首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corneal transparency depends on the architecture of the stromal extracellular matrix, including fibril diameter, packing, and lamellar organization. The roles of collagen types XII and XIV in regulation of corneal fibrillogenesis and development were examined. The temporal and spatial expression patterns were analyzed using semi-quantitative RT-PCR, in situ hybridization, Western analysis, and immunohistochemistry. Expression of types XII and XIV collagens in cornea development demonstrated that type XII collagen mRNA levels are constant throughout development (10D-adult) while type XIV mRNA is highest in early embryonic stages (10D-14D), decreasing significantly by hatching. The spatial expression patterns of types XII and XIV collagens demonstrated a homogeneous signal in the stroma for type XIV collagen, while type XII collagen shows segregation to the sub-epithelial and sub-endothelial stroma during embryonic stages. The type XII collagen in the anterior stroma was an epithelial product during development while fibroblasts contributed in the adult. Type XIV collagen expression was highest early in development and was absent by hatching. Both types XII and type XIV collagen have different isoforms generated by alternative splicing that may alter specific interactions important in fibrillogenesis, fibril-fibril interactions, and higher order matrix assembly. Analysis of these splice variants demonstrated that the long XII mRNA levels were constant throughout development, while the short XII NC3 mRNA levels peaked early (12D) followed by a decrease. Both type XIV collagen NC1 splice variants are highest during early stages (12D-14D) decreasing by 17D of development. These data suggest type XII collagen may have a role in development of stromal architecture and maintenance of fibril organization, while type XIV collagen may have a role in regulation of fibrillogenesis.  相似文献   

2.
The organization of type IV collagen in the unconventional basement membrane of the corneal endothelium (Descemet's membrane) was investigated in developing chicken embryos using anti-collagen mAbs. Both immunofluorescence histochemistry and immunoelectron microscopy were performed. In mature embryos (greater than 15 d of development), the type IV collagen of Descemet's membrane was present as an array of discrete aggregates of amorphous material at the interface between Descemet's membrane and the posterior corneal stroma. Immunoreactivity for type IV collagen was also observed in the posterior corneal stroma as irregular plaques of material with a morphology similar to that of the Descemet's membrane-associated aggregates. This arrangement of Descemet's membrane-associated type IV collagen developed from a subendothelial mat of type IV collagen-containing material. This mat, in which type IV collagen-specific immunoreactivity was always discontinuous, first appeared at the time a confluent endothelium was established, well before the onset of Descemet's membrane formation. Immunoelectron microscopy of mature corneas revealed that the characteristic nodal matrix of Descemet's membrane itself was unreactive for type IV collagen, but was penetrated at intervals by projections of type IV collagen-containing material. These projections frequently appeared to contact cell processes from the underlying corneal endothelium. This spatial arrangement of type IV collagen suggests that it serves to suture the corneal endothelium/Descemet's membrane to the dense interfacial matrix of the posterior stroma.  相似文献   

3.
Tenascin-X has been studied in developing and adult rat eye and in foetal and adult human eyes, using immunohistochemistry and frozen sections. The data were compared with the distribution of tenascin-C. The immunoreactivity for tenascin-X was seen in a basement membrane-like feature in different structures of embryonic (E) day 16–17 rat eyes. Postnatal (P) day 2 and older rat eyes showed immunoreactivity for tenascin-X in different connective tissues. In the epithelial basement membrane zone of the cornea, immunostaining was positive in P5 eyes, negative in P10 and P15 eyes and again positive in P30 and adult eyes. In the 20-week-old human foetus, immunoreactivity for the tenascin was seen in the posterior parts of the conjunctival stroma adjacent to the sclera and in a basement membrane-like fashion in anterior conjunctiva. In the adult human eye, immunoreactivity for tenascin-X was seen in the anterior one-third stroma of cornea as thin fibrils, in the stroma of the limbus and conjunctiva, and in blood vessels. Immunostaining for tenascin-C was seen in the posterior aspect of the further cornea, and in mesenchyme adjacent to cornea in E16–17 rat eyes. Corneal keratocytes and Descemet's membrane showed immunoreactivity for tenascin-C in P2–P15 rat eyes. Sclera and the junction of the cornea, and sclera expressed tenascin-C in P2 and older rat eyes. In human foetal eyes, immunostaining for tenascin-C was seen in the anterior parts of the corneal stroma, in the basement membrane zone and Bowman's membrane of the corneal epithelium, in the posterior one-fifth of the corneal stroma and the sclera starting from the junction of the cornea and sclera. In normal human adult eyes, immunostaining for tenascin-X was seen in the anterior one-third stroma of cornea, in the stroma of limbus and conjunctiva, and in blood vessels. The association of tenascin-X and basement membranes in early development evokes a question of its potential function in the development of the basement membrane. The results also suggest the association of tenascin-X with connective tissue development as well as the association of tenascin-C with the migration of keratocytes during the development of the corneal stroma.  相似文献   

4.
The distribution, supramolecular form, and arrangement of collagen types I and V in the chicken embryo corneal stroma were studied using electron microscopy, collagen type-specific monoclonal antibodies, and a preembedding immunogold method. Double-label immunoelectron microscopy with colloidal gold-tagged monoclonal antibodies was used to simultaneously localize collagen type I and type V within the chick corneal stroma. The results definitively demonstrate, for the first time, that both collagens are codistributed within the same fibril. Type I collagen was localized to striated fibrils throughout the corneal stroma homogeneously. Type V collagen could be localized only after pretreatment of the tissue to partially disrupt collagen fibril structure. After such pretreatments the type V collagen was found in regions where fibrils were partially dissociated and not in regions where fibril structure was intact. When pretreated tissues were double labeled with antibodies against types I and V collagen coupled to different size gold particles, the two collagens colocalized in areas where fibril structure was partially disrupted. Antibodies against type IV collagen were used as a control and were nonreactive with fibrils. These results indicate that collagen types I and V are assembled together within single fibrils in the corneal stroma such that the interaction of these collagen types within heterotypic fibrils masks the epitopes on the type V collagen molecule. One consequence of the formation of such heterotypic fibrils may be the regulation of corneal fibril diameter, a condition essential for corneal transparency.  相似文献   

5.
Collagen family of proteins   总被引:39,自引:0,他引:39  
Collagen molecules are structural macro-molecules of the extracellular matrix that include in their structure one or several domains that have a characteristic triple helical conformation. They have been classified by types that define distinct sets of polypeptide chains that can form homo- and heterotrimeric assemblies. All the collagen molecules participate in supramolecular aggregates that are stabilized in part by interactions between triple helical domains. Fourteen collagen types have been defined so far. They form a wide range of structures. Most notable are 1) fibrils that are found in most connective tissues and are made by alloys of fibrillar collagens (types I, II, III, V, and XI) and 2) sheets constituting basement membranes (type IV collagen), Descemet's membrane (type VIII collagen), worm cuticle, and organic exoskeleton of sponges. Other collagens, present in smaller quantities in tissues, play the role of connecting elements between these major structures and other tissue components. The fibril-associated collagens with interrupted triple helices (FACITs) (types IX, XII, and XIV) appear to connect fibrils to other matrix elements. Type VII collagen assemble into anchoring fibrils that bind epithelial basement membranes and entrap collagen fibrils from the underlying stroma to glue the two structures together. Type VI collagen forms thin-beaded filaments that may interact with fibrils and cells.  相似文献   

6.
The expression of type VIII collagen is restricted, in adult mammals, to specialized extracellular matrices and to a select subset of blood vessels. We have examined the distribution of type VIII collagen in sequential stages of mouse and chicken embryos and found a temporal and spatially restricted pattern of expression during cardiogenesis. Type VIII collagen was first detected by immunocytochemistry on Day 11 in the developing mouse embryo and at stage 19 in the chicken embryo. The distribution of this protein was rapidly modulated during cardiac morphogenesis. Initially (Day 11 in the mouse embryo), type VIII collagen was associated with cardiac myoblasts. From Days 15 to 18, the immunoreactive component was progressively diminished in the myocardium; however, this collagen was observed in the subendocardial layer of the atrioventricular canal and later in the cardiac jelly (or the myocardial basement membrane, an area associated with the formation of cardiac valves). On Day 17, type VIII collagen was also detected in the subendothelium (intima) and tunica media of large vessels. Neonatal and adult hearts contained low to undetectable levels of type VIII collagen. The presence of type VIII collagen was confirmed by immunoblot analysis of heart extracts at different stages of development. A major 185-kDa component, as well as polypeptides of 68 and 15 kDa, reacted with anti-type VIII collagen IgG. Exposure of heart extracts to hyaluronidase or reducing agent eliminated immunoreactivity of the 185-kDa component but not that of the 68- and 15-kDa polypeptides. Type VIII collagen therefore appears to be associated with a hyaluronidase-sensitive component of the extracellular matrix during a temporally restricted stage of embryonic cardiogenesis. The contribution of this collagen to cardiac morphogenesis might reside, in part, in its ability to influence the differentiation of the myocardium and formation of the cardiac valves.  相似文献   

7.
As a first step in a study of the role(s) of basement membranes in ocular morphogenesis, we have produced a variety of monoclonal antibodies against native lens capsule from adult chicks, and have used these reagents to stain histological sections of ocular tissues from 4 1/2- to 18-day-old chicken embryos. Four different patterns of immunofluorescence were observed in sections of corneas of 18-day-old chicken embryos stained with these antibodies. The antibodies in group 1 stained the basement membranes of both the corneal epithelium and the endothelium (as well as Descemet's membrane). Those in groups 2 and 3 stained only the epithelial or endothelial basement membranes, respectively. The group 4 antibody stained the corneal stroma as well as Bowman's membrane and Descemet's membrane. The antibodies in group 1 could be further subdivided into groups 1a and 1b on the basis of temporal differences in the onset of staining in corneas from 4 1/2- to 7-day-old embryos. Thus, this series of monoclonal antibodies appears to recognize at least five different antigenic determinants. When these antibodies were used to stain sections of eyes at different stages of development, we found that the characteristic differential staining of some basement membranes was maintained throughout development, while the staining properties of others changed. This indicates that many of the ocular basement membranes may differ from one another in composition or conformation, and that at least some of them may undergo developmental changes. We also noticed a similarity in the pattern of fluorescence associated with the basement membranes of the limbal blood vessels and the corneal endothelium that is consistent with the hypothesis that the corneal endothelium is derived from the early periocular vascular endothelium. Our observations of developing corneas also revealed that the antigen recognized by the group 4 antibody may be produced by both the corneal epithelium and the stromal fibroblasts. The suitability of monoclonal antibodies for probing basement membrane heterogeneity is discussed.  相似文献   

8.
Fibroblasts invade the primary corneal stroma of the 6-day-old chick embryo eye. The way in which these cells build the secondary stroma has been studied by microscope examination of the stroma during the subsequent 8 Days. Eyes were embedded in low viscosity nitrocellulose, and 30-micrometer tangential sections of cornea were cut and stained with azan (giving blue collagen and red cells). These sections were sufficiently thick to include enough cells and collagen for stromal organization to be visible under Nomarski optics. Three days after invasion, the fibroblasts extend along collagen bundles in the posterior region of the stroma; surprisingly, fibroblasts near the epithelium are more rounded. The collagen itself is organized in orthogonal bundles rather than in sheets. Measurements show that posterior bundles increase in size with time while anterior stroma si similar in diameter to primary stroma. These observations confirm that the epithelium continues to deposit primary stroma up to at least the 14th day. They show, moreover, that fibroblasts deposit collagen fibrils on extant stroma and that the farther a bundle is from the epithelium, and hence the longer the period since it was first laid down, the wider it is likely to be. Analysis of the results and existing data on hyaluronic acid levels in the stroma suggests that Bowman's membrane, the region of anterior stroma that remains uncolonized by cells, is, during this period at least, primary stroma laid down but as yet unswollen.  相似文献   

9.
A pepsin-resistant triple helical domain (chain 50,000 Mr) of type VIII collagen was isolated from bovine corneal Descemet's membrane and used as an immunogen for the production of mAbs. An antibody was selected for biochemical and tissue immunofluorescence studies which reacted both with Descemet's membrane and with type VIII collagen 50,000-Mr polypeptides by competition ELISA and immunoblotting. This antibody exhibited no crossreactivity with collagen types I-VI by competition ELISA. The mAb specifically precipitated a high molecular mass component of type VIII collagen (EC2, of chain 125,000 Mr) from the culture medium of subconfluent bovine corneal endothelial cells metabolically labeled for 24 h. In contrast, confluent cells in the presence of FCS and isotope for 7 d secreted a collagenous component of chain 60,000 Mr that did not react with the anti-type VIII collagen IgG. Type VIII collagen therefore appears to be synthesized as a discontinuous triple helical molecule with a predominant chain 125,000 Mr by subconfluent, proliferating cells in culture. Immunofluorescence studies with the mAb showed that type VIII collagen was deposited as fibrils in the extracellular matrix of corneal endothelial cells. In the fetal calf, type VIII collagen was absent from basement membranes and was found in a limited number of tissues. In addition to the linear staining pattern observed in the Descemet's membrane, type VIII collagen was found in highly fibrillar arrays in the ocular sclera, in the meninges surrounding brain, spinal cord, and optic nerve, and in periosteum and perichondrium. Fine fibrils were evident in the white matter of spinal cord, whereas a more generalized staining was apparent in the matrices of cartilage and bone. Despite attempts to unmask the epitope, type VIII collagen was not found in aorta, kidney, lung, liver, skin, and ligament. We conclude that this unusual collagen is a component of certain specialized extracellular matrices, several of which are derived from the neural crest.  相似文献   

10.
The appearance and distribution of type I, II, and III collagens in the developing chick eye were studied by specific antibodies and indirect immunofluorescence. At stage 19, only type I collagen was detected in the primary corneal stroma, in the vitreous body, and along the lens surface. At later stages, type I collagen was located in the primary and secondary corneal stroma and in the fibrous sclera, but not around the lens. Type II collagen was first observed at stage 20 in the primary corneal stroma, neural retina, and vitreous body. It was particularly prominent at the interface of the neural retina and vitreous body and, from stage 30 on, in the cartilaginous sclera. The primary corneal stroma consisted of a mixture of type I and II collagens between stages 20 and 27. Invasion of the primary corneal stroma by mesenchyme and subsequent deposition of fibroblast-derived collagen corresponded with a pronounced increase of type I collagen, throughout the entire stroma, and of type II collagen, in the subepithelial region. Type II collagen was also found in Bowman's and Descemet's membranes. A transient appearance of type III collagen was observed in the corneal epithelial cells, but not in the stroma (stages 20–30). The fully developed cornea contained both type I and II collagens, but no type III collagen. Type III collagen was prominent in the fibrous sclera, iris, nictitating membrane, and eyelids.  相似文献   

11.
Corneas of tadpole, mouse, rat, guinea pig, rabbit, cat, cattle, and human were examined by TEM and SEM in a comparative study. The differences between species were noted mainly by using TEM. Bowman's layer showed a tendency to be well developed in higher mammals. Tadpoles lack a Bowman's layer, lower mammals have a thin Bowman's layer, and higher mammals have a thick Bowman's layer. The boundary between the substantia propria and Descemet's membrane was distinct in higher mammals. On the other hand, there are no differences in thickness of the collagen fibrils that constitute Bowman's layer and those of the substantia propria. NaOH digestion was utilized for SEM preparation. SEM imaging revealed a textured appearance of the epithelial side of Bowman's layer. In Descemet's membrane, fibrous long spacing (FLS) fiber-like structures, which are arranged in parallel to the endothelium, were observed by both TEM and SEM. To our knowledge, this is the first report of SEM observations of FLS fiber-like structures on the endothelial surface of Descemet's membrane. SEM at a plane normal to the plane of the cornea showed that Descemet's membrane has a piled laminar structure. Descemet's membrane is closely associated with the collagen layer of the substantia propria. Collagen fibrils invading from the substantia propria into Descemet's membrane were observed with both TEM and SEM.  相似文献   

12.
Nidogen-1, a key component of basement membranes, is considered to function as a link between laminin and collagen Type IV networks and is expressed by mesenchymal cells during embryonic and fetal development. It is not clear which cells produce nidogen-1 in early developmental stages when no mesenchyme is present. We therefore localized nidogen-1 and its corresponding mRNA at the light and electron microscopic level in Day 7 mouse embryos during the onset of mesoderm formation by in situ hybridization, light microscopic immunostaining, and immunogold histochemistry. Nidogen-1 mRNA was found not only in the cells of the ectoderm-derived mesoderm but also in the cytoplasm of the endoderm and ectoderm, indicating that all three germ layers express it. Nidogen-1 was localized only in fully developed basement membranes of the ectoderm and was not seen in the developing endodermal basement membrane or in membranes disrupted during mesoderm formation. In contrast, laminin-1 and collagen Type IV were present in all basement membrane types at this developmental stage. The results indicate that, in the early embryo, nidogen-1 may be expressed by epithelial and mesenchymal cells, that both cell types contribute to embryonic basement membrane formation, and that nidogen-1 might serve to stabilize basement membranes in vivo. (J Histochem Cytochem 48:229-237, 2000)  相似文献   

13.
Keratan sulfate (KS) proteoglycans are of importance for the maintenance of corneal transparency as evidenced in the condition macular corneal dystrophy type I (MCD I), a disorder involving the absence of KS sulfation, in which the cornea becomes opaque. In this transmission electron microscope study quantitative immuno- and histochemical methods have been used to examine a normal and MCD I cornea. The monoclonal antibody, 5-D-4, has been used to localize sulfated KS and the lectin Erythrina cristagalli agglutinin (ECA) to localize poly N -acetyllactosamine (unsulfated KS). In normal cornea high levels of sulfated KS were detected in the stroma, Bowman's layer, and Descemet's membrane and low levels in the keratocytes, epithelium and endothelium. Furthermore, in normal cornea, negligible levels of labeling were found for N -acetyllactosamine (unsulfated KS). In the MCD I cornea sulfated KS was not detected anywhere, but a specific distribution of N -acetyllactosamine (unsulfated KS) was evident: deposits found in the stroma, keratocytes, and endothelium labeled heavily as did the disrupted posterior region of Descemet's membrane. However, the actual cytoplasm of cells and the undisrupted regions of stroma revealed low levels of labeling. In conclusion, little or no unsulfated KS is present in normal cornea, but in MCD I cornea the abnormal unsulfated KS was localized in deposits and did not associate with the collagen fibrils of the corneal stroma. This study has also shown that ECA is an effective probe for unsulfated KS.  相似文献   

14.
To investigate the nature of the hexagonal lattice structure in Descemet's membrane, monoclonal antibodies were raised against a homogenate of bovine Descemet's membranes. They were screened by immunofluorescence microscopy to obtain antibodies that label Descement's membrane. Some monoclonal antibodies labeled both Descemet's membrane and fine filaments within the stroma. In electron microscopy, with immunogold labeling on a critical point dried specimen, the antibodies labeled the hexagonal lattices and long-spacing structures produced by the bovine corneal endothelial cells in culture; 6A2 antibodies labeled the nodes of the lattice and 9H3 antibodies labeled the sides of the lattice. These antibodies also labeled the hexagonal lattice of Descemet's membrane in situ in ultrathin frozen sectioning. In immunofluorescence, these antibodies stained the sclera, choroid, and optic nerve sheath and its septum. They also labeled the dura mater of the spinal cord, and the perichondrium of the tracheal cartilage. In immunoblotting, the antibodies recognized 64-kD collagenous peptides both in tissue culture and in Descemet's membrane in vivo. They also recognized 50-kD pepsin-resistant fragments from Descemet's membranes that are related to type VIII collagen. However, they did not react either in immunoblotting or in immunoprecipitation with medium of subconfluent cultures from which type VIII collagen had been obtained. The results are discussed with reference to the nature of type VIII collagen, which is currently under dispute. This lattice collagen may be a member of a novel class of long-spacing fibrils.  相似文献   

15.
Type VIII collagen was isolated from bovine Descemet's membranes by pepsin treatment and salt fractionation, as described by Kapoor et al. [(1986) Biochemistry 25, 3930-3937]. Contaminating type IV collagen was removed by ion-exchange chromatography. Purified type VIII collagen consisted of two different polypeptide chains and, compared to the fiber forming collagens, showed a higher thermal stability. Corresponding fractions isolated from pepsinized human Ewing's sarcoma and fetal calf aorta reacted immunologically with a protein of similar molecular mass. After extraction of Descemet's membranes with guanidine hydrochloride, a peptide of about 60 kDa was obtained. This seems to be the tissue form of type VIII collagen.  相似文献   

16.
Selected stages of the developing chicken cornea have been examined for type VI collagen, employing monoclonal antibodies specific for this molecule. By immunofluorescence, the molecule is not detectable in 5 1/2 day corneas, a time at which the epithelial-derived, acellular primary stroma is the only corneal matrix present. One day later, the presumptive stromal fibroblasts have invaded this stroma and have initiated synthesis of the secondary (mature) stroma. By that time, a strong fluorescent signal for the type VI collagen molecule is detectable throughout the stroma. It is present in all subsequent ages examined. The molecule is not restricted to the cornea, and is present in most stromal matrices examined, including those of the sclera, eyelid, and nictitating membrane. Immunoelectron microscopy was also performed, utilizing a colloidal gold-labeled secondary antibody. These data show that the type VI collagen is not a component of the striated collagen fibrils, but instead is assembled in the form of thin filaments. The monoclonal antibody bound to the filaments at periodic intervals of about 100 nm.  相似文献   

17.
The morphogenesis of type IV collagen-containing structures in the stromal matrix of the developing avian cornea was investigated using immunofluorescence and immunoelectron microscopic histochemistry. Two forms of type IV collagen-containing structures were seen; these differed in their probable origin, structure, molecular composition, and developmental fate. The major form of stromal type IV collagen-containing material, termed "strings," was observed only after swelling of the primary stroma and the onset of mesenchymal invasion. These strings are presumed to be products of the stromal cells. In immunofluorescence histochemistry they appeared as linear segments of type IV collagen-specific immunoreactivity. In immunoelectron microscopy, they appeared initially as electron-dense sausages of variable length and orientation. They frequently were associated with cell surfaces and, in fortuitous sections, appeared to connect adjacent cells. The strings also contained type VI collagen and fibronectin, but very little, if any, of the basement membrane components laminin and heparin sulfate proteoglycan (HSPG). As the stroma continued to expand in thickness, more of these structures were observed in a radial orientation, becoming quite long and less tortuous. Later in development, as stromal condensation proceeded, they disappeared. We suggest that the strings function to stabilize the stromal matrix, and perhaps to limit the rate and/or extent of stromal expansion, during a phase of rapid swelling and matrix deposition. The other form of type IV collagen-containing stromal material appeared as irregularly shaped plaques of basement membrane-like material identical to those previously described in mature corneas. These are likely derived from the corneal endothelial cells. They contained other basement membrane-associated components (laminin, HSPG) and fibronectin, but not type VI collagen. This material persists in mature corneas as sparse irregular stromal plaques and as matrix in the interface between Descemet's membrane and the corneal stroma.  相似文献   

18.
Pole figures of optic and morphological structures of rabbit corneal stroma have been determined. The birefringence of stroma is non-uniform, but tends to increase in the directions of nose to ear and of periphery to the vertex. There is no obvious symmetry in the local optic axes. Its direction changes from limbus to limbus. Small angle laser scattering showed stroma to have sheaf-like morphology. This texture is consistent with bundles of collagen fibrils which divide and anastomose. The average size of the scattering entities in rabbit corneal stroma is 19–23 μm with sector angles β ranging from 1 to 15°.  相似文献   

19.
Type VI collagen is a nonfibrillar collagen present as a network throughout the chick secondary stroma. Immunolocalization of type VI collagen both in the chick corneal stroma and in other systems demonstrates that type VI collagen is present associated with cells and between striated fibrils. We hypothesize that type VI collagen may function in cell-matrix interactions important in corneal development. To examine this possibility, we have isolated and characterized bovine corneal type VI collagen and determined that the chain composition and morphology of type VI collagen isolated from cornea is similar to that isolated from other sources. The tissue form of type VI collagen was localized to filaments forming a network around fibrils and close to corneal fibroblasts. We then analyzed relative attachment and spreading on type VI collagen as compared to the other collagens present in the secondary stroma, and found that although corneal fibroblasts attach equally well to type VI and type I collagen, cells spread to a much greater extent on type VI collagen. Although corneal fibroblasts do have an RGD-dependent receptor which functions during adhesion to fibronectin, attachment to type VI collagen is RGD-independent unless the molecule is denatured. Blocking of the RGD-dependent receptor with soluble RGD peptides results in no change in attachment or spreading. These data imply a role for type VI collagen in cell-matrix interactions during corneal stroma development.  相似文献   

20.
《The Journal of cell biology》1984,99(6):2024-2033
The regulation of collagen fibril, bundle, and lamella formation by the corneal fibroblasts, as well as the organization of these elements into an orthogonal stroma, was studied by transmission electron microscopy and high voltage electron microscopy. Transmission and high voltage electron microscopy of chick embryo corneas each demonstrated a series of unique extracellular compartments. Collagen fibrillogenesis occurred within small surface recesses. These small recesses usually contained between 5 and 12 collagen fibrils with typically mature diameters and constant intrafibrillar spacing. The lateral fusion of the recesses resulted in larger recesses and consequent formation of prominent cell surface foldings. Within these surface foldings, bundles that contained 50-100 collagen fibrils were formed. The surface foldings continued to fuse and the cell surface retracted, forming large surface-associated compartments in which bundles coalesced to form lamellae. High voltage electron microscopy of 0.5 micron sections cut parallel to the corneal surface revealed that the corneal fibroblasts and their processes had two major axes at approximately right angles to one another. The surface compartments involved in the production of the corneal stroma were aligned along the fibroblast axes and the orthogonality of the cell was in register with that of the extracellular matrix. In this manner, corneal fibroblasts formed collagen fibrils, bundles, and lamellae within a controlled environment and thereby determined the architecture of the corneal stroma by the configuration of the cell and its associated compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号