首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epstein-Barr virus (EBV) is a ubiquitous herpesvirus associated with infectious mononucleosis and several tumors. The BARF1 gene is transcribed early after EBV infection from the BamHI A fragment of the EBV genome. Evidence shown here indicates that the BARF1 protein is secreted into the medium of transfected cells and from EBV-carrying B cells induced to allow lytic replication of the virus. Expression cloning identified colony-stimulating factor-1 (CSF-1) as a ligand for BARF1. Computer-assisted analyses indicated that subtle amino acid sequence homology exists between BARF1 and c-fms, the cellular proto-oncogene that is the receptor for CSF-1. Recombinant BARF1 protein was found to be biologically active, and it neutralized the proliferative effects of human CSF-1 in a dose-dependent fashion when assayed in vitro. Since CSF-1 is a pleiotropic cytokine best known for its differentiating effects on macrophages, these data suggest that BARF1 may function to modulate the host immune response to EBV infection.  相似文献   

2.
Epstein-Barr virus (EBV) recombinants with specifically mutated BCRF1 genes were constructed and compared with wild-type BCRF1 recombinants derived in parallel for the ability to initiate and maintain latent infection and growth transformation in primary human B lymphocytes. A stop codon insertion after codon 116 of the 170-codon BCRF1 open reading frame or deletion of the entire gene had no effect on latent infection, B-lymphocyte proliferation into long-term lymphoblastoid cell lines (LCLs), or virus replication. LCLs infected with the stop codon recombinant were indistinguishable from wild-type recombinant-infected LCLs in tumorigenicity in SCID mice. However, mutant BCRF1 recombinant-infected cells differed from wild-type recombinant-infected cells in their inability to block gamma interferon release in cultures of permissively infected LCLs incubated with autologous human peripheral blood mononuclear cells. This is the first functional assay for BCRF1 expression from the EBV genome. BCRF1 probably plays a key role in modulating the specific and nonspecific host responses to EBV infection.  相似文献   

3.
A Burkitt lymphoma cell line infected in vitro with a transformation-defective mutant recombinant Epstein-Barr virus (EBV) was used to attempt marker rescue of transformation competence by transfection with cloned wild-type DNA. EBV replication was induced in the transfected cells, and wild-type EBV DNA recombined via flanking homologous sequences adjacent to the deletion, resulting in a virus which transformed primary B lymphocytes in vitro. This strategy should be useful for molecular genetic analysis of the role of part or all of any gene in cell growth transformation.  相似文献   

4.
A recombinant Epstein-Barr virus (EBV) was constructed, with a positive-selection marker inserted at the site of a deletion of a DNA segment which encodes the first five transmembrane domains of LMP2A and LMP2B. Despite the mutation, the mutant recombinant EBV was able to initiate and maintain primary B-lymphocyte growth transformation in vitro. Cells transformed with the mutant recombinant were not different from wild-type virus transformants in initial or long-term outgrowth, sensitivity to limiting cell dilution, or serum requirement. Expression of EBNA1, EBNA2, EBNA3A, EBNA3C, and LMP1 and permissivity for lytic EBV infection were also unaffected by the LMP2 deletion mutation. These results complete the molecular genetic studies proving LMP2 is dispensable for primary B-lymphocyte growth transformation, latent infection, and lytic virus replication in vitro.  相似文献   

5.
Acute Epstein-Barr virus (EBV) infection is the most common cause of Infectious Mononucleosis. Nearly all adult humans harbor life-long, persistent EBV infection which can lead to development of cancers including Hodgkin Lymphoma, Burkitt Lymphoma, nasopharyngeal carcinoma, gastric carcinoma, and lymphomas in immunosuppressed patients. BARF1 is an EBV replication-associated, secreted protein that blocks Colony Stimulating Factor 1 (CSF-1) signaling, an innate immunity pathway not targeted by any other virus species. To evaluate effects of BARF1 in acute and persistent infection, we mutated the BARF1 homologue in the EBV-related herpesvirus, or lymphocryptovirus (LCV), naturally infecting rhesus macaques to create a recombinant rhLCV incapable of blocking CSF-1 (ΔrhBARF1). Rhesus macaques orally challenged with ΔrhBARF1 had decreased viral load indicating that CSF-1 is important for acute virus infection. Surprisingly, ΔrhBARF1 was also associated with dramatically lower virus setpoints during persistent infection. Normal acute viral load and normal viral setpoints during persistent rhLCV infection could be restored by Simian/Human Immunodeficiency Virus-induced immunosuppression prior to oral inoculation with ΔrhBARF1 or infection of immunocompetent animals with a recombinant rhLCV where the rhBARF1 was repaired. These results indicate that BARF1 blockade of CSF-1 signaling is an important immune evasion strategy for efficient acute EBV infection and a significant determinant for virus setpoint during persistent EBV infection.  相似文献   

6.
Rhesus macaques are naturally infected with a gammaherpesvirus which is in the same lymphocryptovirus (LCV) genus as and closely related to Epstein-Barr virus (EBV). The rhesus macaque LCV (rhLCV) contains a repertoire of genes identical to that of EBV, and experimental rhLCV infection of naive rhesus macaques accurately models acute and persistent EBV infection of humans. We cloned the LCL8664 rhLCV strain as a bacterial artificial chromosome to create recombinant rhLCV for investigation in this animal model system. A recombinant rhLCV (clone 16 rhLCV) carrying a mutation in the putative immune evasion gene rhBARF1 was created along with a rescued wild-type (rWT) rhLCV in which the rhBARF1 open reading frame (ORF) was repaired. The rWT rhLCV molecular clone demonstrated viral replication and B-cell immortalization properties comparable to those of the naturally derived LCL8664 rhLCV. Qualitatively, clone 16 rhLCV carrying a mutated rhBARF1 was competent for viral replication and B-cell immortalization, but quantitative assays showed that clone 16 rhLCV immortalized B cells less efficiently than LCL8664 and rWT rhLCV. Functional studies showed that rhBARF1 could block CSF-1 cytokine signaling as well as EBV BARF1, whereas the truncated rhBARF1 from clone 16 rhLCV was a loss-of-function mutant. These recombinant rhLCV can be used in the rhesus macaque animal model system to better understand how a putative viral immune evasion gene contributes to the pathogenesis of acute and persistent EBV infection. The development of a genetic system for making recombinant rhLCV constitutes a major advance in the study of EBV pathogenesis in the rhesus macaque animal model.  相似文献   

7.
A Marchini  J I Cohen  F Wang    E Kieff 《Journal of virology》1992,66(5):3214-3219
The derivation of specifically mutated Epstein-Barr virus (EBV) recombinants is dependent on strategies to identify, enumerate, and clone infected B lymphocytes. In recent experiments, EBV recombinants containing a positive selection marker were identified and cloned in B-lymphoma (BL) cells infected and then plated under selective conditions (F. Wang, A. Marchini, and E. Kieff, J. Virol. 65:1701-1709, 1991). We now use BL cells, for the first time, as hosts for assaying and cloning otherwise isogenic EBV recombinants carrying a hygromycin phosphotransferase (HYG) gene linked to either a nontransforming deletion mutant or a transforming wild-type EBV nuclear antigen 2 (EBNA-2) gene. Both types of recombinants converted BL cells to hygromycin resistance with similar efficiency, formed episomes, and usually expressed only EBNA-1. Only the wild-type EBNA-2 HYG gene EBV recombinant transformed primary B lymphocytes. This strategy of assaying virus on BL and primary B lymphocytes makes possible the direct assessment of the transforming efficiency of an EBV recombinant. The resultant infected BL cells are also useful for the characterization of the nontransforming recombinant EBV genomes. The HYG gene insertion in the BHLF1 open reading frame eliminated BHLF1 protein expression. The insertion and resulting BHLF1 mutation did not interfere with primary B-lymphocyte infection, growth transformation, induction of lytic infection, or virus production. Thus, these experiments also indicate that neither the BHLF1 open reading frame nor the HYG gene insertion critically affects B-lymphocyte infection in vitro.  相似文献   

8.
Alcamí A  Symons JA  Smith GL 《Journal of virology》2000,74(23):11230-11239
Poxviruses encode a broad range of proteins that interfere with host immune functions, such as soluble versions of receptors for the cytokines tumor necrosis factor, interleukin-1 beta, gamma interferon (IFN-gamma), IFN-alpha/beta, and chemokines. These virus-encoded cytokine receptors have a profound effect on virus pathogenesis and enable the study of the role of cytokines in virus infections. The vaccinia virus (VV) Western Reserve gene B18R encodes a secreted protein with 3 immunoglobulin domains that functions as a soluble receptor for IFN-alpha/beta. We have found that after secretion B18R binds to both uninfected and infected cells. The B18R protein present at the cell surface maintains the properties of the soluble receptor, binding IFN-alpha/beta with high affinity and with broad species specificity, and protects cells from the antiviral state induced by IFN-alpha/beta. VV strain Wyeth expressed a truncated B18R protein lacking the C-terminal immunoglobulin domain. This protein binds IFN with lower affinity and retains its ability to bind to cells, indicating that the C-terminal region of B18R contributes to IFN binding. The replication of a VV B18R deletion mutant in tissue culture was restricted in the presence of IFN-alpha, whereas the wild-type virus replicated normally. Binding of soluble recombinant B18R to cells protected the cultures from IFN and allowed VV replication. This represents a novel strategy of virus immune evasion in which secreted IFN-alpha/beta receptors not only bind the soluble cytokine but also bind to uninfected cells and protect them from the antiviral effects of IFN-alpha/beta, maintaining the cells' susceptibility to virus infections. The adaptation of this soluble receptor to block IFN-alpha/beta activity locally will help VV to replicate in the host and spread in tissues. This emphasizes the importance of local effects of IFN-alpha/beta against virus infections.  相似文献   

9.
Epstein-Barr virus (EBV) is a tumor virus with marked B lymphotropism. After crossing the B-cell membrane, the virus enters cytoplasmic vesicles, where decapsidation takes place to allow transfer of the viral DNA to the cell nucleus. BNRF1 has been characterized as the EBV major tegument protein, but its precise function is unknown. We have constructed a viral mutant that lacks the BNRF1 gene and report here its in vitro phenotype. A recombinant virus devoid of BNRF1 (DeltaBNRF1) showed efficient DNA replication and production of mature viral particles. B cells infected with the DeltaBNRF1 mutant presented viral lytic antigens as efficiently as B cells infected with wild-type or BNRF1 trans-complemented DeltaBNRF1 viruses. Antigen presentation in B cells infected with either wild-type (EBV-wt) or DeltaBNRF1 virus was blocked by leupeptin addition, showing that both viruses reach the endosome/lysosome compartment. These data were confirmed by direct observation of the mutant virus in endosomes of infected B cells by electron microscopy. However, we observed a 20-fold reduction in the number of B cells expressing the nuclear protein EBNA2 after infection with a DeltaBNRF1 virus compared to wild-type infection. Likewise, DeltaBNRF1 viruses transformed primary B cells much less efficiently than EBV-wt or BNRF1 trans-complemented viruses. We conclude from these findings that BNRF1 plays an important role in viral transport from the endosomes to the nucleus.  相似文献   

10.
The binding of the viral major glycoprotein BLLF1 (gp350/220) to the CD21 cellular receptor is thought to play an essential role during infection of B lymphocytes by the Epstein-Barr virus (EBV). However, since CD21-negative cells have been reported to be infectible with EBV, additional interactions between viral and cellular molecules seem to be probable. Based on a recombinant genomic EBV plasmid, we deleted the gene that encodes the viral glycoprotein BLLF1. We tested the ability of the viral mutant to infect different lymphoid and epithelial cell lines. Primary human B cells, lymphoid cell lines, and nearly all of the epithelial cell lines that are susceptible to wild-type EBV infection could also be successfully infected with the viral mutant in vitro, although the efficiency of infection with BLLF1-negative virus was clearly lower than the one observed with wild-type EBV. Our studies show that the interaction between BLLF1 and CD21 is not absolutely required for the infection of lymphocytes and epithelial cells, indicating that viral molecules other than BLLF1 can mediate the binding of EBV to its target cells. In this context, our results further suggest the hypothesis that additional cellular molecules, apart from CD21, allow virus entry into these cells.  相似文献   

11.
Injection of Epstein-Barr virus (EBV)-transformed human lymphoblastoid B cells into immunodeficient SCID mice results in the appearance of rapidly growing, fatal human B-cell tumors. To evaluate the role of EBV nuclear protein 2 (EBNA-2) in this process, we generated lymphoblastoid cell lines transformed by several EBV mutants which were identical except for deletions in the EBNA-2 gene (J. I. Cohen, F. Wang, and E. Kieff, J. Virol. 65:2545-2554, 1991). These cell lines were injected intraperitoneally into SCID mice, and the interval until tumor detection was determined. Cell lines transformed with EBV type 1 (strain W91) or with EBV type 2 (strain P3HR-1) with an inserted type 1 EBNA-2 gene grew at the same rapid rate, indicating the potential importance of EBNA-2 for tumor formation in vivo. Cell lines derived from three different EBV mutants with deletions in the amino half of EBNA-2 produced tumors more slowly than cell lines transformed by wild-type W91 virus. In contrast, a cell line transformed with an EBV mutant with a deletion in the carboxy terminus of EBNA-2 grew more rapidly than cell lines transformed by wild-type virus. EBV mutants with deletions in the amino half of EBNA-2 had had reduced transforming activity in vitro, while the carboxy-terminal EBNA-2 mutant had had transforming activity greater than or equal to that of the wild type. These data indicate that EBNA-2 plays a critical role both for B-cell tumor growth in SCID mice and for B-lymphocyte transformation in vitro.  相似文献   

12.
Mulvey M  Camarena V  Mohr I 《Journal of virology》2004,78(18):10193-10196
The gamma(1)34.5 gene product is important for the resistance of herpes simplex virus type 1 (HSV-1) to interferon. However, since the inhibition of protein synthesis observed in cells infected with a gamma(1)34.5 mutant virus results from the combined loss of the gamma(1)34.5 gene product and the failure to translate the late Us11 mRNA, we sought to characterize the relative interferon sensitivity of mutants unable to produce either the Us11 or the gamma(1)34.5 polypeptide. We now demonstrate that primary human cells infected with a Us11 mutant virus are hypersensitive to alpha interferon, arresting translation upon entry into the late phase of the viral life cycle. Furthermore, immediate-early expression of Us11 by a gamma(1)34.5 deletion mutant is sufficient to render translation resistant to alpha interferon. Finally, we establish that the Us11 gene product is required for wild-type levels of replication in alpha interferon-treated cells and, along with the gamma(1)34.5 gene, is an HSV-1-encoded interferon resistance determinant.  相似文献   

13.
Recombinant Epstein-Barr viruses (EBV) with a translation termination codon mutation inserted into the nuclear protein 3A (EBNA-3A) or 3C (EBNA-3C) open reading frame were generated by second-site homologous recombination. These mutant viruses were used to infect primary B lymphocytes to assess the requirement of EBNA-3A or -3C for growth transformation. The frequency of obtaining transformants infected with a wild-type EBNA-3A recombinant EBV was 10 to 15%. In contrast, the frequency of obtaining transformants infected with a mutant EBNA-3A recombinant EBV was only 1.4% (9 mutants in 627 transformants analyzed). Transformants infected with mutant EBNA-3A recombinant virus could be obtained only by coinfection with another transformation-defective EBV which provided wild-type EBNA-3A in trans. Cells infected with mutant EBNA-3A recombinant virus lost the EBNA-3A mutation with expansion of the culture. The decreased frequency of recovery of the EBNA-3A mutation, the requirement for transformation-defective EBV coinfection, and the inability to maintain the EBNA-3A mutation indicate that EBNA-3A is essential or critical for lymphocyte growth transformation and that the EBNA-3A mutation has a partial dominant negative effect. Five transformants infected with mutant EBNA-3C recombinant virus EBV were also identified and expanded. All five also required wild-type EBNA-3C in trans. Serial passage of the mutant recombinant virus into primary B lymphocytes resulted in transformants only when wild-type EBNA-3C was provided in trans by coinfection with a transformation-defective EBV carrying a wild-type EBNA-3C gene. A secondary recombinant virus in which the mutated EBNA-3C gene was replaced by wild-type EBNA-3C was able to transform B lymphocytes. Thus, EBNA-3C is also essential or critical for primary B-lymphocyte growth transformation.  相似文献   

14.
Yee J  White RE  Anderton E  Allday MJ 《PloS one》2011,6(12):e28506
Latent Epstein-Barr virus (EBV) has been shown to protect Burkitt's lymphoma-derived B cells from apoptosis induced by agents that cause damage to DNA, in the context of mutant p53. This protection requires expression of the latency-associated nuclear proteins EBNA3A and EBNA3C and correlates with their ability to cooperate in the repression of the gene encoding the pro-apoptotic, BH3-only protein BIM. Here we confirm that latent EBV in B cells also inhibits apoptosis induced by two other agents--ionomycin and staurosporine--and show that these act by a distinct pathway that involves a p53-independent increase in expression of another pro-apoptotic, BH3-only protein, NOXA. Analyses employing a variety of B cells infected with naturally occurring EBV or B95.8 EBV-BAC recombinant mutants indicated that the block to NOXA induction does not depend on the well-characterized viral latency-associated genes (EBNAs 1, 2, 3A, 3B, 3C, the LMPs or the EBERs) or expression of BIM. Regulation of NOXA was shown to be at least partly at the level of mRNA and the requirement for NOXA to induce cell death in this context was demonstrated by NOXA-specific shRNA-mediated depletion experiments. Although recombinant EBV with a deletion removing the BHRF1 locus--that encodes the BCL2-homologue BHRF1 and three microRNAs--partially abrogates protection against ionomycin and staurosporine, the deletion has no effect on the EBV-mediated block to NOXA accumulation.  相似文献   

15.
Spontaneous loss of the Epstein-Barr virus (EBV) genome in the BL cell line Akata led to loss of tumorigenicity in SCID mice, suggesting an important oncogenic activity of EBV in B cells. We previously showed that introduction of the BARF1 gene into the human B-cell line Louckes induced a malignant transformation in newborn rats (M. X. Wei, J. C. Moulin, G. Decaussin, F. Berger, and T. Ooka, Cancer Res. 54:1843-1848, 1994). Since 1 to 2% of Akata cells expressed lytic antigens and expressed the BARF1 gene, we investigated whether introduction of the BARF1 gene into EBV-negative Akata cells can induce malignant transformation. Here we show that BARF1-transfected, EBV-negative Akata cells activated Bcl2 expression and induced tumor formation when they were injected into SCID mice. In addition, when EBV-positive Akata cells expressing a low level of BARF1 protein were injected into SCID mice, the expression of BARF1, as well as several lytic proteins, such as EA-D, ZEBRA, and a 135-kDa DNA binding protein, increased in tumor cells while no latent LMP1 and late gp220-320 expression was observed in tumor cells. These observations suggest that the BARF1 gene may be involved in the conferral of tumorigenicity by EBV.  相似文献   

16.
These experiments evaluate the role of the Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) in B-lymphocyte growth transformation by using a recombinant EBV molecular genetic approach. Recombinant viruses encoding for a mutant EBNA-LP lacking the carboxy-terminal 45 amino acids were markedly impaired in their ability to transform primary B lymphocytes compared with EBNA-LP wild-type but otherwise isogenic recombinant viruses. This impairment was particularly evident when primary B lymphocytes were infected under conditions of limiting virus dilution. The impairment could be partially corrected by growth of the infected lymphocytes with fibroblast feeder layers or by cocultivation of primary B lymphocytes with relatively highly permissive mutant virus-infected cells. One of the five mutant recombinants recovered by growth of infected cells on fibroblast feeder cultures was a partial revertant which had a normal transforming phenotype. Several lymphoblastoid cell lines infected with the EBNA-LP mutant recombinant viruses had a high percentage of cells with bright cytoplasmic immunoglobulin staining, as is characteristic of cells undergoing plasmacytoid differentiation. Expression of the other EBV latent or lytic proteins and viral replication were not affected by the EBNA-LP mutations. Thus, the EBNA-LP mutant phenotype is not mediated by an effect on expression of another EBV gene. These data are most compatible with the hypothesis that EBNA-LP affects expression of a B-lymphocyte gene which is a mediator of cell growth or differentiation.  相似文献   

17.
F Wang  A Marchini    E Kieff 《Journal of virology》1991,65(4):1701-1709
The objective of these experiments was to develop strategies for creation and identification of recombinant mutant Epstein-Barr viruses (EBV). EBV recombinant molecular genetics has been limited to mutations within a short DNA segment deleted from a nontransforming EBV and an underlying strategy which relies on growth transformation of primary B lymphocytes for identification of recombinants. Thus, mutations outside the deletion or mutations which affect transformation cannot be easily recovered. In these experiments we investigated whether a toxic drug resistance gene, guanine phosphoribosyltransferase or hygromycin phosphotransferase, driven by the simian virus 40 promoter can be recombined into the EBV genome and can function to identify B-lymphoma cells infected with recombinant virus. Two different strategies were used to recombine the drug resistance marker into the EBV genome. Both utilized transfection of partially permissive, EBV-infected B95-8 cells and positive selection for cells which had incorporated a functional drug resistance gene. In the first series of experiments, B95-8 clones were screened for transfected DNA that had recombined into the EBV genome. In the second series of experiments, the transfected drug resistance marker was linked to the plasmid and lytic EBV origins so that it was maintained as an episome and could recombine with the B95-8 EBV genome during virus replication. The recombinant EBV from either experiment could be recovered by infection and toxic drug selection of EBV-negative B-lymphoma cells. The EBV genome in these B-lymphoma cells is frequently an episome. Virus genes associated with latent infection of primary B lymphocytes are expressed. Expression of Epstein-Barr virus nuclear antigen 2 (EBNA-2) and the EBNA-3 genes is variable relative to that of EBNA-1, as is characteristic of some naturally infected Burkitt tumor cells. Moreover, the EBV-infected B-lymphoma cells are often partially permissive for early replicative cycle gene expression and virus replication can be induced, in contrast to previously reported in vitro infected B-lymphoma cells. These studies demonstrate that dominant selectable markers can be inserted into the EBV genome, are active in the context of the EBV genome, and can be used to recover recombinant EBV in B-lymphoma cells. This system should be particularly useful for recovering EBV genomes with mutations in essential transforming genes.  相似文献   

18.
采用Ficoll密度梯度离心法(淋巴细胞分离液)分离肾综合征出血热(HFRS)患者外周血单个核细胞(PBMC),并用EB病毒(EBV)感染B淋巴细胞,建立永生化的B淋巴母细胞系(B—LCL)。然后,用含汉滩病毒(Hantaan virus,HTNV)S基因的重组痘苗病毒感染B—LCL,应用问接免疫荧光检测核衣壳蛋白的表达。结果表明,B淋巴细胞经EBV感染4周左右,可形成永生化B—LCL。成功转化后的B—LCL,体积增大,且增殖的淋巴细胞积聚成团。汉滩病毒S基因在B—LCL中能有效表达核衣壳蛋白。含S基因的重组痘苗病毒感染的B—LCL可用作HTNV核衣壳蛋白特异性CTL活性研究的靶细胞。  相似文献   

19.
20.
Cheng G  Yang K  He B 《Journal of virology》2003,77(18):10154-10161
The gamma(1)34.5 protein of herpes simplex virus type 1 (HSV-1) functions to block the shutoff of protein synthesis involving double-stranded RNA-dependent protein kinase (PKR). In this process, the gamma(1)34.5 protein recruits cellular protein phosphatase 1 (PP1) to form a high-molecular-weight complex that dephosphorylates eIF-2alpha. Here we show that the gamma(1)34.5 protein is capable of mediating eIF-2alpha dephosphorylation without any other viral proteins. While deletion of amino acids 1 to 52 from the gamma(1)34.5 protein has no effect on eIF-2alpha dephosphorylation, further truncations up to amino acid 146 dramatically reduce the activity of the gamma(1)34.5 protein. An additional truncation up to amino acid 188 is deleterious, indicating that the carboxyl-terminal domain alone is not functional. Like wild-type HSV-1, the gamma(1)34.5 mutant with a truncation of amino acids 1 to 52 is resistant to interferon, and resistance to interferon is coupled to eIF-2alpha dephosphorylation. Intriguingly, this mutant exhibits a similar growth defect seen for the gamma(1)34.5 null mutant in infected cells. Restoration of the wild-type gamma(1)34.5 gene in the recombinant completely reverses the phenotype. These results indicate that eIF-2alpha dephosphorylation mediated by the gamma(1)34.5 protein is required for HSV response to interferon but is not sufficient for viral replication. Additional functions or activities of the gamma(1)34.5 protein contribute to efficient viral infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号