首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycoside hydrolase family 31 α-glucosidases (31AGs) show various specificities for maltooligosaccharides according to chain length. Aspergillus niger α-glucosidase (ANG) is specific for short-chain substrates with the highest kcat/Km for maltotriose, while sugar beet α-glucosidase (SBG) prefers long-chain substrates and soluble starch. Multiple sequence alignment of 31AGs indicated a high degree of diversity at the long loop (N-loop), which forms one wall of the active pocket. Mutations of Phe236 in the N-loop of SBG (F236A/S) decreased kcat/Km values for substrates longer than maltose. Providing a phenylalanine residue at a similar position in ANG (T228F) altered the kcat/Km values for maltooligosaccharides compared with wild-type ANG, i.e., the mutant enzyme showed the highest kcat/Km value for maltotetraose. Subsite affinity analysis indicated that modification of subsite affinities at + 2 and + 3 caused alterations of substrate specificity in the mutant enzymes. These results indicated that the aromatic residue in the N-loop contributes to determining the chain-length specificity of 31AGs.  相似文献   

2.
The role of calcium ion in the active site of the inverting glycoside hydrolase family 97 enzyme, BtGH97a, was investigated through structural and kinetic studies. The calcium ion was likely directly involved in the catalytic reaction. The pH dependence of kcat/Km values in the presence or absence of calcium ion indicated that the calcium ion lowered the pKa of the base catalyst. The significant decreases in kcat/Km for hydrolysis of substrates with basic leaving groups in the absence of calcium ion confirmed that the calcium ion facilitated the leaving group departure.  相似文献   

3.
Fusion of the last two enzymes in the pyrimidine biosynthetic pathway in the inversed order by having a COOH-terminal orotate phosphoribosyltransferase (OPRT) and an NH2-terminal orotidine 5′-monophosphate decarboxylase (OMPDC), as OMPDC-OPRT, are described in many organisms. Here, we produced gene fusions of Plasmodium falciparum OMPDC-OPRT and expressed the bifunctional protein in Escherichia coli. The enzyme was purified to homogeneity using affinity and anion-exchange chromatography, exhibited enzymatic activities and functioned as a dimer. The activities, although unstable, were stabilized by its substrate and product during purification and long-term storage. Furthermore, the enzyme expressed a perfect catalytic efficiency (kcat/Km). The kcat was selectively enhanced up to three orders of magnitude, while the Km was not much affected and remained at low μM levels when compared to the monofunctional enzymes. The fusion of the two enzymes, creating a “super-enzyme” with perfect catalytic power and more flexibility, reflects cryptic relationship of enzymatic reactivities and metabolic functions on molecular evolution.  相似文献   

4.
Genes of β-mannosidase 97 kDa, GH family 2 (bMann9), β-mannanase 48 kDa, GH family 5 (bMan2), and α-galactosidase 60 kDa, GH family 27 (aGal1) encoding galactomannan-degrading glycoside hydrolases of Myceliophthora thermophila C1 were successfully cloned, and the recombinant enzymes were purified to homogeneity and characterized. bMann9 displays only exo-mannosidase activity, the K m and k cat values are 0.4 mM and 15 sec?1 for p-nitrophenyl-β-D-mannopyranoside, and the optimal pH and temperature are 5.3 and 40°C, respectively. bMann2 is active towards galac-tomannans (GM) of various structures. The K m and k cat values are 1.3 mg/ml and 67 sec?1 for GM carob, and the optimal pH and temperature are 5.2 and 69°C, respectively. aGal1 is active towards p-nitrophenyl-α-D-galactopyranoside (PNPG) as well as GM of various structures. The K m and k cat values are 0.08 mM and 35 sec?1 for PNPG, and the optimal pH and temperature are 5.0 and 60°C, respectively.  相似文献   

5.
Protein tyrosine phosphatase (PTP) targeted, peptide based chemical probes are valuable tools for studying this important family of enzymes, despite the inherent difficulty of developing peptides targeted towards an individual PTP. Here, we have taken a rational approach to designing a SHP-2 targeted, fluorogenic peptide substrate based on information about the potential biological substrates of SHP-2. The fluorogenic, phosphotyrosine mimetic phosphocoumaryl aminopropionic acid (pCAP) provides a facile readout for monitoring PTP activity. By optimizing the amino acids surrounding the pCAP residue, we obtained a substrate with the sequence Ac-DDPI-pCAP-DVLD-NH2 and optimized kinetic parameters (kcat = 0.059 ± 0.008 s−1, Km = 220 ± 50 µM, kcat/Km of 270 M−1s−1). In comparison, the phosphorylated coumarin moiety alone is an exceedingly poor substrate for SHP-2, with a kcat value of 0.0038 ± 0.0003 s−1, a Km value of 1100 ± 100 µM and a kcat/Km of 3 M−1s−1. Furthermore, this optimized peptide has selectivity for SHP-2 over HePTP, MEG1 and PTPµ. The data presented here demonstrate that PTP-targeted peptide substrates can be obtained by optimizing the sequence of a pCAP containing peptide.  相似文献   

6.
7.
Protein arginine N-methyltransferase (PRMT) kinetic parameters have been catalogued over the past fifteen years for eight of the nine mammalian enzyme family members. Like the majority of methyltransferases, these enzymes employ the highly ubiquitous cofactor S-adenosyl-l-methionine as a co-substrate to methylate arginine residues in peptidic substrates with an approximately 4-μM median KM. The median values for PRMT turnover number (kcat) and catalytic efficiency (kcat/KM) are 0.0051 s−1 and 708 M−1 s−1, respectively. When comparing PRMT metrics to entries found in the BRENDA database, we find that while PRMTs exhibit high substrate affinity relative to other enzyme-substrate pairs, PRMTs display largely lower kcat and kcat/KM values. We observe that kinetic parameters for PRMTs and arginine demethylase activity from dual-functioning lysine demethylases are statistically similar, paralleling what the broader enzyme families in which they belong reveal, and adding to the evidence in support of arginine methylation reversibility.  相似文献   

8.
Autoinhibition of human dicer by its internal helicase domain   总被引:1,自引:0,他引:1  
Dicer, a member of the ribonuclease III family of enzymes, processes double-stranded RNA substrates into ∼ 21- to 27-nt products that trigger sequence-directed gene silencing by RNA interference. Although the mechanism of RNA recognition and length-specific cleavage by Dicer has been established, the way in which dicing activity is regulated is unclear. Here, we show that the N-terminal domain of human Dicer, which is homologous to DExD/H-box helicases, substantially attenuates the rate of substrate cleavage. Deletion or mutation of this domain activates human Dicer in both single- and multiple-turnover assays. The catalytic efficiency (kcat/Km) of the deletion construct is increased by 65-fold over that exhibited by the intact enzyme. Kinetic analysis shows that this activation is almost entirely due to an enhancement in kcat. Modest stimulation of catalysis by the full-length Dicer enzyme was observed in the presence of the TAR-RNA binding protein, which physically interacts with the DExD/H-box domain. These results suggest that the DExD/H-box domain likely disrupts the functionality of the Dicer active site until a structural rearrangement occurs, perhaps upon assembly with its molecular partners.  相似文献   

9.
Various substrates, catalysts, and assay methods are currently used to screen inhibitors for their effect on the proteolytic activity of botulinum neurotoxin. As a result, significant variation exists in the reported results. Recently, we found that one source of variation was the use of various catalysts, and have therefore evaluated its three forms. In this paper, we characterize three substrates under near uniform reaction conditions using the most active catalytic form of the toxin. Bovine serum albumin at varying optimum concentrations stimulated enzymatic activity with all three substrates. Sodium chloride had a stimulating effect on the full length synaptosomal-associated protein of 25 kDa (SNAP25) and its 66-mer substrates but had an inhibitory effect on the 17-mer substrate. We found that under optimum conditions, full length SNAP25 was a better substrate than its shorter 66-mer or 17-mer forms both in terms of kcat, Km, and catalytic efficiency kcat/Km. Assay times greater than 15 min introduced large variations and significantly reduced the catalytic efficiency. In addition to characterizing the three substrates, our results identify potential sources of variations in previous published results, and underscore the importance of using well-defined reaction components and assay conditions.  相似文献   

10.
Cytochrome P450 27C1 (P450 27C1) is a retinoid desaturase expressed in the skin that catalyzes the formation of 3,4-dehydroretinoids from all-trans retinoids. Within the skin, retinoids are important regulators of proliferation and differentiation. In vivo, retinoids are bound to cellular retinol-binding proteins (CRBPs) and cellular retinoic acid–binding proteins (CRABPs). Interaction with these binding proteins is a defining characteristic of physiologically relevant enzymes in retinoid metabolism. Previous studies that characterized the catalytic activity of human P450 27C1 utilized a reconstituted in vitro system with free retinoids. However, it was unknown whether P450 27C1 could directly interact with holo-retinoid-binding proteins to receive all-trans retinoid substrates. To assess this, steady-state kinetic assays were conducted with free all-trans retinoids and holo-CRBP-1, holo-CRABP-1, and holo-CRABP-2. For holo-CRBP-1 and holo-CRABP-2, the kcat/Km values either decreased 5-fold or were equal to the respective free retinoid values. The kcat/Km value for holo-CRABP-1, however, decreased ∼65-fold in comparison with reactions with free all-trans retinoic acid. These results suggest that P450 27C1 directly accepts all-trans retinol and retinaldehyde from CRBP-1 and all-trans retinoic acid from CRABP-2, but not from CRABP-1. A difference in substrate channeling between CRABP-1 and CRABP-2 was also supported by isotope dilution experiments. Analysis of retinoid transfer from holo-CRABPs to P450 27C1 suggests that the decrease in kcat observed in steady-state kinetic assays is due to retinoid transfer becoming rate-limiting in the P450 27C1 catalytic cycle. Overall, these results illustrate that, like the CYP26 enzymes involved in retinoic acid metabolism, P450 27C1 interacts with cellular retinoid-binding proteins.  相似文献   

11.
Enzyme function depends on specific conformational motions. We show that the temperature dependence of enzyme kinetic parameters can provide insight into these functionally relevant motions. While investigating the catalytic properties of IPMDH from Escherichia coli, we found that its catalytic efficiency (kcat/KM,IPM) for the substrate IPM has an unusual temperature dependence, showing a local minimum at ∼35°C. In search of an explanation, we measured the individual constants kcat and KM,IPM as a function of temperature, and found that the van 't Hoff plot of KM,IPM shows sigmoid-like transition in the 20-40°C temperature range. By means of various measurements including hydrogen-deuterium exchange and fluorescence resonance energy transfer, we showed that the conformational fluctuations, including hinge-bending domain motions increase more steeply with temperatures >30°C. The thermodynamic parameters of ligand binding determined by isothermal titration calorimetry as a function of temperature were found to be strongly correlated to the conformational fluctuations of the enzyme. Because the binding of IPM is associated with a hinge-bending domain closure, the more intense hinge-bending fluctuations at higher temperatures increasingly interfere with IPM binding, thereby abruptly increasing its dissociation constant and leading to the observed unusual temperature dependence of the catalytic efficiency.  相似文献   

12.
A series of substituted kynurenines (3-bromo-dl, 3-chloro-dl, 3-fluoro-dl, 3-methyl-dl, 5-bromo-l, 5-chloro-l, 3,5-dibromo-l and 5-bromo-3-chloro-dl) have been synthesized and tested for their substrate activity with human and Pseudomonas fluorescens kynureninase. All of the substituted kynurenines examined have substrate activity with both human as well as P. fluorescens kynureninase. For the human enzyme, 3- and 5-substituted kynurenines have kcat and kcat/Km values higher than l-kynurenine, but less than that of the physiological substrate, 3-hydroxykynurenine. However, 3,5-dibromo- and 5-bromo-3-chlorokynurenine have kcat and kcat/Km values close to that of 3-hydroxykynurenine with human kynureninase. The effects of the 3-halo substituents on the reactivity with human kynureninase may be due to electronic effects and/or halogen bonding. In contrast, for the bacterial enzyme, 3-methyl, 3-halo and 3,5-dihalokynurenines are much poorer substrates, while 3-fluoro, 5-bromo, and 5-chlorokynurenine have kcat and kcat/Km values comparable to that of its physiological substrate, l-kynurenine. Thus, 5-bromo and 5-chloro-l-kynurenine are good substrates for both human as well as bacterial enzyme, indicating that both enzymes have space for substituents in the active site near C-5. The increased activity of the 5-halokynurenines may be due to van der Waals contacts or hydrophobic effects. These results may be useful in the design of potent and/or selective inhibitors of human and bacterial kynureninase.  相似文献   

13.
Oxidized polyvinyl alcohol hydrolase (OPH) catalyzes the cleavage of C–C bond in β-diketone. It belongs to the α/β-hydrolase family and contains a unique lid region that covers the active site. The lid is the most variable region when pOPH from Pseudomonas sp. VM15C and sOPH from Sphingopyxis sp. 113P3 are compared. The wild-type enzymes and the pOPH mutants W255A, W255Y and W255F were analyzed for lipase activity by using p-nitrophenyl (pNP) esters as the substrates. The wild-type enzymes showed increased Km and decreased kcat/Km with the acyl chain length, and the mutants showed reduced kcat/Km for pNP acetate, indicating the importance of Trp255 in sequestering the active site from solvent. The significantly lower activity for pNP butyrate can be a result of product inhibition, as suggested by the complex crystal structures, in which butyric acid, DMSO or PEG occupied the same substrate-binding cleft. The mutant activity was retained with pNP caprylate and pNP laurate as the substrates, reflecting the amphipathic nature of the cleft. Moreover, the disulfide bond formation of Cys257/267 is important for the activity of pOPH, but it is not essential for sOPH, which has a shorter lid structure.  相似文献   

14.
We used quench flow to study how N6-methylated adenosines (m6A) affect the accuracy ratio between kcat/Km (i.e. association rate constant (ka) times probability (Pp) of product formation after enzyme-substrate complex formation) for cognate and near-cognate substrate for mRNA reading by tRNAs and peptide release factors 1 and 2 (RFs) during translation with purified Escherichia coli components. We estimated kcat/Km for Glu-tRNAGlu, EF-Tu and GTP forming ternary complex (T3) reading cognate (GAA and Gm6AA) or near-cognate (GAU and Gm6AU) codons. ka decreased 10-fold by m6A introduction in cognate and near-cognate cases alike, while Pp for peptidyl transfer remained unaltered in cognate but increased 10-fold in near-cognate case leading to 10-fold amino acid substitution error increase. We estimated kcat/Km for ester bond hydrolysis of P-site bound peptidyl-tRNA by RF2 reading cognate (UAA and Um6AA) and near-cognate (UAG and Um6AG) stop codons to decrease 6-fold or 3-fold by m6A introduction, respectively. This 6-fold effect on UAA reading was also observed in a single-molecule termination assay. Thus, m6A reduces both sense and stop codon reading accuracy by decreasing cognate significantly more than near-cognate kcat/Km, in contrast to most error inducing agents and mutations, which increase near-cognate at unaltered cognate kcat/Km.  相似文献   

15.
The xylanolytic extremely thermophilic bacterium Caldicellulosiruptor owensensis provides a promising platform for xylan utilization. In the present study, two novel xylanolytic enzymes, GH10 endo-β-1,4-xylanase (Coxyn A) and GH39 β-1,4-xylosidase (Coxyl A) encoded in one gene cluster of C.owensensis were heterogeneously expressed and biochemically characterized. The optimum temperature of the two xylanlytic enzymes was 75°C, and the respective optimum pH for Coxyn A and Coxyl A was 7.0 and 5.0. The difference of Coxyn A and Coxyl A in solution was existing as monomer and homodimer respectively, it was also observed in predicted secondary structure. Under optimum condition, the catalytic efficiency (k cat/K m) of Coxyn A was 366 mg ml−1 s−1 on beechwood xylan, and the catalytic efficiency (k cat/K m) of Coxyl A was 2253 mM−1 s−1 on pNP-β-D-xylopyranoside. Coxyn A degraded xylan to oligosaccharides, which were converted to monomer by Coxyl A. The two intracellular enzymes might be responsible for xylooligosaccharides utilization in C.owensensis, also provide a potential way for xylan degradation in vitro.  相似文献   

16.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and RuBisCO-like protein (RLP) catalyze similar enolase-type reactions. Both enzymes have a conserved non-catalytic Lys122 or Arg122 on the β-strand E lying in the interface between the N- and C-terminal domains. We used site-directed mutagenesis to analyze the function of Lys122 in the form II Rhodospirillum rubrum RuBisCO (RrRuBisCO) and Bacillus subtilis RLP (BsRLP). The K122R mutant of RrRuBisCO had a 40% decrease in kcat for carboxylase activity, a 2-fold increase in Km for CO2, and a 1.9-fold increase in Km for ribulose-1,5-bisphosphate. K122M and K122E mutants of RrRuBisCO were almost inactive. None of the substitutions affected the thermal stability of RrRuBisCO. The K122R mutant of BsRLP had a 32% decrease in kcat and lower thermal stability than the wild-type enzyme. The K122M and K122E mutants of BsRLP failed to form a catalytic dimer. Our results suggest that the lysine residue is essential for function in both enzymes, although in each case, its role is likely distinct.  相似文献   

17.
Detailed catalytic roles of the conserved Glu323, Asp460, and Glu519 of Arthrobacter sp. S37 inulinase (EnIA), a member of the glycoside hydrolase family 32, were investigated by site-directed mutagenesis and pH-dependence studies of the enzyme efficiency and homology modeling were carried out for EnIA and for D460E mutant. The enzyme efficiency (kcat/Km) of the E323A and E519A mutants was significantly lower than that of the wild-type due to a substantial decrease in kcat, but not due to variations in Km, consistent with their putative roles as nucleophile and acid/base catalyst, respectively. The D460A mutant was totally inactive, whereas the D460E and D460N mutants were active to some extent, revealing Asp460 as a catalytic residue and demonstrating that the presence of a carboxylate group in this position is a prerequisite for catalysis. The pH-dependence studies indicated that the pKa of the acid/base catalyst decreased from 9.2 for the wild-type enzyme to 7.0 for the D460E mutant, implicating Asp460 as the residue that interacts with the acid/base catalyst Glu519 and elevates its pKa. Homology modeling and molecular dynamics simulation of the wild-type enzyme and the D460E mutant shed light on the structural roles of Glu323, Asp460, and Glu519 in the catalytic activity of the enzyme.  相似文献   

18.
The parameters Km and kcat were determined for 16 methyl hippurates (CH3OCOCH2NHCOC6H4-X) hydrolyzed by papain. A simple linear relationship is found between log 1Km and the hydrophobic substituent constant π. It is found that log kcat is parabolically related to π. The results with papain are compared with results obtained by Hawkins and Williams with the enzyme bromelain. The two enzymes behave in a similar fashion.  相似文献   

19.
Dengue virus threatens around 2.5 billion people worldwide; about 50 million become infected every year, and yet no vaccine or drug is available for prevention and/or treatment. The flaviviral NS2B-NS3pro complex is indispensable for flaviviral replication and is considered to be an important drug target. The aim of this study was to develop a simple and generally applicable experimental strategy to construct, purify, and assay a highly active recombinant NS2B(H)-NS3pro complex that would be useful for high-throughput screening of potential inhibitors. The sequence of NS2B(H)-NS3pro was generated by overlap extension PCR (SOE-PCR) and cloned into the pTrcHisA vector. Hexahistidine-tagged NS2B(H)-NS3pro complex was expressed in E. coli predominantly as insoluble protein and purified to >95% purity by single-step immobilized metal affinity chromatography. SDS-PAGE followed by immunoblotting of the purified enzyme demonstrated the presence of the NS2B(H)-NS3pro precursor and its autocleavage products, NS3pro and NS2B(H), as 37, 21, and 10 kDa bands, respectively. Kinetic parameters, K m, k cat, and k cat/K m for the fluorophore-linked protease model substrate Ac-nKRR-amc were obtained using inner-filter effect correction. The kinetic parameters K m, k cat, and k cat/K m for Ac-nKRR-amc substrate were 100 μM, 0.112 s?1, and 1120 M?1·s?1, respectively. A simplified procedure for the cloning, overexpression, and purification of the NS2B(H)-NS3pro complex was applied, and a highly active recombinant NS2B(H)-NS3pro complex was obtained that could be useful for the design of high-throughput assays aimed at flaviviral inhibitor discovery.  相似文献   

20.
Tripeptidases from Lactococcus lactis subsp. lactis (L9PepTR), L. lactis subsp. cremoris (L6PepTR), and L. lactis subsp. hordniae (hTPepTR) were cloned, overexpressed, purified, and characterized. Although these enzymes contained three to seven naturally occurring amino acid differences, both metal-binding and catalytic sites were highly conserved. The kcat values of hTPepTR were approximately 1.5- to 2-fold higher than those of L9PepTR, while, for L6PepTR, they were approximately 0.8- to 1.4-times the L9PepTR values. The Km of tripeptidase from subsp. lactis (L9PepTR) was considerably larger when glycine was the amino acid located at both the N- and C-terminus of the peptide substrate. In addition, the Km values of L9PepTR increased in the following order for YGG, LGG, FGG, SGG, and α-aminoisobutyrylglycylglycine, while the kcat/Km decreased in the same order. These results suggest that the dipole moment and steric hindrance of the N-terminal amino acid side chain may be the most important factors controlling substrate specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号