首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
2.
It has recently been hypothesized that tumor cells with reduced levels of MHC class I antigens are more susceptible to NK-mediated lysis and are rejected by NK cells, whereas tumor cells with normal levels of class I are rejected by tumor-specific CTL. We have tested this hypothesis using a mouse hepatoma system. The Hepa-1 tumor is a spontaneous H-2Kb loss variant that arose from the BW7756 tumor, when BW7756 was adapted to growth in culture. Our studies have shown that despite the loss of H-2Kb antigen, Hepa-1 is not more susceptible to NK lysis than its H-2Kb-transfected variants. These studies also suggested that NK cells were not responsible for rejection of the Hepa-1 tumor. The Hepa-1 tumor, therefore, appears to contradict the hypothesized linkage of MHC levels and NK susceptibility. Because NK cells are not involved in immunity to this tumor, we have sought to identify the effector cell responsible for Hepa-1 rejection. Cytotoxic T lymphocyte assays demonstrate that in vitro, Hepa-1 cells are lysed by Hepa-1-specific H-2Db-restricted CD4-CD8+ T lymphocytes. Footpad assays demonstrate that in vivo, Hepa-1 rejection requires CD4+CD8- and CD4-CD8+ Hepa-1-primed splenocytes. These results indicate that immunity to Hepa-1 is T cell mediated. Hepa-1 is therefore an example of an unusual tumor in that down-regulation of MHC class I antigen expression is associated with increased CTL susceptibility.  相似文献   

3.
4.
Bone marrow cells and thymocytes isolated from virus-infected or interferon (IFN)-treated mice had marked increases in sensitivity to lysis by allospecific cytotoxic T lymphocytes (CTL) and in expression of class I histocompatibility antigens. Cultured fibroblasts treated with IFN in vitro yielded similar findings in addition to having increased sensitivity to lysis by virus-specific CTL. This indicates that virus-induced IFN may condition target cells in vivo for surveillance by CTL.  相似文献   

5.
The roles of ultraviolet-B (UV) radiation in the immunogenicity of human cancer cells have not been fully studied. We have investigated the effects of UV radiation on metastatic melanoma and renal cell carcinoma cells with regard to MHC antigen expression and the ability to induce cytotoxic T lymphocyte (CTL) activity in peripheral blood mononuclear cells (PBMC) or tumor-infiltrating lymphocytes (TIL) against untreated autologous tumor cells. UV radiation respectively decreased or increased MHC class I expression of freshly isolated tumor cells or cultured tumor cells, and also decreased MHC class I expression of starved cultured tumor cells. It increased the ability of both freshly isolated and cultured tumor cells to induce CTL activity from PBMC against untreated autologous tumor cells. UV-irradiated subclones that were more susceptible to CTL lysis were more potent for CTL induction from TIL than either an untreated parental clone or a UV-irradiated subclone that was resistant to CTL lysis. In summary, UV radiation increased the ability of tumor cells to induce CTL activity without a corresponding effect on MHC antigen expression.This work was supported in part by a grant CA47891 from the National Cancer Institute, USA, a grant-in-aid of the comprehensive 10-years strategy for cancer control from ministry of a Health and Welfare, Japan, and the Ishibashi Research Fund, Japan  相似文献   

6.
Many tumors have been shown to express minimal levels of class I MHC Ag, which makes them more resistant to recognition and lysis by cytolytic T lymphocytes. Line 1, a BALB/c spontaneous lung carcinoma, normally expresses very low levels of class I Ag, but expression can be increased 50-fold by treatment with agents such as DMSO or IFN-gamma. Because class I Ag serve as restricting elements for cytolytic T cell recognition of tumor Ag, we wished to determine if cytotoxic T lymphocytes could play a role in the immune response to this type of class I low, but inducible, tumor. After immunization in vivo and restimulation of splenic cells in vitro we were able to generate T cell clones that lysed line 1 cells induced to express high levels of class I, but did not lyse uninduced, low class I expressing line 1 cells in short term (6-h) 51Cr release assays. Paradoxically, incubation of the T cells with uninduced class I low line 1 cells for a few days resulted in complete destruction of the tumor cells. We demonstrate that the T cells, stimulated by the tumor cells, produce IFN-gamma, which in turn induces class I expression on the line 1 cells making them susceptible to lysis by the T cell clone. This suggests that a positive feedback reaction can occur in generating a response to this and perhaps other inducible tumor cell lines.  相似文献   

7.
Successive coculture of Lewis lung carcinoma (3LL) cells with T cell-derived lymphokines and LPS-activated macrophages has led to the acquisition of 3LL tumor variants (macrophage-resistant 3LL tumor variants (3LL-R)), manifesting a highly reduced sensitivity to the cytotoxic potential of T cell-derived lymphokines and LPS-activated macrophages and TNF-alpha. However, when 3LL-R cells are cocultured with Poly I:C-activated macrophages or with conditioned medium derived from these effector cells a significant lysis is observed. TNF-alpha participates in the cytolytic process of Poly I:C-activated macrophages as anti-TNF-alpha antibodies abolish the cytotoxic effect of these effector cells. In addition, class I IFN is involved because IFN-alpha and IFN-beta act synergistically on TNF-alpha mediated lysis of 3LL-R cells within 18 h. Moreover, anticlass I IFN antibodies abolish the cytolytic capacity of Poly I:C-activated macrophages. Hence, Poly I:C-induced macrophage-mediated cytolysis of 3LL-R cells may result from 1) the induction of macrophages by Poly I:C to secrete high amounts of TNF-alpha and class I IFN and 2) a synergism between IFN-alpha/IFN-beta and TNF-alpha on lysis of 3LL-R cells. This synergism does not result from a class I IFN-mediated enhancement of TNF-alpha receptor expression on 3LL-R cells. Therefore, the sensitivity of 3LL-R cells to TNF-alpha-mediated lysis in the presence of class I IFN is most probably regulated at the post-TNF-alpha receptor level. Furthermore, treatment of mice with Poly I:C strongly reduces the metastatic capacity of 3LL-R tumor cells, suggesting the participation of macrophages in the eradication of the established metastasis. Hence, TNF-alpha-resistant 3LL-R tumor cells may serve as a useful tool for the detection of alternative macrophage-related cytotoxins leading to the destruction of neoplastic cells both in vitro and in vivo.  相似文献   

8.
The susceptibility of mouse cells expressing full-length or truncated transforming protein (T antigen) of simian virus 40 (SV40) to lysis by murine natural killer (NK) cells was assessed. For these studies, C57BL/6 mouse embryo fibroblasts (B6/MEF) were transformed by transfection with SV40 DNA encoding the entire T antigen. The transformed cell lines were tested for susceptibility to lysis by nonimmune CBA splenocytes as a source of NK cells and to lysis by C57BL/6, SV40-specific cytolytic T cells (CTL). It was found that 13 of 15 clonally derived, SV40-transformed H-2b cell lines were susceptible to lysis by NK cells. However, there was some variation in their susceptibility to lysis by NK cells. There was no correlation between susceptibility to lysis by SV40-specific CTL and to lysis by NK cells. Cells transfected with a plasmid which encodes only the N-terminal half of the SV40 T antigen were consistently less susceptible to lysis by NK cells, suggesting that expression of only the N-terminus of the T antigen was insufficient for optimal susceptibility to lysis by NK cells. Primary mouse embryo fibroblasts transformed by human adenovirus type 5 E1 region DNA were also found to be susceptible to NK cell-mediated lysis. Lysis of SV40-transformed cells by nonimmune CBA splenocytes was mediated by NK cells because: lysis was augmented when the effector cells were treated with interferon before assay; and lysis was abrogated when the effector cells were obtained from mice that had been depleted of NK activity by treatment with antiserum against the asialo GM1 surface marker. These results indicate that primary mouse cells which are transformed by SV40 and which express the native T antigen are susceptible to lysis by mouse NK cells. Conversely, cells transformed by a plasmid encoding only the N-terminal half of the T antigen express reduced susceptibility to lysis by NK cells.  相似文献   

9.
Various investigators have examined the relationship between tumor cell susceptibility to natural killer (NK) cell lysis and the expression of HLA class I antigens on the tumor cell. There is controversy as to whether or not an inverse relationship exists, and if so, the basis of the relationship between these two phenomena remains undefined. To address these questions, the genomic clones for two HLA antigens were transfected into the erythroleukemia cell line K562, a cell line that is used as the standard to assess human NK and major histocompatibility complex (MHC) nonrestricted cytolysis. Susceptibility to NK lysis was not affected by the de novo expression of HLA antigens on the K562 after DNA mediated gene transfer. Interferon-gamma (IFN-gamma) treatment of K562 induced levels of MHC class I antigen surface expression comparable to those found on the transfected cells; however, the IFN-gamma-treated cells were resistant to NK lysis. When very high levels of surface HLA antigens were induced on the transfectants, a potential effect of class I MHC expression on K562 lysis could be discerned that was distinct from the resistance to NK lysis induced by IFN-gamma-treatment.  相似文献   

10.
Human tumor cell lines were treated with interferon-gamma (IFN-gamma) and then used as target cells in NK assays to measure their ability to form conjugates and stimulate the production of NK cytotoxic factors (NKCF) and to determine their susceptibility to NKCF lysis. K562 and cell lines RS1, RS3, RS7, CAC, and CAP2, obtained from solid brain tumors, were used as targets, and peripheral blood lymphocytes (PBL) from normal donors were used as effector cells. IFN-gamma-treated cell lines had a decreased susceptibility to NKCF lysis and a decreased ability to induce the release of these factors without affecting target-effector cell binding. These results were not due to changes in HLA class I antigen expression, given that the level of HLA class I antigens on the tumor cell lines was not affected, the only exception being K562. In an attempt to further clarify the possible influence of HLA class I expression on K562, IFN-gamma-pretreated K562 cells were separated into HLA class I positive and HLA class I negative subsets for the NK assays. The results showed that both populations behaved similarly upon target-effector conjugate formation, whereas the HLA class I positive population showed a reduced susceptibility to lysis by NK cells and NKCF. Thus, these results establish that NK resistance induced by IFN-gamma is mediated by blocking the target cell's ability to activate NK cell triggering and release of NKCF and by blocking its susceptibility to lysis by these factors. This analysis helps to clarify not only the NK process but also the controversial regulatory effect of IFN in NK lysis.  相似文献   

11.
This study was undertaken to investigate whether target cell class I HLA antigen expression induced by phorbol ester and interferon-alpha (IFN-alpha) was associated with resistance to natural killer (NK) cells and lymphokine-activated killer (LAK) cell-mediated cytotoxicity. Class I antigen expression on the surface of the K562 erythroleukemia cell line was enhanced by either IFN-alpha or phorbol ester (PDBu). Addition of PDBu together with IFN-alpha had a synergistic effect on class I antigen expression on the cells. Furthermore, synergism between IFN-alpha and PDBu was also found in class I antigen expression by MOLT-3 cells. This synergistic effect on class I antigen expression was blocked by the protein synthesis inhibitor (cycloheximide). Pretreatment of K562 cells with PDBu and IFN-alpha made them more resistant to lysis by NK and LAK cells than did either PDBu or IFN-alpha. In contrast to PDBu, 4 alpha PDD, a biologically inactive phorbol analogue, alone or combination with IFN-alpha, had no effect on class I antigen expression and susceptibility to lysis by NK and LAK cells. Kinetic experiments showed an inverse relationship between the expression of class I antigens and susceptibility to NK cell-mediated cytolysis. Using cold target competition analysis, target cells pretreated with PDBu and IFN-alpha clearly competed less effectively than did untreated cells for lysis of untreated target cells. These results demonstrate that target cells pretreated with PDBu and IFN-alpha decrease their sensitivity to natural killer and lymphokine-activated killer cells inversely with target cell class I HLA antigen expression.  相似文献   

12.
Small cellular lung carcinoma (SCLC) cell lines are susceptible to lysis by NK cells. SCLC, normally negative for MHC class I Ag, were rendered positive for HLA-A and -B Ag by two methods: treatment with IFN-gamma or transfection with HLA class I genes. Exposure to IFN-gamma induced high levels of class I Ag and reduced susceptibility to NK-mediated lysis. However, transfection with either HLA-A2, HLA-B27, or HLA-B27 with beta 2m did not result in reduced susceptibility to NK cells. These transfectants expressed amounts of HLA class I Ag comparable to those in IFN-gamma-treated, untransfected cells. Transfection with the beta 2m gene or plasmid alone neither influenced levels of surface class I Ag nor resulted in reduced susceptibility to lysis by NK cells. Thus, the effects of IFN-gamma on NK susceptibility can be dissociated from the induction of class I Ag.  相似文献   

13.
NK cells are able to kill virus-infected and tumor cells via a panel of lysis receptors. Cells expressing class I MHC proteins are protected from lysis primarily due to the interactions of several families of NK receptors with both classical and nonclassical class I MHC proteins. In this study we show that a class I MHC-deficient melanoma cell line (1106mel) is stained with several Ig-fused lysis receptors, suggesting the expression of the appropriate lysis ligands. Surprisingly, however, this melanoma line was not killed by CD16-negative NK clones. The lack of killing is shown to be the result of homotypic CD66a interactions between the melanoma line and the NK cells. Furthermore, 721.221 cells expressing the CD66a protein were protected from lysis by YTS cells and by NK cells expressing the CD66a protein. Redirected lysis experiments demonstrated that the strength of the inhibitory effect is correlated with the levels of CD66a expression. Finally, the expression of CD66a protein was observed on NK cells derived from patients with malignant melanoma. These findings suggest the existence of a novel class I MHC-independent inhibitory mechanism of human NK cell cytotoxicity. This may be a mechanism that is used by some of the class I MHC-negative melanoma cells to evade attack by CD66a-positive NK cells.  相似文献   

14.
We have investigated the primary and secondary immunity generated in vivo by a MHC class I-deficient tumor cell line that expressed CD80 (B7-1). CD80 expression enhanced primary NK cell-mediated tumor rejection in vivo and T cell immunity against secondary tumor challenge. CD80 expression enhanced primary NK cell-mediated tumor rejection, and both NK cell perforin and IFN-gamma activity were critical for the rejection of MHC class I-deficient RMA-S-CD80 tumor cells. This primary rejection process stimulated the subsequent development of specific CTL and Th1 responses against Ags expressed by the MHC class I-deficient RMA-S tumor cells. The development of effective secondary T cell immunity could be elicited by irradiated RMA-S-CD80 tumor cells and was dependent upon NK cells and IFN-gamma in the priming response. Our findings demonstrate a key role for IFN-gamma in innate and adaptive immunity triggered by CD80 expression on tumor cells.  相似文献   

15.
It has been previously shown that unstimulated NK cells cannot preferentially lyse adenovirus serotypes 2 and 5-infected human cells. In this study, the ability of IFN to promote the selective NK cell-mediated lysis of adenovirus-infected human cells was determined. The relationship between target cell susceptibility to NK cell-mediated killing and class I Ag expression was also analyzed through the use of adenovirus serotype 2 and 5 mutants that do not make the adenovirus early region 3 19-kDa class I binding protein. IFN induced the selective lysis of adenovirus serotype 2 and 5-infected human cells by activating NK cells (IFN-alpha) and protecting uninfected, but not adenovirus-infected cells, from NK cell-mediated lysis (IFN-gamma). IFN-gamma increased the expression of class I Ag on the surface of cells infected with the adenovirus early region 3 deletion mutants, dl327 or dl801, to a level equal to or greater than that expressed on uninfected cells. Despite the increased expression of class I Ag, IFN-gamma could not protect these adenovirus-infected cells from NK cell-mediated lysis. Thus, dl327 or dl801 infection prevented IFN-gamma's induction of cytolytic resistance to NK cell-mediated killing but left IFN-gamma's induction of class I Ag intact. Surface class I Ag levels were substantially higher on IFN-gamma-treated, dl327-, and dl801-infected cells in comparison to cells infected with wild type adenovirus serotype 5. Again, higher target cell levels of class I Ag did not correlate with increased resistance to NK cell-mediated lysis because there was equivalent NK cell-mediated killing of IFN-gamma-treated adenovirus serotype 5-, dl327-, or dl801-infected cells. Thus, IFN-gamma only protects uninfected cells from NK cell-mediated killing, irrespective of target class I Ag levels, and thereby concentrates NK lytic activity on just adenovirus-infected cells. These data demonstrate that IFN-gamma's ability to protect target cells from NK cell-mediated cytolysis is unrelated to IFN-gamma's induction of surface class I MHC Ag.  相似文献   

16.
Retrovirus infection of murine fibroblasts was found to alter the expression of major histocompatibility complex (MHC) antigens. Fibroblasts infected with Moloney murine leukemia virus (M-MuLV) exhibited up to a 10-fold increase in cell surface expression of all three class I MHC antigens. Increases in MHC expression resulted in the increased susceptibility of M-MuLV-infected cells to lysis by allospecific cytotoxic T lymphocytes (CTL). M-MuLV appears to exert its effect at the genomic level, because mRNA specific for class I antigens, as well as beta 2-microglobulin, show a fourfold increase. Fibroblasts infected with the Moloney sarcoma virus (MSV):M-MuLV complex show no increase in MHC antigen expression or class I mRNA synthesis, suggesting that co-infection with MSV inhibits M-MuLV enhancement of MHC gene expression. Quantitative differences in class I antigen expression on virus-infected cells were also found to influence the susceptibility of infected cells to lysis by H-2-restricted, virus-specific CTL. Differential lysis of infected cells expressing varied levels of class I antigens by M-MuLV-specific bulk CTL populations and CTL clones suggests that individual clones may have different quantitative requirements for class I antigen expression. The MSV inhibition of MHC expression could be reversed by interferon-gamma. Treatment of MSV:M-MuLV-infected fibroblasts with interferon-gamma increased their susceptibility to lysis by both allogeneic and syngeneic CTL. The data suggest that interferon-gamma may function in the host's immune response to viral infections by enhancing MHC antigen expression, thereby increasing the susceptibility of virus-infected cells to lysis by H-2-restricted, virus-specific CTL.  相似文献   

17.
Modulation of inhibitory and activating natural killer (NK) receptor ligands on tumor cells represents a promising therapeutic approach against cancer, including multiple myeloma (MM). Human leukocyte antigen (HLA) class I molecules, the NK cell inhibitory killer cell immunoglobulin-like receptor (KIR) ligands, are critical determinants of NK cell activity. Proteasome inhibitors have demonstrated significant anti-myeloma activity in MM patients. In this study, we evaluated the effect of proteasome inhibitors on the surface expression of class I in human MM cells. We found that proteasome inhibitors downregulated surface expression of class I in a dose- and time-dependent manner in MM cell line and patient MM cells. No significant changes in the expression of the MHC class I chain-related molecules (MIC) A/B and the UL16-binding proteins (ULBPs) 1–3 were observed. Downregulation of class I by lactacystin (LAC) significantly enhances NK cell-mediated lysis of MM. Furthermore, the downregulation degree of class I was associated with increased susceptibility of myeloma cells to NK cell killing. HLA blocking antibody produced results that were similar to the findings from proteasome inhibitor. Taken together, our data suggest that proteasome inhibitors, possible targeting inhibitory KIR ligand class I on tumor cells, may contribute to the activation of cytolytic effector NK cells in vitro, enhancing their anti-myeloma activity. Our findings provide a rationale for clinical evaluation of proteasome inhibitor, alone or in combination, as a novel approach to immunotherapy of MM.  相似文献   

18.
Tumor cells treated with IL-10 were shown to have decreased, but peptide-inducible expression of MHC class I, decreased sensitivity to MHC class I-restricted CTL, and increased NK sensitivity. These findings could be explained, at least partially, by a down-regulation of TAP1/TAP2 expression. In this study, IT9302, a nanomeric peptide (AYMTMKIRN), homologous to the C-terminal of the human IL-10 sequence, was demonstrated to mimic these previously described IL-10 effects on MHC class I-related molecules and functions. We observed a dose-dependent down-regulation of MHC class I at the cell surface of melanoma cells after 24-h treatment with IT9302. The IL-10 homologue peptide also caused a dose-dependent inhibition of the IFN-gamma-mediated surface induction of MHC class I in a melanoma cell line. We demonstrated, using Western blot and flow cytometry, that IT9302 inhibits the expression of TAP1 and TAP2 proteins, but not MHC class I H chain or low molecular protein molecules. Finally, peptide-treated melanoma cells were shown to be more sensitive to lysis by NK cells in a dose-dependent way. Taken together, these results demonstrate that a small synthetic peptide derived from IL-10 can mimic the Ag presentation-related effects mediated by this cytokine in human melanomas and increase tumor sensitivity to NK cells, which can be relevant in the designing of future strategies for cancer immune therapy.  相似文献   

19.
Cell lines derived from Epstein-Barr virus (EBV)-positive and EBV-negative Burkitt lymphoma (BL) have a low or defective expression of polymorphic HLA class I determinants compared to EBV-transformed lymphoblastoid cell lines (LCL) of normal B cell origin and are resistant to lysis by cytotoxic T lymphocytes (CTL) specific for the corresponding determinants (M. G. Masucci, S. Torsteinsdottir, J. Colombani, C. Brautbar, E. Klein, and G. Klein, Proc. Natl. Acad. Sci. USA 84, 4567, 1987; S. Torsteinsdottir, C. Brautbar, E. Klein, G. Klein, and M. G. Masucci, Int. J. Cancer, 41, 913, 1988). In order to investigate whether this phenotypic trait of the tumor cells can be modulated by agents known to enhance HLA class I antigen expression, pairs of LCL and BL lines were cultured in the presence of recombinant human interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha. Three low HLA A11 expressor EBV-negative BL lines, DG 75, BL 28, and BL 41, reacted significantly stronger with the anti-HLA A11 monoclonal antibody (Mab) AUF 5.13 after combined treatment with 500 U/ml IFN-gamma and 500 U/ml TNF-alpha. Reactivity with the AUF 5.13 and with other anti-polymorphic class I Mab's was up-regulated also in in vitro EBV-converted sublines of BL 28 and BL 41. The increment of antigen expression depended on the baseline expression in untreated cells. It was largest for the low expressor lines and decreased proportionally to the level of up-regulation induced by EBV conversion. Up-regulation of HLA A11 was accompanied by induction of sensitivity to HLA A11-specific CTLs in BL 28 and its converted subline E95A BL28 while BL 41 and E95A BL 41 remained resistant. The treatment did not affect significantly HLA A11 expression of two EBV-carrying, low HLA A11 expressor BL lines, WW-1-BL and WW-2-BL, and of the EBV-carrying BL 72 line that had a high spontaneous expression. The results suggest that the down-regulation of class I antigen expression is reversible in some but not all BL lines.  相似文献   

20.
The lack of classical HLA molecules on trophoblast prevents allorecognition by maternal T lymphocytes, but poses the problem of susceptibility to NK lysis. Expression of the nonclassical class I molecule, HLA-G, on cytotrophoblast may provide the protective effect. However, the class I-negative syncytiotrophoblast escapes NK lysis by maternal PBL. In addition, while HLA-G-expressing transfectants of LCL.721.221 cells are protected from lymphokine-activated killer lysis, extravillous cytotrophoblast cells and HLA-G-expressing choriocarcinoma cells (CC) are not. The aim of this work was therefore to clarify the role of HLA class I expression on trophoblast cell resistance to NK lysis and on their susceptibility to lymphokine-activated killer lysis. Our results showed that both JAR (HLA class I-negative) and JEG-3 (HLA-G- and HLA-Cw4-positive) cells were resistant to NK lysis by PBL and were equally lysed by IL-2-stimulated PBL isolated from a given donor. In agreement, down-regulating HLA class I expression on JEG-3 cells by acid treatment, masking these molecules or the putative HLA-G (or HLA-E) receptor CD94/NKG2 and the CD158a/p58.1 NKR with mAbs, and inducing self class I molecule expression on JAR cells did not affect NK or LAK lysis of CC. These results demonstrate that the resistance of CC to NK lysis mainly involves an HLA class I-independent mechanism(s). In addition, we show that the expression of a classical class I target molecule (HLA-B7) on JAR cells is insufficient to induce lysis by allospecific polyclonal CTL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号