共查询到20条相似文献,搜索用时 15 毫秒
1.
1-O-alkyl-2-arachidonoyl-sn-glycero-3-phosphocholine. A common source of platelet-activating factor and arachidonate in human polymorphonuclear leukocytes 总被引:13,自引:0,他引:13
F H Chilton J M Ellis S C Olson R L Wykle 《The Journal of biological chemistry》1984,259(19):12014-12019
1-O-[3H]Alkyl-2-lyso-sn-glycero-3-phosphocholine (1-O-[3H]alkyl-2-lyso-GPC) incubated with human polymorphonuclear leukocytes (PMN) for 30 min is metabolized to 1-O-alkyl-2-acyl-GPC containing greater than 80% arachidonate at the 2 position (Chilton, F. H., O'Flaherty, J. T., Ellis, J. M., Swendsen, C. L., and Wykle, R. L. (1983) J. Biol. Chem. 258, 7268-7271). PMN containing 1-O-[3H]alkyl-2-arachidonoyl-GPC incorporated into their cellular phospholipids in this manner were stimulated with Ca2+ ionophore (A23187). Within 5 min after stimulation, 14%, 7%, and 7% of the total 1-O-[3H]alkyl-2-arachidonoyl-GPC in the cells had been converted to 1-O-[3H]alkyl-2-acetyl-GPC (platelet-activating factor), 1-O-[3H]alkyl-2-lyso-GPC, and 3H-labeled neutral lipid, respectively. Stimulation by opsonized zymosan yielded similar results. In related studies, cells were labeled with 1-O-hexadecyl-2-arachidonoyl-GPC containing a [methyl-14C] choline moiety. The nature of the long-chain acyl residues in the sn-2 position of the labeled 1-O-hexadecyl-2-acyl-GPC remaining after stimulation with A23187 was examined. Analysis by high-performance liquid chromatography using synthetic 1-O-hexadecyl-2-acyl-GPC standards indicated there is a time-dependent loss of arachidonate from the 2 position of the labeled 1-O-hexadecyl-2-arachidonoyl-GPC followed by reacylation by other fatty acids (primarily linoleic and oleic). This shift in the acylation pattern exhibited after Ca2+ ionophore stimulation was further examined in PMN preincubated with A23187 and subsequently incubated with labeled 1-O-alkyl-2-lyso-GPC; the stimulated cells produced 1-O-[3H]alkyl-2-acetyl-GPC (greater than 15% of total label) and 1-O-[3H]alkyl-2-acyl-GPC containing linoleic acid and oleic acid, rather than arachidonic acid in the sn-2 position. The findings demonstrate that upon stimulation of PMN, 1-O-alkyl-2-arachidonoyl-GPC can yield arachidonate and 1-O-alkyl-2-lyso-GPC; the 1-O-alkyl-2-lyso-GPC formed may be acetylated producing platelet-activating factor or reacylated with fatty acyl residues other than arachidonate. 相似文献
2.
P V Avdonin I V Svitina-Ulitina V I Kulikov 《Biochemical and biophysical research communications》1985,131(1):307-313
1-O-Alkyl-2-O-acetyl-sn-glyceryl-3-phosphocholine (platelet activating factor) inhibits human platelet adenylate cyclase via the GTP-dependent mechanism. Inhibition of adenylate cyclase correlates with the stimulation of high affinity hormone-sensitive GTPase. The half-maximal effects of PAF on both enzymes are observed at concentrations about 10(-8) M. Phentolamine, an alpha-adrenergic antagonist, does not abolish the PAF-induced inhibition of adenylate cyclase. The obtained data suggest that PAF receptors are coupled with the GTP-binding inhibitory protein. 相似文献
3.
By using tritiated 1-O-alkyl-2-O-acetyl-sn-glycero-3-phosphocholine (3H-PAF), we have directly identified its specific binding sites on rabbit platelet plasma membranes. The equilibrium dissociation constant for 3H-PAF is 1.36 (+/- 0.05) X 10(-9) M at 0 degrees C. The number of binding sites is 1.61 (+/- 0.34) X 10(12)/mg of membrane, which corresponds to approximately 150-300 receptors/platelet (depending on membrane vesicle orientation). Binding of 3H-PAF to rabbit platelet plasma membrane is rapid (t1/2 less than 5 min at 0 degrees C) and reversible. For a series of PAF analogues, their affinity for the receptor sites parallels with their relative potency to induce platelet aggregation. PAF can cause contraction of smooth muscle of heart, parenchymal strip, trachea, and ileum. Specific PAF receptor binding was demonstrated with purified plasma membrane from several smooth muscles and from polymorphonuclear leukocytes but not from presumably PAF nonresponsive cells such as erythrocytes and alveolar macrophages. It is likely that the interaction of PAF with these binding sites initiates the specific responses of platelets, polymorphonuclear leukocytes, and smooth muscles. 相似文献
4.
K Karasawa N Satoh M Masuda M Setaka K Hashimoto K Ishibashi S Nojima 《Journal of biochemistry》1991,110(5):683-687
We obtained rabbit antibodies by injecting immunogenic conjugates which were prepared by combining covalently 1-O-(15'-carboxypentadecyl)-2-O-acetyl-sn-glycero-3- phosphocholine(acetyl-CPGPC), 1-O-(15'-carboxypentadecyl)-2-O-N,N-dimethylcarbamoyl-sn-glycero-3 - phosphocholine (dimethylcarbamoyl-CPGPC), or 1-O-(15'-carboxypentadecyl)-2-O-N-butyl-carbamoyl-sn-glycero-3-pho sphocholine (butylcarbamoyl-CPGPC) with protein (BSA or KLH), respectively, and examined the specificity of the resulting antibodies by comparison with inhibition of the binding of iodolabeled CPGPC derivatives to the antibodies by corresponding or related phospholipids. Acetyl-CPGPC and dimethylcarbamoyl-CPGPC possessed haptenic activity causing production of antibodies reactive with PAF. Changes of the substituents at sn-2 in the antigens affected the specificity of the resulting antibodies. The affinity of the substituents to the antibodies decreased in the following order: acetyl much greater than dimethylcarbamoyl and butylcarbamoyl for antibodies to acetyl-CPGPC-KLH; dimethylcarbamoyl greater than acetyl much greater than butylcarbamoyl for antibodies to dimethylcarbamoyl-CPGPC-BSA; and butylcarbamoyl greater than dimethylcarbamoyl greater than acetyl for antibodies to butylcarbamoyl-CPGPC-BSA. Naturally occurring phospholipids, including lysoPAF, phosphatidylcholine, lysophosphatidylcholine, and sphingomyelin, revealed no cross-reactivities with these antibodies. Anti-dimethylcarbamoyl-CPGPC-BSA IgG and anti-acetyl-CPGPC-KLH IgG inhibited a PAF-induced aggregation of washed rabbit platelets in a dose-dependent manner. In contrast, anti-butylcarbamoyl-CPGPC-BSA IgG did not affect a PAF-induced platelet aggregation, nor did preimmune IgG. 相似文献
5.
K Karasawa K Fujita N Satoh T Hongo M Setaka M Ohno S Nojima 《Journal of biochemistry》1987,102(3):451-453
Specific antibodies to platelet activating factor (PAF) were prepared by immunizing rabbits with a hapten-bovine serum albumin (BSA) conjugate. As the hapten we used the synthetic PAF derivative which is resistant against enzymatic inactivation by plasma or tissues and which can bind to BSA through covalent bonding. Antibody activity was determined by an enzyme-linked immunosorbent assay (ELISA). Anti-PAF IgG reacted strongly with PAF. By means of the ELISA inhibition assay, we found that the antibody did not cross-react with phosphocholine, glycerophosphocholine, dilaurylglycerophosphocholine or PAF analogues which have ethanolamine-type polar head groups instead of choline group. 相似文献
6.
The influence of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, a platelet activating factor (PAF), and its structural analogs--1-acyl-2-acetyl-sn-glycero-3-phosphocholine and 1-(1'-alkenyl)-glycero-3-phosphocholine--on the histamine release from human leukocytes of healthy and allergic individuals was investigated. It was found that within the concentration range of 10(-10) to 10(-7) M PAF and its analogs induce a moderate histamine release from the leukocytes. However, at higher concentrations (greater than 10(-7) M) PAF induces an enhanced release of histamine from the leukocytes of allergic patients as compared to healthy individuals. PAF and its analogs significantly potentiate the allergens-induced release of histamine from the leukocytes of allergic patients. It was assumed that PAF induces the expression or demasking of additional numbers of IgE receptors on the surface of basophils, which leads tot he stimulation of histamine release from the leukocytes in the presence of allergens. 相似文献
7.
Robert L. Wykle Craig H. Miller Jon C. Lewis Jeffrey D. Schmitt Jennie A. Smith Jefferson R. Surles Claude Piantadosi Joseph T. OFlaherty 《Biochemical and biophysical research communications》1981,100(4):1651-1658
1-O-Hexadecyl-2-O-acetyl--glycero-3-phosphocholine (platelet activating factor) stimulated the degranulation of rabbit platelets and human neutrophils, whereas the enantiomer, 3-O-hexadecyl-2-O-acetyl--glycero-1-phosphocholine, was inactive. The analogs compared had the following relative potencies in degranulating platelets and neutrophils: 1-O-hexadecyl-2-O-acetyl--glycero-3-phosphocholine > 1-O-hexadecyl-2-O-ethyl--glycero-3-phosphocholine >-1-O-octadecyl-2-O-ethylglycero-3-phosphocholine = 1-O-hexadecyl-2-O-methyl--glycero-3-phosphocholine >-1-O-dodecyl-2-O-ethyl-glycero-3-phosphocholine. The deacetylated compound, 1-O-hexadecyl-2-lyso--glycero-3-phosphocholine, and 1-O-hexadecyl-2,2-dimethylpropanediol-3-phosphocholine were inactive. The active analogs selectively desensitized the response to each other in the neutrophils. It is suggested that these compounds may activate cells through interaction with a stereospecific receptor. 相似文献
8.
Metabolism of platelet-activating factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) and lyso-PAF (1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine) by cultured rat Kupffer cells. 下载免费PDF全文
In platelets, and in several other cell systems, pre-treatment with protein kinase C activators such as phorbol 12-myristate 13-acetate (PMA) results in the inhibition of receptor-mediated responses, suggesting that protein kinase C may play an important role in the termination of signal transduction. In the present study, we have attempted to locate the site of action of phorbol ester by comparing thrombin-induced (i.e. receptor-mediated) platelet activation with that induced by guanosine 5'-[gamma-thio]triphosphate (GTP[S]) and NaF, two agents which by-pass the receptor and initiate platelet responses by directly modulating G-protein function. After a 10 s pre-treatment with PMA (16 nM), dense-granule secretion induced by thrombin (0.2 unit/ml), GTP[S] (40 microM) and NaF (30 mM) was potentiated, resulting in a greater than additive response to agent plus PMA. However, after a 5 min pre-treatment, thrombin-induced secretion alone was inhibited, whereas PMA plus GTP[S]/NaF-induced release remained greater than additive. [32P]Phosphatidate formation in response to all three agents, in contrast, was inhibited by 50-70% in PMA (5 min)-treated platelets. That secretion induced by these agents is a protein kinase C-dependent event was demonstrable by using staurosporine, a protein kinase C inhibitor which at concentrations of 1-10 nM inhibited (70-90%) PMA-induced as well as thrombin- and NaF-induced secretion and protein phosphorylation. In membranes from PMA-treated platelets, thrombin-stimulated GTPase activity was significantly enhanced compared with that in untreated membranes (59% versus 82% increase over basal activity). The results suggest that inhibition of receptor-mediated responses by PMA may be directed towards two sites relating to G-protein activation: (i) receptor-stimulated GTPase activity and (ii) G-protein-phospholipase C coupling. Furthermore, the lack of inhibition of NaF- and GTP[S]-induced secretion by PMA suggests that different mechanisms may be involved in thrombin-induced and G-protein-activator-induced secretion. 相似文献
9.
S Saeki F Masugi T Ogihara A Otsuka Y Kumahara K Watanabe K Tamura A Akashi A Kumagai 《Life sciences》1985,37(4):325-329
The direct cardiac action of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (PAF) was studied in isolated perfused guinea-pig heart preparations. PAF produced a fall in left ventricular pressure, decreases in the rate of rise of the left ventricular pressure (dp/dt) and coronary flow, but had no effect on heart rate. These results indicate that PAF is a cardiodepressant with inotropic selectivity and this effect on heart is blocked by CV-3988, a specific PAF antagonist. 相似文献
10.
2-O-Methyl analogs of platelet activating factor (PAF) are potent anticancer agents. The sites of action and mechanisms of cell toxicity of these agents are as yet unknown. To better understand the mode of action of this class of anticancer agents, we examined the ability of 1-O-hexadecyl-2-acetylglycero-3-phosphocholine with the S or R configuration at C2 ((R)-PAF and (S)-PAF) and 1-O-hexadecyl-2-methoxyglycero-3-phosphocholine with the S or R configuration at C2 ((R)-ET-16-OCH3-GPC and (S)-ET-16-OCH3-GPC) to induce rabbit platelet aggregation and to inhibit [3H]thymidine uptake into WEHI-3B cells, HL-60 cells, and normal blood lymphocytes. The four chiral ether-linked lipids caused aggregation of rabbit platelets with the following order of potency: (R)-PAF greater than (S)-PAF greater than (R)-ET-16-OCH3-GPC greater than (S)-ET-16-OCH3-GPC; the EC50 values were 1 pM, 50 nM, 1 microM, and 50 microM, respectively. The cytotoxic effects of these ether lipids in leukemic cells was in reverse order to that observed for aggregation of platelets. The order of potency for inhibition of [3H]thymidine uptake by WEHI-3B and HL-60 cells was (R)-ET-16-OCH3-GPC = (S)-ET-16-OCH3-GPC greater than (S)-PAF greater than (R)-PAF; the EC50 values were 2, 2, 15, and greater than 40 microM, respectively. PAF antagonists (WEB 2086, CV 3988, triazolam, and SRI 63,441) blocked the action of the four ether lipids on platelets, while SRI 63,441 blocked the antineoplastic activity of the ether lipids on WEHI-3B and HL-60 cells. None of the four lipids was able to kill normal lymphocytes significantly. Scatchard analysis of PAF receptor binding revealed that HL-60 and WEHI-3B cells, which are sensitive to the cytotoxic action of ether-linked lipids, do not possess PAF receptors, whereas both normal lymphocytes and platelets do possess a PAF receptor. The present data indicate that the cytotoxic action of antineoplastic ether-linked lipids does not involve the PAF receptor. The protective role of SRI 63,441 in blocking the proaggregatory activity of the ether lipids in rabbit platelets involves PAF receptor, but cytotoxic activity against WEHI-3B and HL-60 cells does not result from its ability to act as a PAF antagonist. 相似文献
11.
R M Kramer G M Patton C R Pritzker D Deykin 《The Journal of biological chemistry》1984,259(21):13316-13320
The present study demonstrates that inactivation of exogenous 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (alkylacetyl-GPC; platelet-activating factor) by human platelets is mediated by the sequential action of two enzymes, 1) a Ca2+-independent acetylhydrolase recovered in the cytosolic fraction of platelets that deacylates alkylacetyl-GPC forming alkyllyso-GPC and 2) a CoA-independent, N-ethylmaleimide-sensitive transacylase associated with platelet membranes that incorporates a long-chain fatty acid into alkyllyso-GPC to produce alkylacyl-GPC. Separation of platelet phospholipids and subsequent resolution into individual molecular species by high-performance liquid chromatography revealed that the newly formed alkylacyl-GPC was exclusively alkylarachidonoyl-GPC and that the arachidonoyl group for acylation of alkyllyso-GPC was provided by phosphatidylcholine. We conclude that the previously described platelet arachidonoyl transacylase (Kramer, R.M., and Deykin, D. (1983) J. Biol. Chem. 258, 13806-13811) may play an important role in the metabolism of platelet-activating factor. 相似文献
12.
Binding and internalization of platelet-activating factor 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine in washed rabbit platelets 总被引:1,自引:0,他引:1
The binding profile of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC, platelet-activating factor) to washed rabbit platelets was investigated through the use of structural analogs of AGEPC, e.g. U66985, which specifically suppressed AGEPC biological activities on rabbit platelets. This interaction of AGEPC with platelets could be divided into three different components termed A, B, and C. Component A was considered as one of high affinity (Kd = 0.5 X 10(-9) M) and with a low capacity (about 400 sites/platelet). The binding of AGEPC to component A was reversible and was blocked by the inhibitory analogs of AGEPC. This was considered to be the AGEPC receptor site(s). Component B was irreversible in nature and was presumed to be associated with internalization of AGEPC. The latter process was sensitive to the structural inhibitors. Component C was not affected by the inhibitors and probably represented a nonspecific binding to the lipid layer of the membrane. The binding profile of 1-O-alkyl-2-(lyso)-sn-glycero-3-phosphocholine, a biologically inactive and noninhibitory analog of AGEPC, was observed to consist of a single component and was (also) unaffected by the inhibitors. Internalization of AGEPC into rabbit platelets was further examined by the bovine serum albumin extraction method, which was originally developed by Mohandas et al. (Mohandas, N., Wyatt, J., Mel, S. F., Rossi, M. E., and Shohet, S. B. (1982) J. Biol. Chem. 257, 6537-6543). AGEPC was instantly taken up by the cell and internalization into its membrane, where it remained and was not released into cytosol. The internalization of AGEPC was suppressed by pretreating the cells with AGEPC analogs. In platelets desensitized to AGEPC, no down-regulation of the receptor site(s) was observed. The internalization of AGEPC in the desensitized cells was clearly enhanced and this was obvious even in the presence of the AGEPC inhibitor(s). Even in the presence of the inhibitors, effective internalization of AGEPC was also evident in thrombin-treated cells. These results suggested that the internalization of AGEPC was irreversibly enhanced in the platelets which were activated by AGEPC itself as well as by thrombin. 相似文献
13.
Fuminori Masugi Toshio Ogihara Atsuhiro Otsuka Shuichi Saeki Yuichi Kumahara 《Biochemical and biophysical research communications》1982,104(1):280-284
Chemically synthesized 1-O-hexadecyl-2-O-acetyl--glycero-3-phosphocholine possessed the most potent hypotensive activity compared with bradykinin, prostagrandin E2 and I2 when 5 nano moles/kg body weight of each drug were administered intravenously in spontaneously hypertensive rat. The potency and the duration of hypotensive activity of 1-O-hexadecyl-2-O-acetyl--glycero-3-phosphocholine were dose dependent. Exogenous norepinephrine or angiotensin II showed pressor activity during the hypotensive action of 1-O-hexadecyl-2-O-acetyl--glycero-3-phosphocholine, but did not disturb the hypotensive pattern of this ether lipid. These may suggest that 1-O-alkyl-2-O-acetyl--glycero-3-phosphocholine plays an important role for the regulation of blood pressure. 相似文献
14.
Ammonia desorption chemical ionization of ether-linked phospholipids of the type 1-O-alkyl-2-O-acetyl-sn-glycero-3-phosphocholine (platelet-activating factors) and a series of analogues revealed a systematic fragmentation pattern that is characteristic for these compounds. The predominant ions included the protonated molecular ion and a series of fragments derived from the molecular ion having the following nominal mass losses: MH-14, MH-42, MH-59, and MH-183. Deuterated ammonia was used to elucidate the nature of several fragments. In addition, desorption chemical ionization was used to quantitate 1-O-hexadecyl-2-O-acetyl-sn-glycero-3-phosphocholine at the nanogram/sample level. 相似文献
15.
Synthesis of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet-activating factor) in exocrine glands and its control by secretagogues 总被引:4,自引:0,他引:4
1-O-Alkyl-2-acetyl-sn-glycero-3-phosphocholines (platelet-activating factor (PAF] stimulate exocytosis in isolated lobules from guinea pig parotid glands or pancreas by an acetylcholine-like mechanism (S?ling, H. D., Eibl, H. J., and Fest, W. (1984) Eur. J. Biochem. 144, 65-72). We show here that both tissues are able to synthetize PAF themselves. Isolated guinea pig parotid gland acini incorporate labeled acetate into the 2-position of PAF. Stimulation with A23187 or carbamoylcholine lead to a significant stimulation of this process. The newly synthetized PAF is partially released into the medium. Addition of lyso-PAF to the incubation medium does not significantly affect the rate of incorporation of labeled acetate into PAF in the absence or presence of carbamoylcholine. Isolated pancreatic lobules are also able to incorporate labeled acetate into PAF, and cholecystokinin and caerulein lead to a strong stimulation of this process. Incorporation of radioactive lyso-PAF into PAF, but not into 1-O-alkyl-2-long chain acyl-sn-glycero-3-phosphocholine was also significantly stimulated by carbamoylcholine in isolated parotid acini. Under these conditions, the time-dependent stimulation of amylase release paralled that of lyso-PAF incorporation into PAF. The same holds for the concentration dependency of the carbachol effect on these two parameters. In isolated pancreatic lobules, caerulein also stimulated the incorporation of lyso-PAF into PAF. Pulse-chase experiments with radioactive lyso-PAF indicate that stimulation of incorporation of radioactive lyso-PAF into PAF represents increased net synthesis of PAF rather than increased PAF-turnover. Using the platelet aggregation test, substantial amounts (0.79 nmol/g) of PAF could be determined in isolated acini from guinea pig parotid glands. 相似文献
16.
J C Strum A Emilsson R L Wykle L W Daniel 《The Journal of biological chemistry》1992,267(3):1576-1583
Madin Darby canine kidney (MDCK) cells convert 1-O-[3H]alkyl-2-acyl-sn-glycero-3-phosphocholine [( 3H]alkylacylGPC) to a product tentatively identified as an ethanolamine-containing phosphoglyceride (PE) (Daniel, L. W., Waite, B. M., and Wykle, R. L. (1986) J. Biol. Chem. 261, 9128-9132). In the present study, analysis of the radiolabeled phosphoglycerides as diradylglycerobenzoate derivatives indicated that [3H] alkylacylGPC was initially converted to 1-O-[3H]alkyl-2-acyl-sn-glycero-3-phosphoethanolamine [( 3H]alkylacylGPE) which was subsequently desaturated to 1-O-[3H]alk-1'-enyl-2-acyl-sn-glycero-3-phosphoethanolamine [( 3H]alkenylacylGPE). The conversion of [3H]/[32P]alkyl-lysoGPC to [3H]alkenylacylGPE indicated that base exchange enzymes were not involved in this pathway. A phosphono analog of alkyl-lysoGPC, resistant to phospholipase D hydrolysis and radiolabeled in the 1-O-alkyl chain was readily incorporated, acylated, and subsequently metabolized to [3H]alkylacylGPC and [3H]alkenylacylGPE. Therefore, the involvement of phospholipase D in the conversion pathway was ruled out. The conversion of [3H]alkylacylGPC or its phosphono analog to [3H]alkenylacylGPE was significantly enhanced by the addition of 100 microM ethanolamine to the culture media, suggesting that [3H]alkylacylglycerol is an intermediate in the cytidine-dependent pathway of PE synthesis. MDCK cell cytosol and microsomes contained no detectable phospholipase C activity. However, incubation of microsomes with CMP resulted in the degradation of [3H]alkylacylGPC and accumulation of [3H]alkylacylglycerol. Furthermore, the addition of CDP-ethanolamine to microsomes following preincubation with CMP, resulted in a decrease in [3H]alkylacylglycerol with a concomitant increase in [3H]alkenylacylGPE. Overall, these results suggest that the reverse reaction of choline phosphotransferase may be responsible for the conversion of alkylacylGPC to alkylacylGPE. 相似文献
17.
R E Whatley K L Clay F H Chilton M Triggiani G A Zimmerman T M McIntyre S M Prescott 《Prostaglandins》1992,43(1):21-29
The specific precursor for platelet-activating factor, 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine, constitutes 10 per cent of the 1-radyl-2-acyl-sn-glycero-3-phosphocholines in endothelial cells. Stimulation of endothelial cells results in accumulation of PAF and its sn-1-acyl- analog (acylPAF), with acylPAF the predominant product. Mass spectrometry confirmed these relative amounts and confirmed that stimulated endothelial cells accumulate 1-3 ng PAF per million cells. These data suggest that stimulated endothelial cells accumulate both PAF and acylPAF and that the PAF synthetic pathway in endothelial cells is not highly selective for the specific PAF precursor (1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine). 相似文献
18.
Metabolism of platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) in human fetal membranes and decidua vera 总被引:1,自引:0,他引:1
We have previously reported that platelet-activating factor (PAF) is present in human amniotic fluid obtained from women in labor. We have also demonstrated that PAF, lyso-PAF, and alkyl acyl-sn-glycero-3-phosphocholine (AA-GPC) are present in human amnion tissue. In the reported study, we have investigated the enzymes involved in PAF metabolism in amnion tissue and their regulation. A phospholipase A2 activity has been demonstrated in amnion tissue which cleaves alkyl acyl (long-chain) sn-glycero-3-phosphocholine. The enzyme activity is not altered by Ca2+ and is distinctly different from the phospholipase A2 that we have previously characterized in this tissue. Amnion tissue contains acetyltransferase activity which requires Ca2+ and is associated with the microsomal fraction. Acetylhydrolase is also present in the cytosolic fraction of amnion tissue. Acetylhydrolase activity has also been demonstrated in amniotic fluid. The affinities of acetyltransferase (for lyso-PAF) and acetylhydrolase (for PAF) were unaffected by Ca2+. In the presence of Ca2+, however, the specific activity of acetyltransferase was increased four- to fivefold while that of acetylhydrolase was unaffected. Acetyltransferase and acetylhydrolase activities in fetal membranes and decidua were similar and were unchanged with gestational age. The possible role of PAF in the initiation of human parturition is discussed. 相似文献
19.
Leukocyte activation is a property of systemic infection. Animal experiments indicate interleukin-1 (IL-1) as a possible modulator, while contradictory results have been reported from in-vitro stimulation of isolated leukocytes. The purpose of the present study was to investigate the activation of isolated polymorphonuclear (PMN) leukocytes in vitro by preparations of recombinant human IL-1 beta and IL-1 receptor antagonist, which in earlier studies could elicit and abrogate, respectively, a sepsis-like syndrome in rabbits. They have also been shown to influence acute phase protein synthesis in mice and rats, and release of leukocyte cathepsin G in vivo. It was found that recombinant human IL-1 beta elicited a dose-dependent luminol-enhanced chemiluminescence response in isolated human PMN leukocytes in the dose range 8.8 x 10(-11)-8.8 x 10(-8) M. The effect could be blocked by prior treatment with the IL-1 receptor antagonist, indicating a direct effect on the specific IL-1 receptor. Preincubation by IL-1 beta enhanced the effect of a secondary challenge with phorbol 12-myristate 13-acetate or formyl-Met-Leu-Phe by 30-40%. The priming effect of rhIL-1 beta could also be blocked by the specific receptor antagonist. In this study, incubation of PMN leukocytes with rhIL-1 beta failed to induce degranulation of both azurophil (neutrophil proteinase 4/proteinase 3) and specific (lactoferrin) granules. rhIL-1 beta has been shown to induce degranulation in vivo, which is thus indicated as an indirect effect. We conclude that IL-1 beta is a direct and specific, but probably weak stimulator of the PMN leukocyte.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
20.
The ability of rat mesangial cells to synthesize 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (1-O-alkyl-2-acetyl-GPC), also known as platelet activating factor (PAF), was studied in mesangial cell cultures originating from isolated rat glomeruli. In response to the phospholipase A2 agonist A23187 mesangial cells synthesized PAF primarily via an acetyltransferase utilizing either [3H]lyso-PAF or [3H]acetate/[3H]acetyl-CoA substrates. The major PAF species synthesized was 1-O-hexadecyl-2-acetyl-GPC. PAF was also synthesized from 1-O-[3H]alkyl-2-acetyl-sn-3-glycerol, indicating the presence of a CDP-cholinephosphotransferase. Mesangial cells incorporated [3H]lyso-PAF to 1-O-[3H]alkyl-2-acyl-GPC. Subsequent stimulation with A23187 (2 microM) resulted in formation and release of [3H]PAF following 3 h, and this was associated with concomitant decrements in intracellular 1-O-[3H]alkyl-2-acyl-GPC and [3H]lyso-PAF levels, indicating a precursor-product relationship among these alkyl ether lipids. Mesangial cells rapidly converted exogenous [3H]PAF to [3H]lyso-PAF and 1-O-[3H]alkyl-2-acyl-GPC, and this process was inhibited by diisopropyl fluorophosphate (10 microM). The demonstration of PAF activation-inactivation pathways in mesangial cells may be of importance in regulating their function and in glomerular injury. 相似文献