首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Jasmonic acid (JA) is known to be involved in the response of plants to environmental stresses such as drought, and betaine (glycinebetaine) is an osmopretectant accumulated in plants under environmental stresses including drought. However, it remains currently unclear whether JA is involved in the water‐stress‐induced betaine accumulation in plant leaves. The present experiment, performed with the whole pear plant (Pyrus bretschneideri Redh. cv. Suli), revealed that the exogenously applied JA induced a significant increase of the betaine level in the pear leaves when the plants were not yet stressed by drought, and when the plants were subjected to water stress, the ‘JA plus drought’ treatment induced a significant higher betaine level than did the drought treatment alone. Meanwhile, the ‘JA plus drought’ treatment induced higher levels of betaine aldehyde dehydrogenase (BADH, E C 1.2.1.8) and activities in the leaves than did the drought treatment alone. These results obtained in the whole plant experiments were supported by the results of detached leaf experiments. In detached leaves JA induced significant increases in betaine levels, BADH activities and BADH protein amounts in a time‐ and concentration‐dependent manner. These data demonstrate that JA is involved in the drought‐induced betaine accumulation in pear leaves.  相似文献   

2.
3.
The effects of salt stress and abscisic acid (ABA) on the expression of betaine aldehyde dehydrogenase (BADH) were determined in sorghum (Sorghum bicolor L.) plants. BADH mRNA expression was induced by salinity, and the timing coincided with the observed glycinebetaine (betaine) accumulation. The leaf water potential in the leaves of the sorghum plants was significantly affected by salinity. In response to salinity, betaine, ABA, Na and Cl accumulations increased 6-, 16-, 90-, and 3-fold, respectively. In the leaf disks from unsalinized plants incubated on NaCl, or ABA solution, the BADH mRNA level was lower than in the ABA-treated disks. Exogenous application of the ABA biosynthetic inhibitor fluridone to the NaCl-treated disks reduced the ABA accumulation and BADH mRNA levels compared with NaCl-treated leaves. The results indicate that the salt-induced accumulation of betaine and BADH mRNA coincides with the presence of ABA.  相似文献   

4.
Betaine aldehyde dehydrogenase in sorghum.   总被引:25,自引:0,他引:25       下载免费PDF全文
The ability to synthesize and accumulate glycine betaine is wide-spread among angiosperms and is thought to contribute to salt and drought tolerance. In plants glycine betaine is synthesized by the two-step oxidation of choline via the intermediate betaine aldehyde, catalyzed by choline monooxygenase and betaine aldehyde dehydrogenase (BADH). Two sorghum (Sorghum bicolor) cDNA clones, BADH1 and BADH15, putatively encoding betaine aldehyde dehydrogenase were isolated and characterized. BADH1 is a truncated cDNA of 1391 bp. BADH15 is a full-length cDNA clone, 1812 bp in length, predicted to encode a protein of 53.6 kD. The predicted amino acid sequences of BADH1 and BADH15 share significant homology with other plant BADHs. The effects of water deficit on BADH mRNA expression, leaf water relations, and glycine betaine accumulation were investigated in leaves of preflowering sorghum plants. BADH1 and BADH15 mRNA were both induced by water deficit and their expression coincided with the observed glycine betaine accumulation. During the course of 17 d, the leaf water potential in stressed sorghum plants reached -2.3 MPa. In response to water deficit, glycine betaine levels increased 26-fold and proline levels increased 108-fold. In severely stressed plants, proline accounted for > 60% of the total free amino acid pool. Accumulation of these compatible solutes significantly contributed to osmotic potential and allowed a maximal osmotic adjustment of 0.405 MPa.  相似文献   

5.
盐分对碱蓬幼苗离子含量,甜菜碱水平和BADH活性的效应   总被引:9,自引:0,他引:9  
研究了盐生植物碱蓬(Suaeda salsa)生长在不同浓度的NaCl和KCl溶液中体内Na+ 、K+ 含量、甜菜碱水平和甜菜碱醛脱氢酶(BADH)活性的动态变化。NaCl处理96 小时后,碱蓬地上部K+ 含量低于对照,而Na+ 明显高于对照,并分别随外界盐度增加而升、降;KCl处理的植株,K+ 、Na+ 含量变化与NaCl处理的相反;甜菜碱水平和BADH 活性随外界NaCl浓度增加而升高,甜菜碱水平随处理时间延长而增大,KCl对甜菜碱水平和BADH 活性的效应类似NaCl。证明NaCl和KCl均能促进盐生植物碱蓬体内甜菜碱的积累,初步证明BADH 与甜菜碱的积累有关  相似文献   

6.
An isozyme of betaine aldehyde dehydrogenase in barley.   总被引:18,自引:0,他引:18  
  相似文献   

7.
Meng YL  Wang YM  Zhang B  Nii N 《Cell research》2001,11(3):187-193
INTRODUCTIONAmaranth is a C4 dicotyledonous mesophytecrop plant. A. tricofor is a major variety for veg-etable and ornamental crops, and is widely culti-vated in the wor1d. Osmoprotectant glycine betaine(GB) was detected in Amaranthaceae, A. HyPochon-driacus L[2] and A. Caudatus L[3, 4]. GB iswidespread and an effective osmoprotectant in manyplants[3]. We studied the photosynthetic adaptationmechanism of A. trico1or under salt stress due to ac-cumulation of GB[5].GB is synthesized …  相似文献   

8.
Members of the Chenopodiaceae, such as sugar beet and spinach, accumulate glycine betaine in response to salinity or drought stress. The last enzyme in the glycine betaine biosynthetic pathway is betaine aldehyde dehydrogenase (BADH). In sugar beet the activity of BADH was found to increase two- to four-fold in both leaves and roots as the NaCl level in the irrigation solution was raised from 0 to 500 mM. This increase in BADH activity was paralleled by an increase in level of translatable BADH mRNA. Several cDNAs encoding BADH were cloned from a gt10 libary representing poly(A)+ RNA from salinized leaves of sugar beet plants, by hybridization with a spinach BADH cDNA. Three nearly full-length cDNA clones were confirmed to encode BADH by their nucleotide and deduced amino acid sequence identity to spinach BADH; these clones showed minor nucleotide sequence differences consistent with their being of two different BADH alleles. The clones averaged 1.7 kb and contained an open reading frame predicting a polypeptide of 500 amino acids with 83% identity to spinach BADH. RNA gel blot analysis of total RNA showed that salinization to 500 mM NaCl increased BADH mRNA levels four-fold in leaves and three-fold in the taproot. DNA gel blot analyses indicated the presence of at least two copies of BADH in the haploid sugar beet genome.  相似文献   

9.
以巴西香蕉(MusaAAA Giant Cavendish cv.Brazil)幼苗为试验材料,用不同浓度外源甜菜碱(BT)预处理香蕉幼苗后,置于人工气候箱中模拟低温(7℃)胁迫,分别测定香蕉叶片和根系内源甜菜碱的含量和甜菜碱合成关键酶甜菜碱醛脱氢酶(BADH)活性,以探讨外源甜菜碱对香蕉叶片和根系内源甜菜碱合成的影响.结果显示:7℃低温胁迫16 h后,10 mg/L外源甜菜碱即可极显著提高香蕉幼苗叶片BADH活性,叶片内源BT含量也同步极显著增加,低温胁迫24h后根系内源甜菜碱的含量虽显著高于常温对照,其BADH活性却无显著提升.同时,香蕉幼苗叶片内源BT含量的积累与叶片BADH活性的提高具有显著正相关关系,与根系内源BT含量的增加呈极显著正相关关系,与外源BT浓度无显著相关性.研究表明,外源甜菜碱可促进低温胁迫下香蕉内源甜菜碱的合成和积累,叶片和根系均具有合成内源BT的能力.  相似文献   

10.
Drought and salinity are the most important abiotic stresses that affect the normal growth and development of plants. Glycine betaine is one of the most important osmolytes present in higher plants that enable them to cope with environmental stresses through osmotic adjustment. In this study, a betaine aldehyde dehydrogenase (BADH) gene from spinach under the control of the stress-induced promoter rd29A from Arabidopsis thaliana was introduced into potato cultivar Gannongshu 2 by the Agrobacterium tumefaciens system. Putative transgenic plants were confirmed by Southern blot analysis. Northern hybridization analysis demonstrated that expression of BADH gene was induced by drought and NaCl stress in the transgenic potato plants. The BADH activity in the transgenic potato plants was between 10.8 and 11.7 U. There was a negative relationship (y = −2.2083x + 43.329, r = 0.9495) between BADH activity and the relative electrical conductivity of the transgenic potato plant leaves. Plant height increased by 0.4–0.9 cm and fresh weight per plant increased by 17–29% for the transgenic potato plants under NaCl and polyethylene glycol stresses compared with the control potato plants. These results indicated that the ability of transgenic plants to tolerate drought and salt was increased when their BADH activity was increased.  相似文献   

11.
The changes of ion contents, betaine levels and betaine-aldehyde dehydrogenase (BADH) activity in seedling of halophyte seepweed (Suaeda salsa) were studied under different salinity (NaC1 and KC1). Results showed that the K+ contents in seepweed seedlings grown in NaC1 for 96 h decreased as the external salinity was increased comparing with the controls while the Na+ levels increased substantially. The levels of Na+ in seepweed treated with KC1 fell, but K+ levels rose. The betaine levels and the BADH activity rose with the increase of external NaC1 concentrations and the betaine levels increased as the time of the treatment was lengthened. The effects of KC1 on the betaine levels and BADH activity were similar to these of NaC1. These results illustrated that NaC1 and KC1 can cause a large amounts of betaine accumulation in seepweed, and preliminary data suggest that BADH activity has played a role in betaine accumulation.  相似文献   

12.
Levels of endogenous glycine betaine in the leaves were measured in response to cold acclimation, water stress and exogenous ABA application in Arabidopsis thaliana. The endogenous glycine betaine level in the leaves increased sharply during cold acclimation treatment as plants gained freezing tolerance. When glycine betaine (10 mM) was applied exogenously to the plants as a foliar spray, the freezing tolerance increased from -3.1 to -4.5 degrees C. In addition, when ABA (1 mM) was applied exogenously, the endogenous glycine betaine level and the freezing tolerance in the leaves increased. However, the increase in the leaf glycine betaine level induced by ABA was only about half of that by the cold acclimation treatment. Furthermore, when plants were subjected to water stress (leaf water potential of approximately -1.6 MPa), the endogenous leaf glycine betaine level increased by about 18-fold over that in the control plants. Water stress lead to significant increase in the freezing tolerance, which was slightly less than that induced by the cold acclimation treatment. The results suggest that glycine betaine is involved in the induction of freezing tolerance in response to cold acclimation, ABA, and water stress in Arabidopsis plants.  相似文献   

13.
Antifreeze activity increases in winter rye ( Secale cereale L.) during cold acclimation as the plants accumulate antifreeze proteins (AFPs) that are similar to glucanases, chitinases and thaumatin-like proteins (TLPs) in the leaf apoplast. In the present work, experiments were conducted to assess the role of drought and abscisic acid (ABA) in the regulation of antifreeze activity and accumulation of AFPs. Antifreeze activity was detected as early as 24 h of drought treatment at 20°C and increased as the level of apoplastic proteins increased. Apoplastic proteins accumulated rapidly under water stress and reached a level within 8 days that was equivalent to the level of apoplastic proteins accumulated when plants were acclimated to cold temperature for 7 weeks. These drought-induced apoplastic proteins had molecular masses ranging from 11 to 35 kDa and were identified as two glucanases, two chitinases, and two TLPs, by using antisera raised against cold-induced rye glucanase, chitinase, and TLP, respectively. Apoplastic extracts obtained from plants treated with ABA lacked the ability to modify the growth of ice crystals, even though ABA induced the accumulation of apoplastic proteins within 4 days to a level similar to that obtained when plants were either drought-stressed for 8 days or cold-acclimated for 7 weeks. These ABA-induced apoplastic proteins were identified immunologically as two glucanases and two TLPs. Moreover, the ABA biosynthesis inhibitor fluridone did not prevent the accumulation of AFPs in the leaves of cold-acclimated rye plants. Our results show that cold acclimation and drought both induce antifreeze activity in winter rye plants and that the pathway regulating AFP production is independent of ABA.  相似文献   

14.
15.
The effects of exogenous foliar glycine betaine (GB) and abscisic acid (ABA) on papaya responses to water stress were investigated under distinct water regimes. Papaya seedlings (Carica papaya L. cultivar “BH-65”) were pretreated with GB or ABA and subsequently subjected to consecutive periods of drought, rehydration, and a second period of drought conditions. Results indicated that water stress induced ABA, jasmonic acid (JA), and proline accumulation but did not modify malondialdehyde (MDA) concentration. In addition, water deprivation reduced photosynthetic rate, stomatal conductance, relative water content (RWC), leaf fresh weight, and increased leaf abscission. GB applied prior to drought imposition decreased the impact of water stress on ABA, JA, proline accumulation, leaf water status, growth, and photosynthetic performance. However, ABA-pretreated plants did not show alteration of most of these parameters under water stress conditions when compared with non-pretreated plants except a clear induction of JA accumulation. Taken together, the data suggest that GB may modulate ABA, JA, and proline accumulation through the control of stomatal movement and the high availability of compatible solutes, leading to improvement of leaf water status, growth, and photosynthetic machinery function. In contrast, exogenous ABA did not stimulate papaya physiological responses under drought, but interestingly ABA in combination with drought could induce progressive JA synthesis, unlike drought alone, which induces a transitory JA increase and may trigger endogenous ABA accumulation. The data also suggest that irrespective of the pretreatments, papaya did not suffer oxidative damage.  相似文献   

16.
In Escherichia coli the osmoprotective compound glycine betaine is produced from choline by two enzymes; choline dehydrogenase (CDH) oxidizes choline to betaine aldehyde and then further on to glycine betaine, while betaine aldehyde dehydrogenase (BADH) facilitates the conversion of betaine aldehyde to glycine betaine. To evaluate the importance of BADH, a BADH/CDH fusion enzyme was constructed and expressed in E. coli and in Nicotiana tabacum. The fusion enzyme displayed both enzyme activities, and a coupled reaction could be measured. The enzyme was characterized regarding molecular weight and the dependence of the enzyme activities on environmental factors (salt, pH, and poly(ethylene glycol) addition). At high choline concentrations, E. coli cells expressing BADH/CDH were able to grow to higher final densities and to accumulate more glycine betaine than cells expressing CDH only. The intracellular glycine betaine levels were almost 5-fold higher for BADH/CDH when product concentration was related to CDH activity. Also, after culturing the cells at high NaCl concentrations, more glycine betaine was accumulated. On medium containing 20 mM choline, transgenic tobacco plants expressing BADH/CDH grew considerably faster than vector-transformed control plants.  相似文献   

17.
We investigated the different responses of wheat (Triticum aestivum L.) plants to drought- (DS) and heat stress (HS), and analyzed the physiological mechanisms of glycine betaine (GB) involved in the improvement of wheat tolerance to the combination of these stresses. The transgenic wheat T6 line was generated by introducing a gene encoding betaine aldehyde dehydrogenase (BADH) into the wild-type (WT) Shi4185 line. The gene was cloned from the Garden Orache plant (Atriplex hortensis L.). Wheat seedlings were subjected to drought stress (30%, PEG-6000), heat stress (40°C), and their combination. Photosynthetic gas exchange, water status and lipid peroxidation of wheat leaves were examined under different stresses. When subjected to a combination of drought and heat, the inhibition of photosynthesis was significantly increased compared to that under DS or HS alone. The increased inhibition of photosynthesis by the combined stresses was not simply the additive stress effect of separate heat- and drought treatments; different responses in plant physiology to DS and HS were also found. HS decreased the chlorophyll (Chl) content, net photosynthetic rate (P N), carboxylation efficiency (CE) and apparent quantum yield (AQY) more than DS but DS decreased the transpiration rate (E), stomata conductance (g s) and intercellular CO2 concentration (C i) more than HS. GB over-accumulation led to increased photosynthesis not only under individual DS or HS but also under their combination. The enhancement of antioxidant activity and the improvement of water status may be the mechanisms underlying the improvement of photosynthesis by GB in wheat plants.  相似文献   

18.
19.
Drought- and ABA-induced changes in photosynthesis of barley plants   总被引:1,自引:0,他引:1  
The changes caused by drought stress and abscisic acid (ABA) on photosynthesis of barley plants (Hordeum vulgare. L. cv. Alfa) have been studied. Drought stress was induced by allowing the leaves to lose 12% of their fresh weight. Cycloheximide (CHI), an inhibitor of stress-induced ABA accumulation, was used to distinguish alterations in photosynthetic reactions that are induced after drought stress in response to elevated ABA levels from those that are caused directly by altered water relations. Four hoars after imposition of drought stress or 2 h after application of ABA, Ihe bulk of the leaf's ABA content measured by enzyme-amplified ELISA, increased 14- and 16-fold, respectively. CHI fully blocked the stress-induced ABA accumulation. Gas exchange measurements and analysis of enzyme activities were used to study the reactions of photosynthesis to drought stress and ABA. Leaf dehydration or ABA treatment led to a noticeable decrease in both the initial slope of the curves representing net photosynthetic rate versus intercellular CO2 concentration and the maximal rate of photosynthesis; dehydration of CHI-treated plants showed much slower inhibition of the latter. The calculated values of the intercellular CO2 concentration, CO2 compensation point and maximal carboxylating efficiency of ribulose 1,5-bisphosphate (RuBP) carboxylase support the suggestion that biochemical factors are involved in the response of photosynthesis to ABA and drought stress. RuBP carboxylase activity was almost unaffected in ABA- and CHI-treated, non-stressed plants. A drop in enzyme activity was observed after leaf dehydration of the control and ABA-treated plants. When barley plants were supplied with ABA, the activity of carbonic anhydrase (CA, EC 4.2.2.1) increased more than 2-fold. Subsequent dehydration caused an over 1.5-fold increase in CA activity of the control plants and a more than 2.5-fold increase in ABA-treated plants. Dehydration of CHI-treated plants caused no change in enzyme activity. It is suggested that increased activity of CA is a photosynthetic response to elevated ABA concentration.  相似文献   

20.
Abscisic acid (ABA) regulates the physiological and biochemical mechanisms required to tolerate drought stress, which is considered as an important abiotic stress. It has been postulated that ABA might be involved in regulation of plant phenolic compounds biosynthesis, especially anthocyanins that accumulate in plants subjected to drought stress; however, the evidence for this postulate remains elusive. Therefore, we studied whether ABA is involved in phenolic compounds accumulation, especially anthocyanin biosynthesis, using drought stressed Aristotelia chilensis plants, an endemic berry in Chile. Our approach was to use fluridone, an ABA biosynthesis inhibitor, and then subsequent ABA applications to young and fully‐expanded leaves of drought stressed A. chilensis plants during 24, 48 and 72 h of the experiment. Plants were harvested and leaves were collected separately to determine the biochemical status. We observed that fluridone treatments significantly decreased ABA concentrations and total anthocyanin (TA) concentrations in stressed plants, including both young and fully‐expanded leaves. TA concentrations following fluridone treatment were reduced around fivefold, reaching control plant levels. ABA application restored ABA levels as well as TA concentrations in stressed plant at 48 h of the experiment. We also observed that TA concentrations followed the same pattern as ABA concentrations in the ABA treated plants. Quantitative real‐time PCR revealed that AcUFGT gene expression decreased in fully‐expanded leaves of stressed plants treated with fluridone, while a subsequent ABA application increased AcUFGT expression. Taken together, our results suggest that ABA is involved in the regulation of anthocyanin biosynthesis under drought stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号