecki  M H Caruthers 《Gene》1984,31(1-3):263-267
A set of the lac promoter mutants that have varying lengths of the spacer between the CAP binding site and the -35 region was constructed. The mutants have the spacer length increased by five (I5 mutant), or eleven (I11) residues or decreased by eleven residues (D11). We also present a construction of the hybrid between the gal and lac promoters in which the CAP binding site and the -35 region of the gal promoter are fused to the lac -10 region. The promoter fragments were assembled through ligations of chemically synthesized oligodeoxynucleotides and cloned into a pBR322-derivative vector. The results of the in vivo assays of promoter activity show that the I11 mutation results in an active but weak promoter that can be stimulated by CAP, though to a lesser degree than the wild-type lac promoter. The other mutants exhibit no promoter activity. Since the insertion of 11-bp preserves the location of the CAP binding site on the same side on the DNA helix, the data demonstrate the importance of spatial alignment between the CAP binding site and the promoter. The fact that the gal::lac hybrid is inactive as a promoter indicates also that catabolite activation is a highly complex process in which the -35 and -10 regions cannot be easily exchanged between promoters.  相似文献   

5.
Proteins which recognize specific sequences of DNA play a fundamental role in the regulation of protein synthesis in all organisms. A particular helix of the bacterial protein lac repressor recognizes the bases in the major groove of the lac operator. We show that the first two residues of this recognition helix interact independently with two base pairs. This allows us in many cases to predict repression as an indicator of strength of the repressor-operator complex. Rules of recognition can be derived for 16 symmetric operators. They also apply to the gal repressor and possibly to other bacterial repressors.  相似文献   

6.
7.
The binding of E. coli catabolite gene activator protein (CAP) to non-specific sequences of DNA has been modelled as an electrostatic interaction between four basic side chains of the CAP dimer and the charged phosphates of DNA. Calculation of the electrostatic contribution to the binding free energy at various separations of the two molecules shows that complex formation is favored when CAP and DNA are separated by as much as 12 A. Thus, the long range electrostatic interactions may provide the initial energy for complex formation and also the correct relative orientation of CAP and DNA. The non-specific complex does not involve the penetration of amino acid side chains into the major grooves of DNA and permits 'sliding' of the protein along DNA, which would enhance the rate of association of CAP with the specific site as has been proposed previously for lac repressor. We propose that, as it 'slides', CAP is moving in and out of the major grooves in order to sample the DNA sequence. Recognition of the specific DNA site is achieved by a complementarity in structure and hydrogen bonding between amino acids and the edges of base pairs exposed in the major grooves of DNA.  相似文献   

8.
J Chen  S Pongor    A Simoncsits 《Nucleic acids research》1997,25(11):2047-2054
Single-chain derivatives of the phage 434 repressor, termed single-chain repressors, contain covalently dimerized DNA-binding domains (DBD) which are connected with a peptide linker in a head-to-tail arrangement. The prototype RR69 contains two wild-type DBDs, while RR*69 contains a wild-type and an engineered DBD. In this latter domain, the DNA- contacting amino acids of thealpha3 helix of the 434 repressor are replaced by the corresponding residues of the related P22 repressor. We have used binding site selection, targeted mutagenesis and binding affinity studies to define the optimum DNA recognition sequence for these single-chain proteins. It is shown that RR69 recognizes DNA sequences containing the consensus boxes of the 434 operators in a palindromic arrangement, and that RR*69 optimally binds to non-palindromic sequences containing a 434 operator box and a TTAA box of which the latter is present in most P22 operators. The spacing of these boxes, as in the 434 operators, is 6 bp. The DNA-binding of both single-chain repressors, similar to that of the 434 repressor, is influenced indirectly by the sequence of the non-contacted, spacer region. Thus, high affinity binding is dependent on both direct and indirect recognition. Nonetheless, the single-chain framework can accommodate certain substitutions to obtain altered DNA-binding specificity and RR*69 represents an example for the combination of altered direct and unchanged indirect readout mechanisms.  相似文献   

9.
The CI protein of coliphage 186 is responsible for maintaining the stable lysogenic state. To do this CI must recognize two distinct DNA sequences, termed A type sites and B type sites. Here we investigate whether CI contains two separate DNA binding motifs or whether CI has one motif that recognizes two different operator sequences. Sequence alignment with 186-like repressors predicts an N-terminal helix-turn-helix (HTH) motif, albeit with poor homology to a large master set of such motifs. The domain structure of CI was investigated by linker insertion mutagenesis and limited proteolysis. CI consists of an N-terminal domain, which weakly dimerizes and binds both A and B type sequences, and a C-terminal domain, which associates to octamers but is unable to bind DNA. A fusion protein consisting of the 186 N-terminal domain and the phage lambda oligomerization domain binds A and B type sequences more efficiently than the isolated 186 CI N-terminal domain, hence the 186 C-terminal domain likely mediates oligomerization and cooperativity. Site-directed mutation of the putative 186 HTH motif eliminates binding to both A and B type sites, supporting the idea that binding to the two distinct DNA sequences is mediated by a variant HTH motif.  相似文献   

10.
Comparison of the amino acid sequences of 13 procaryotic regulatory proteins, including the products of genes crp (catabolite activator protein; CAP), lacI, galR , lexA, lysR, araC, trpR, and tnpR of Escherichia coli, of genes cI, cII and cro of phage lambda, cro of phage 434, and c2 of phage P22, has revealed two regions of homology. The sites of action of these proteins also share common features in their DNA sequence. Taking into account the models proposed for the lambda repressors, cro and cI, and for CAP, a general type of DNA-protein interaction is suggested.  相似文献   

11.
Each of 22 amino acids in the proposed alpha-helix-turn-alpha-helix operator binding motif of the Tn10 encoded Tet repressor was replaced by alanine and one residue was replaced by valine to determine their role in tet operator recognition by a 'loss of contact' analysis with 16 operator variants. One class of amino acids consisting of T27 and R28 in the first alpha-helix and L41, Y42, W43 and H44 in the recognition alpha-helix are quantitatively most important for wild-type operator binding. These residues are probably involved in the structural architecture of the motif. A second class of residues is quantitatively less important for binding, but determines specificity by forming base pair specific contacts to three positions in tet operator. This property is most clearly demonstrated for Q38 and P39 and to a lesser extent for T40 at the N-terminus of the recognition alpha-helix. The contacted operator base pairs indicate that the N-terminus of the recognition alpha-helix is located towards the palindromic center in the repressor-operator complex. Although the orientation of the recognition alpha-helix in the Tet repressor-tet operator complex is inversed as compared with the lambda- and 434 repressor-operator complexes, the reduced operator binding of the TA27 mutation in the first alpha-helix suggests that the hydrogen bonding networks connecting the two alpha-helices may be similar in these proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
DNA binding properties of the LexA repressor   总被引:21,自引:0,他引:21  
  相似文献   

13.
14.
The Tn10 derived Tet repressor contains an amino acid segment with high homology to the alpha-helix-turn-alpha-helix motif (HTH) of other DNA binding proteins. The five most conserved amino acids in HTH are probably involved in structural formation of the motif. Their functional role was probed by saturation mutagenesis yielding 95 single amino acid replacement mutants of Tet repressor. Their binding efficiencies to tet operator were quantitatively determined in vivo. All functional mutants contain amino acid substitutions consistent with their proposed role in a HTH. In particular, only the two smallest amino acids (serine, glycine) can substitute a conserved alanine in the proposed first alpha-helix without loss of activity. The last position of the first alpha-helix, the second position in the turn, and the fourth position in the second alpha-helix require mostly hydrophobic residues. The proposed C-terminus of the first alpha-helix is supported by a more active asparagine compared to glutamine replacement mutant of the wt leucine residue. The turn is located close to the protein surface as indicated by functional lysine and arginine replacements for valine. A glycine residue at the first position in the turn can be replaced by any amino acid yielding mutants with at least residual tet operator affinity. A structural model of the HTH of Tet repressor is presented.  相似文献   

15.
The amino acid sequence of EcoRV DNA methyltransferase which methylates the amino group of the 5'-adenine residue of the target sequence GATATC has been found to be closely related to that of three other adenine methyltransferases, DpnII, dam and damT4, the target sequence of which is GATC. Despite large differences on the DNA level, the four sequences show four blocks of homologies. One of these blocks has the sequence DVYXDPPY and is found with little modification in numerous other DNA methyltransferases. It is speculated that it could be the binding site of the methyl donor, S-adenosylmethionine. On the other hand, the identification of a DNA-binding region is more tenuous. As expected, no analogies with (dimeric) repressors and cro proteins which have the characteristic helix-turn-helix motif have been observed.  相似文献   

16.
17.
We have studied the binding of the CAP protein to an 18 base pair lac promoter sequence comprising the core of the CAP recognition sequence. Specific binding of this sequence was established by competition binding assays and comparison of the relative affinities of a number of lac promoter, lac operator, and unspecific sequences of different lengths. The effect of the binding of CAP to the 18 base pair promoter sequence and, for comparison, to an 18 base pair symmetric operator and an oligonucleotide of unrelated sequence have been studied by 1H NMR. Binding of CAP does not bring about any changes in the chemical shift values of the imino proton resonances of the DNA, but causes the selective line broadening of two of the resonances. The comparison of these data with results of gel retardation assays published previously (1) allows the identification and localization of a kink induced in the DNA by the CAP binding to its specific site on the lac promoter.  相似文献   

18.
19.
The Bacillus subtilis phage phi 105 repressor specifically recognizes a 14-bp operator sequence which does not exhibit 2-fold rotational symmetry. To facilitate a genetic analysis of this sequence-dependent DNA binding a B. subtilis strain was constructed in which mutations affecting the phi 105 repressor-operator interaction cause a selectable phenotype, chloramphenicol resistance. After in vivo mutagenesis, we isolated and mapped 22 different mutations in the repressor coding sequence, 15 of which are missense substitutions. These are exclusively located in the N-terminal part (positions 1-43) of the 144 residue long polypeptide. Two nonsense mutants, at positions 70 and 89, respectively, still show partial repressor activity. These data suggest that the phi 105 repressor consists of at least two independently folding structural domains, of which the N-terminal is involved in operator binding. Twelve missense mutations are clustered in a region extending from Gln-18 to Arg-37, which we propose to be the DNA-binding alpha-helix--beta-turn--alpha-helix motif, common to all lambda Cro-like repressors. The second ('recognition') helix shows significant homology with the corresponding sequence in Tn3 resolvase, and there is also a striking similarity between the phi 105 operator and the consensus sequence for a Tn3 res half-site. Based on these observations, and on the previously isolated phi 105 0c mutants, we tentatively assign some specific contacts between base pairs from the first half of a phi 105 operator site and amino acids from the repressor's 'recognition helix'.  相似文献   

20.
The chromosomal lac operator of Escherichia coli was replaced by a 22 bp oligonucleotide containing the binding site of the yeast gal4 protein. Induction of gal4 protein synthesis in these bacteria repressed beta-galactosidase synthesis at least 30-fold. These results show that it is possible to detect in bacteria with a simple assay the DNA binding activity of a eukaryotic protein with a defined sequence specificity. This opens new avenues for the isolation in E. coli of mutants of DNA binding proteins unable to bind to their DNA targets, and for direct cloning in bacteria of cDNA coding for DNA binding proteins with defined sequence specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号