首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative protein profiling using the isotope-coded affinity tag (ICAT) method and tandem mass spectrometry (MS) enables the pair-wise comparison of protein expression levels in biological samples. A new version of the ICAT reagent with an acid-cleavable bond, which allows removal of the biotin moiety prior to MS and which utilizes (13)C substitution for (12)C in the heavy-ICAT reagent rather than (2)H (for (1)H) as in the original reagent, was investigated. We developed and validated an MS data acquisition strategy using this new reagent that results in an increased number of protein identifications per experiment, without losing the accuracy of protein quantification. This was achieved by following a single survey (precursor) ion scan and serial collision induced dissociations (CIDs) of four different precursor ions observed in the prior survey scan. This strategy is common to many high-performance liquid chromatography-electrospray ionization (HPLC-ESI)-MS shotgun proteomic strategies, but heretofore not to ICAT experiments. This advance is possible because the new ICAT reagent uses (13)C as the "heavy" element rather than (2)H, thus, eliminating the slight delay in retention time of ICAT-labeled "light" peptides on a C18-based HPLC separation that occurs with (2)H and (1)H. Analyses using this new scheme of an ICAT-labeled trypsin-digested six protein mixture as well as a tryptic digest of a total yeast lysate, indicated that about two times more proteins were identified in a single analysis, and that there was no loss in accuracy of quantification.  相似文献   

2.
An effective in vitro enzymatic synthesis is described for the production of nucleoside triphosphates (NTPs) which are stereo-specifically deuterated on the H5" position with high selectivity (>98%), and which can have a variety of different labels (13C, 15N, 2H) in other positions. The NTPs can subsequently be employed in the enzymatic synthesis of RNAs using T7 polymerase from a DNA template. The stereo-specific deuteration of the H5" immediately provides the stereo-specific assignment of H5' resonances in NMR spectra, giving access to important structural parameters. Stereo-chemical H-exchange was used to convert commercially available 1,2,3,4,5,6,6-2H-1,2,3,4,5,6-13C-D-glucose (d7-13C6-D-glucose) into [1,2,3,4,5,6(R)-2H-1,2,3,4,5,6-13C]-D-glucose (d6-13C6-D-glucose). [1',3',4',5"-2H-1',2',3',4',5'-13C]GTP (d4-13C5-GTP) was then produced from d6-13C6-D-glucose and guanine base via in vitro enzymatic synthesis employing enzymes from the pentose-phosphate, nucleotide biosynthesis and salvage pathways. The overall yield was approximately 60 mg NTP per 1 g glucose, comparable with the yield of NTPs isolated from Escherichia coli grown on enriched media. The d4-13C5-GTP, together with in vitro synthesised d5-UTP, d5-CTP and non-labelled ATP, were used in the synthesis of a 31 nt RNA derived from the primer binding site of hepatitis B virus genomic RNA. (13C,1H) hetero-nuclear multiple-quantum spectra of the specifically deuterated sample and of a non-deuterated uniformly 13C/15N-labelled sample demonstrates the reduced spectral crowding and line width narrowing compared with 13C-labelled non-deuterated RNA.  相似文献   

3.
A pair of ICAT reagents, N-(13-iodoacetamido-2,2,3,3,11,11,12,12-octadeutero-4,7,10-trioxa-tridecanyl)biotinamide (8d, ICAT-d(8)) and N-(13-iodoacetamido-4,7,10-trioxa-tridecanyl)biotinamide (8c, ICAT-d(0)), and an alternative pair of ICAT reagents, N-(10-iodoacetamido-2,5,5,6,6,9-hexadeutero-4,7-dioxa-decanyl)biotinamide (8b, s-ICAT-d(6)) and N-(10-iodoacetamido-4,7-dioxa-decanyl)biotinamide (8a, s-ICAT-d(0)), were successfully synthesized. A mixture of sodium borohydride and cobalt(II) chloride reduced the intermediate dinitrile to the diamine without loss of the deuterium labels, which occurred when Raney nickel was the reducing agent. The problem caused by unsymmetrical biotinylation of the intermediate diamine was solved by using the solid-phase method in which one end of the diamine was attached to a chlorotrityl chloride resin, followed by biotinylation of the resin-bound amine. The self-alkylation of ICAT reagents that accounted for their instability and their limitations in the applications was also studied.  相似文献   

4.
A convenient synthesis of some homologous light isotope-coded affinity tags (ICAT-L) containing an acid-labile moiety between the affinity component biotin and an electrophilic polar linker is described. These light ICAT reagents give smooth mass spectral signals in tandem mass spectrometry (MS/MS) analyses of some commercially available cysteine-containing peptides. However, these ICAT molecules are designed for use in identification and relative quantification of whole or partially purified cellular and tissue proteomes. Since the biotin moiety can be readily cleaved off the reagent after mass tagging, undesired residual fragmentation patterns caused by biotin of derived peptides, as normally observed using biotin-containing ICAT reagents, are effectively eliminated. This strategy should enhance peptide sequence coverage significantly which, in turn, should result in improving the quality of data obtained during data-dependent peptide mass and tandem mass spectral analysis of whole proteomes.  相似文献   

5.
6.
7.
M C Storm  M F Dunn 《Biochemistry》1985,24(7):1749-1756
Substitution of Cd2+ for Zn2+ yields a hexameric insulin species containing 3 mol of metal ion per hexamer. The Cd2+ binding loci consist of the two His(B10) sites and a new site involving the Glu(B13) residues located at the center of the hexamer [Sudmeier, J. L., Bell, S. J., Storm, M. C., & Dunn, M. F. (1981) Science (Washington, D.C.) 212, 560-562]. Substitution of Co2+ or Co3+ for Zn2+ gives hexamers containing 2 mol of metal per hexamer. Insulin solutions to which both Cd2+ and Co2+ have been added in a ratio of 6:2:1 [In]:[Co2+]:[Cd2+] followed by oxidation to the exchange-inert Co3+ state yield stable hybrid species containing both Co3+ and Cd2+ with a composition of (In)6(Co3+)2Cd2+. The kinetics of the reaction of 2,2',2"-terpyridine (terpy) with the exchange-labile (In)6(Cd2+)2 and (In)6(Co2+)2 derivatives are biphasic and involve the rapid formation of an intermediate with coordination of one terpy molecule to each protein-bound metal ion; then, in a rate-limiting step the terpy-coordinated metal ion dissociates from the protein, and a second molecule of terpy binds to the metal ion to form a bis complex. Reaction of the exchange-inert Co3+ ions of (In)6(Co3+)2 with terpy is a slow apparent first-order process (t1/2 = 13.1 h). In contrast to the kinetic behavior of (In)6(Co2+)2 and (In)6(Cd2+)2, the Cd2+ ions bound to the hybrid (In)6(Co3+)2Cd2+ react quite slowly with terpy (t1/2 = 1 h at pH 8.0).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Huntington disease (HD) is an autosomal dominant neurodegenerative disease that results from a CAG (glutamine) trinucleotide expansion in exon 1 of huntingtin (Htt). The aggregation of mutant Htt has been implicated in the progression of HD. The earliest degeneration occurs in the striatum. To identify proteins critical for the progression of HD, we applied acid-cleavable ICAT technology to quantitatively determine changes in protein expressions in the striatum of a transgenic HD mouse model (R6/2). The cysteine residues of striatal proteins from HD and wild-type mice were labeled, respectively, with the heavy and light forms of the ICAT reagents. Samples were trypsinized, uncovered by avidin affinity chromatography, and analyzed by nano-LC-MS/MS. Western blot analyses were used to confirm and to calibrate the ICAT ratios. Linear regression was used to uncover a group of proteins that exhibited consistent changes. In two independent ICAT experiments, we identified 427 cysteine-containing striatal proteins among which approximately 66% (203 proteins) were detected in both ICAT experiments. Approximately two-thirds of proteins identified in each ICAT experiment were detected in both ICAT experiments. In total, 68 proteins with altered expressions in HD mice were identified. Elevated expressions of two down-regulated proteins (14-3-3sigma and FKBP12) effectively reduced Htt aggregates in a striatal cell line, supporting the functional relevance of the above findings. Collectively by using a well defined protocol for data analysis, large scale comparisons of protein expressions by ICAT can be reliable and can provide valuable clues for identifying proteins critical for pathophysiological functions.  相似文献   

9.
Subcellular proteomics, as an important step to functional proteomics, has been a focus in proteomic research. However, the co-purification of "contaminating" proteins has been the major problem in all the subcellular proteomic research including all kinds of mitochondrial proteome research. It is often difficult to conclude whether these "contaminants" represent true endogenous partners or artificial associations induced by cell disruption or incomplete purification. To solve such a problem, we applied a high-throughput comparative proteome experimental strategy, ICAT approach performed with two-dimensional LC-MS/MS analysis, coupled with combinational usage of different bioinformatics tools, to study the proteome of rat liver mitochondria prepared with traditional centrifugation (CM) or further purified with a Nycodenz gradient (PM). A total of 169 proteins were identified and quantified convincingly in the ICAT analysis, in which 90 proteins have an ICAT ratio of PM:CM>1.0, while another 79 proteins have an ICAT ratio of PM:CM<1.0. Almost all the proteins annotated as mitochondrial according to Swiss-Prot annotation, bioinformatics prediction, and literature reports have a ratio of PM:CM>1.0, while proteins annotated as extracellular or secreted, cytoplasmic, endoplasmic reticulum, ribosomal, and so on have a ratio of PM:CM<1.0. Catalase and AP endonuclease 1, which have been known as peroxisomal and nuclear, respectively, have shown a ratio of PM:CM>1.0, confirming the reports about their mitochondrial location. Moreover, the 125 proteins with subcellular location annotation have been used as a testing dataset to evaluate the efficiency for ascertaining mitochondrial proteins by ICAT analysis and the bioinformatics tools such as PSORT, TargetP, SubLoc, MitoProt, and Predotar. The results indicated that ICAT analysis coupled with combinational usage of different bioinformatics tools could effectively ascertain mitochondrial proteins and distinguish contaminant proteins and even multilocation proteins. Using such a strategy, many novel proteins, known proteins without subcellular location annotation, and even known proteins that have been annotated as other locations have been strongly indicated for their mitochondrial location.  相似文献   

10.
Identification of proteins in complex mixtures by mass spectrometry is most useful when quantitative data is also obtained. We recently introduced isotope-coded affinity tags (ICAT reagents) for the relative quantification of proteins present in two or more biological samples. In this report, we describe a new generation of ICAT reagents that contain the following additional features: (1) a visible tag that allows the electrophoretic position of tagged peptides during separation to be easily monitored; (2) a photocleavable linker that allows most of the tag to be removed prior to mass spectrometric analysis; (3) an isotope tag that contains carbon-13 and nitrogen-15 atoms instead of deuterium to ensure precise comigration of light and heavy tagged peptides by reverse-phase HPLC. These reagents contain an iodoacetyl group that selectively reacts with peptide cysteine residues. Peptide modification chemistry is also reported that allows tagging of peptides that are devoid of cysteine. The synthesis of these visible isotope-coded affinity tags (VICAT reagents), and their reaction with peptides are described in this report. VICAT reagents containing a carbon-14 visible probe or an NBD fluorophore are described. These reagents are most useful for the determination of the absolute quantity of specific target proteins in complex protein mixtures such as serum or cell lysates.  相似文献   

11.
This protocol describes a simplified means of introducing an anomalously scattering atom into oligonucleotides by conventional solid-phase synthesis. Replacement of a nonbridging phosphate oxygen in the backbone with selenium is practically suitable for any nucleic acid. The resulting oligonucleotide P-diastereomers can be separated using anion exchange HPLC to yield diastereomerically pure phosphoroselenoates (PSes). The total time for the synthesis and ion-exchange HPLC separation of pure PSe is approximately 60 h.  相似文献   

12.
Uridine 5′-diphospho-- -galactose (UDP-Gal) was synthesized on a gram scale from uridine 5′-diphospho-- -glucose and - -galactose 1-phosphate using the enzymes galactose-1-phosphate uridyltransferase (EC 2.7.7.12), phosphoglucomutase (EC 2.7.5.1) and glucose-6-phosphate dehydrogenase (EC 1.1.1.27). The synthesis was performed in a repetitive batch mode in which the enzymes, some of which are expensive, were used in 16 subsequent batches without any loss of enzyme activity. The space time yield of the synthesis was 7.1 g/l d. The overall yield of the synthesis amounted to 40% and 1.1 gram of pure UDP-Gal was obtained.  相似文献   

13.
Meehan KL  Sadar MD 《Proteomics》2004,4(4):1116-1134
Androgens are involved in the pathogenesis of diseases including adenocarcinoma of the prostate. These hormones are important for growth, maintenance, and integrity of structure and function of the prostate. Androgen-deprivation is currently the only effective systemic therapy for prostate cancer but the effects of androgens on the proteome are still poorly described. Here we quantitatively profile changes in the proteome of LNCaP human prostate cancer cells in response to androgen using the newly developed isotope-coded affinity tag (ICAT) labeling and two-dimensional liquid chromatography-tandem mass spectroscopy (2-D LC-MS/MS). ICAT enables the concurrent identification and comparative quantitative analysis of proteins present in various biological samples including human cell and tissue extracts. Quantification and identification of 139 proteins in complex protein mixtures obtained from androgen-stimulated and unstimulated LNCaP cells were achieved. Changes in levels of 77 proteins in response to androgens were detected. Some of these proteins have been previously reported to be regulated by androgens and include spermine synthase, fatty acid synthase and calreticulin precursor. A large number of proteins that have not been previously reported to be expressed in prostate cells were also quantitatively identified. Examples of these include members of the dual specificity protein phosphatase subfamily, "similar" to hypothetical protein DKFZp434B0328.1, "similar" to 14-3-3 protein zeta and "similar" to hypothetical protein 458, components of the actin cytoskeleton and a range of unknown/uncharacterized proteins. This catalogue of proteins provides an overview of the proteome of prostate cancer cells and the global changes that occur in response to androgens.  相似文献   

14.
In order to provide ready access to multigram quantities of the optically pure bremazocines [(-)- and (+)-9,9-dimethyl-5-ethyl-2-hydroxy-2-(1-hydroxy-cyclopropylmethyl)-6,7-benzomorphan)], we have developed an improved non-chromatographic synthesis, and determined the optical purity of their N-nor precursors using a rapid and relatively simple 1H NMR method based on diastereomeric derivatization with optically pure 1-phenylethylisocyanate. This method of determining optical purity should be readily amenable to similar systems containing phenolic amino functionalities. Finally, a greatly simplified methodology for introduction of the N-(1-hydroxycyclopropylmethyl) substituent in bremazocine is described. The improved synthetic method-the overall yield was increased about 3-fold-combined with the practical methodology to determine optical purity will considerably facilitate the employment of these enantiomers as pharmacological tools for examination of the kappa-opioid receptor system, as well as their evaluation as drug abuse treatment agents. This synthesis will also enable the study of these enantiomers for other, non-classical applications (e.g., treatment agents for HIV).  相似文献   

15.
The new generation of isotope-coded affinity tag (ICAT) reagents have been evaluated by labeling an equimolar amount of bovine serum albumin (BSA) with ICAT-12C9 and ICAT-13C9, combining the mixtures, digesting them with trypsin and analyzing the digestate both by muRPLC-tandem MS and by matrix-assisted laser desorption ionization (MALDI) TOF/TOF MS. The use of 13C in place of 2H resulted in both of the labeled peptides having identical elution characteristics in a reversed-phase separation. This similarity in elution allows ICAT-labeled peptides to be effectively analyzed using a muRPLC-MALDI-MS strategy as well. All of the cysteinyl-containing tryptic peptides from BSA were identified with only a 10% variation in the relative abundance measurements between the light and heavy versions of each peptide. A facile method for the removal of contaminants that arise from the cleaved biotin moiety that otherwise interfere with downstream separations and MS analysis has also been developed. The new ICAT reagents were then applied to the analysis of a cortical neuron proteome sample to identify proteins regulated by the antitumor drug, camptothecin.  相似文献   

16.
Albizzia saman, a leguminous plant, is known to open its leaves in the daytime and sleep at night with the leaves folded. beta-D-Glucopyranosyl 12-hydroxyjasmonate (1) was isolated as an endogenous chemical factor controlling this leafmovement. We developed a concise synthesis of optically pure (-)-1 in 9 steps from (+)-2 with a total yield of 58%. Similarly, such analogs of 1 as epi-LCF (13), enantiomer (14), and galactoside (19) were synthesized for a structure activity relationship (SAR) study. The results of this SAR study strongly suggest that the mechanism for the leaf-closing activity of 1 would be different from that of methyl jasmonate, and also suggest the involvement of a different kind of target protein which recognizes the trans-isomer of a jasmonate derivative.  相似文献   

17.
Experimental details for the "Fmoc solid phase peptide synthesis" of somatostatin are described. The 9-fluorenylmethyloxycarbonyl group was rapidly and quantitatively cleaved by 55% piperidine in dimethylformamide and monitored (u.v.) manually. For a kinetic study, a centrifugal reactor with a photometric control system and reference cell was used at each stage. The symmetrical anhydride coupling reaction was rapid and either acetic anhydride or fluorescamine termination was incorporated to minimize formation of deletion peptides. Anchor-bond cleavage was effected with trifluoroacetic acid which simultaneously removed all the acid labile tert.-butyl side chain protecting groups. N alpha-9-fluorenylmethyloxycarbonyl peptides may be obtained by omitting the piperidine deprotection step after the last cycle of synthesis. From several syntheses, analytically pure di-S-protected somatostatin 14-peptide was obtained in 55-60% overall yield. The S-protecting groups were removed and the product was purified by gel filtration to give homogeneous dihydrosomatostatin (91%) yield. Oxidation of dihydrosomatostatin with potassium ferricyanide and purification by countercurrent distribution provided analytically pure homogeneous somatostatin.  相似文献   

18.
We report the development of a microfluidic array device for continuous-exchange, cell-free protein synthesis. The advantages of protein expression in the microfluidic array include (1) the potential to achieve high-throughput protein expression, matching the throughput of gene discovery; (2) more than 2 orders of magnitude reduction in reagent consumption, decreasing the cost of protein synthesis; and (3) the possibility to integrate with detection for rapid protein analysis, eliminating the need to harvest proteins. The device consists of an array of units, and each unit can be used for production of an individual protein. The unit comprises a tray chamber for in vitro protein expression and a well chamber as a nutrient reservoir. The tray is nested in the well, and they are separated by a dialysis membrane and connected through a microfluidic connection that provides a means to supply nutrients and remove the reaction byproducts. The device is demonstrated by synthesis of green fluorescent protein, chloramphenicol acetyl-transferase, and luciferase. Protein expression in the device lasts 5-10 times longer and the production yield is 13-22 times higher than in a microcentrifuge tube. In addition, we studied the effects of the operation temperature and hydrostatic flow on the protein production yield.  相似文献   

19.
Stable isotopes are now widely used to quantify concentration changes in proteomics. This paper focuses on the resolution of isotopically coded peptides and how isotope effects occurring during chromatographic separations can be minimized. Heavy isotope derivatizing agents used in this work were the commercially available 2H8-ICAT reagent and 13C4-succinic anhydride. The ICAT reagent derivatizes cysteine-containing peptides, whereas the succinic anhydride reacts with primary amine groups in peptides. It was observed during reversed-phase chromatography of peptides from a BSA tryptic digest differentially labeled with the 2Hr and 2H8-ICAT reagents that resolution of the isoforms exceeded 0.5 with 20% of the peptides in the digest. Three-fourths of the peptides in this group contained two cysteine residues and were doubly labeled. Only 23% of the peptides labeled with a single ICAT residue had a resolution greater than 0.4. The resolution of peptides differentially labeled with 13C- and 12C-succinate never exceeded +/- 0.01, even in the case of peptides from the BSA digest labeled with 2 mol of succinate. Because this value is within the limits of the method used to determine resolution, it was concluded the 13C- and 12C-coded isoforms of labeled peptides did not resolve. The isotope ratio in the case of 13C/12C coding could be determined from a single mass spectrum taken at any point in the elution profile. This enabled isotope ratio analysis to be completed early in the elution of a peptide from chromatography columns.  相似文献   

20.
Lipid rafts were prepared according to standard protocols from Jurkat T cells stimulated via T cell receptor/CD28 cross-linking and from control (unstimulated) cells. Co-isolating proteins from the control and stimulated cell preparations were labeled with isotopically normal (d0) and heavy (d8) versions of the same isotope-coded affinity tag (ICAT) reagent, respectively. Samples were combined, proteolyzed, and resultant peptides fractionated via cation exchange chromatography. Cysteine-containing (ICAT-labeled) peptides were recovered via the biotin tag component of the ICAT reagents by avidin-affinity chromatography. On-line micro-capillary liquid chromatography tandem mass spectrometry was performed on both avidin-affinity (ICAT-labeled) and flow-through (unlabeled) fractions. Initial peptide sequence identification was by searching recorded tandem mass spectrometry spectra against a human sequence data base using SEQUEST software. New statistical data modeling algorithms were then applied to the SEQUEST search results. These allowed for discrimination between likely "correct" and "incorrect" peptide assignments, and from these the inferred proteins that they collectively represented, by calculating estimated probabilities that each peptide assignment and subsequent protein identification was a member of the "correct" population. For convenience, the resultant lists of peptide sequences assigned and the proteins to which they corresponded were filtered at an arbitrarily set cut-off of 0.5 (i.e. 50% likely to be "correct") and above and compiled into two separate datasets. In total, these data sets contained 7667 individual peptide identifications, which represented 2669 unique peptide sequences, corresponding to 685 proteins and related protein groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号