首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pectins are complex cell wall polysaccharides important for many aspects of plant development. Recent studies have discovered extensive physical interactions between pectins and other cell wall components, implicating pectins in new molecular functions. Pectins are often localized in spatially‐restricted patterns, and some of these non‐uniform pectin distributions contribute to multiple aspects of plant development, including the morphogenesis of cells and organs. Furthermore, a growing number of mutants affecting cell wall composition have begun to reveal the distinct contributions of different pectins to plant development. This review discusses the interactions of pectins with other cell wall components, the functions of pectins in controlling cellular morphology, and how non‐uniform pectin composition can be an important determinant of developmental processes.  相似文献   

2.
Ren LH  Ding YS  Shen YZ  Zhang XF 《Amino acids》2008,35(3):565-572
Recently, a collective effort from multiple research areas has been made to understand biological systems at the system level. This research requires the ability to simulate particular biological systems as cells, organs, organisms, and communities. In this paper, a novel bio-network simulation platform is proposed for system biology studies by combining agent approaches. We consider a biological system as a set of active computational components interacting with each other and with an external environment. Then, we propose a bio-network platform for simulating the behaviors of biological systems and modelling them in terms of bio-entities and society-entities. As a demonstration, we discuss how a protein-protein interaction (PPI) network can be seen as a society of autonomous interactive components. From interactions among small PPI networks, a large PPI network can emerge that has a remarkable ability to accomplish a complex function or task. We also simulate the evolution of the PPI networks by using the bio-operators of the bio-entities. Based on the proposed approach, various simulators with different functions can be embedded in the simulation platform, and further research can be done from design to development, including complexity validation of the biological system.  相似文献   

3.
4.
Nitric oxide (NO) in plant cell mediates processes of growth and development starting from seed germination to pollination, as well as biotic and abiotic stress tolerance. However, proper understanding of the molecular mechanisms of NO signalling in plants has just begun to emerge. Accumulated evidence suggests that in eukaryotic cells NO regulates functions of proteins by their post-translational modifications, namely tyrosine nitration and S-nitrosylation. Among the candidates for NO-downstream effectors are cytoskeletal proteins because of their involvement in many processes regulated by NO. This review discusses new insights in plant NO signalling focused mainly on the involvement of cytoskeleton components into NO-cascades. Herein, examples of NO-related post-translational modifications of cytoskeletal proteins, and also indirect NO impact, are discussed. Special attention is paid to plant α-tubulin tyrosine nitration as an emerging topic in plant NO research.  相似文献   

5.
Cytoskeleton and plant organogenesis   总被引:4,自引:0,他引:4  
The functions of microtubules and actin filaments during various processes that are essential for the growth, reproduction and survival of single plant cells have been well characterized. A large number of plant structural cytoskeletal or cytoskeleton-associated proteins, as well as genes encoding such proteins, have been identified. Although many of these genes and proteins have been partially characterized with respect to their functions, a coherent picture of how they interact to execute cytoskeletal functions in plant cells has yet to emerge. Cytoskeleton-controlled cellular processes are expected to play crucial roles during plant cell differentiation and organogenesis, but what exactly these roles are has only been investigated in a limited number of studies in the whole plant context. The intent of this review is to discuss the results of these studies in the light of what is known about the cellular functions of the plant cytoskeleton, and about the proteins and genes that are required for them. Directions are outlined for future work to advance our understanding of how the cytoskeleton contributes to plant organogenesis and development.  相似文献   

6.
Anion channels are well documented in various tissues, cell types and membranes of algae and higher plants, and current evidence supports their central role in cell signaling, osmoregulation, plant nutrition and metabolism. It is the aim of this review to illustrate through a few selected examples the variety of anion channels operating in plant cells and some of their regulation properties and unique physiological functions. In contrast, information on the molecular structure of plant anion channels has only recently started to emerge. Only a few genes coding for putative plant anion channels from the large chloride channel (CLC) family have been isolated, and current molecular data on these plant CLCs are presented and discussed. A major challenge remains to identify the genes encoding the various anion channels described so far in plant cells. Future prospects along this line are briefly outlined, as well as recent advances based on the use of knockout mutants in the model plant Arabidopsis thaliana to explore the physiological functions of anion channels in planta.  相似文献   

7.
8.
A major challenge to understanding low temperature calcium signatures in plants is defining how these signatures emerge from the interactions of different molecular components that are stored in different subcellular pools of a plant cell. Here we develop an integrative model that incorporates the interactions of Ca2?, H?, K?, Cl? and ATP in both cytosolic and vacuolar pools. Our analysis reveals how these four major ions along with ATP forms a complex network to relate the emergence of calcium signatures to other responses (e.g. pH response). Modelling results are in agreement with experimental observations for both cytosolic free calcium concentration ([Ca2?](c)) and pH. The model is further validated by experimentally measuring the response of [Ca2?](c) to six fluctuating (rather than constant) temperature profiles. We found that modelling results are in reasonable agreement with experimental observations, in particular, if the rate of reducing temperature is relatively high. In addition, we show that both calcium-induced calcium release (CICR) at the vacuolar membrane and transport of ions from the cytosolic pool to the vacuolar membrane play important roles in the interaction between cytosolic and vacuolar pools. In combination they control the amount and timing of calcium release from the vacuolar to cytosolic pool, shaping the specific calcium signature. The methodology and principles developed here establish an integrative view on the role of cytosolic and vacuolar pools in shaping calcium signatures in general, and they are universally applicable to study of the interactions of multiple subcellular pools.  相似文献   

9.
Protein kinase dynamics play key roles in regulation of cell differentiation, growth, development and in diverse cell signaling networks. Protein kinase sensors enable visualization of protein kinase activity in living cells and tissues in time and space. These sensors have therefore become important and powerful molecular tools for investigation of diverse kinase activities and can resolve long-standing and challenging biological questions. In the present Update, we review new advanced approaches for genetically encoded protein kinase biosensor designs developed in animal systems together with the basis of each biosensor’s working principle and components. In addition, we review recent first examples of real time plant protein kinase activity biosensor development and application. We discuss how these sensors have helped to resolve how stomatal signal transduction in response to elevated CO2 merges with abscisic acid signaling downstream of a resolved basal SnRK2 kinase activity in guard cells. Furthermore, recent advances, combined with the new strategies described in this Update, can help deepen the understanding of how signaling networks regulate unique functions and responses in distinct plant cell types and tissues and how different stimuli and signaling pathways can interact.

New genetically encoded biosensor design approaches and visualization of protein kinase activity in living plant cells and tissues in time and space are reviewed.  相似文献   

10.
The molecular mechanisms of peroxisome biogenesis have begun to emerge; in contrast, relatively little is known about how the organelle functions as cells age. In this report, we characterize age-related changes in peroxisomes of human cells. We show that aging compromises peroxisomal targeting signal 1 (PTS1) protein import, affecting in particular the critical antioxidant enzyme catalase. The number and appearance of peroxisomes are altered in these cells, and the organelles accumulate the PTS1-import receptor, Pex5p, on their membranes. Concomitantly, cells produce increasing amounts of the toxic metabolite hydrogen peroxide, and we present evidence that this increased load of reactive oxygen species may further reduce peroxisomal protein import and exacerbate the effects of aging.  相似文献   

11.
Development of the plant body entails many pattern forming events at scales ranging from the cellular level to the whole plant. Recent evidence suggests that mechanical forces play a role in establishing some of these patterns. The development of cellular configurations in glandular trichomes and the rippling of leaf surfaces are discussed in depth to illustrate how intricate patterns can emerge from simple and well-established molecular and cellular processes. The ability of plants to sense and transduce mechanical signals suggests that complex interactions between mechanics and chemistry are possible during plant development. The inclusion of mechanics alongside traditional molecular controls offers a more comprehensive view of developmental processes.  相似文献   

12.
Small proteins of plant-pathogenic fungi secreted during host colonization   总被引:6,自引:0,他引:6  
Small proteins secreted by plant pathogenic fungi in their hosts have been implicated in disease symptom development as well as in R-gene mediated disease resistance. Characteristically, this class of proteins shows very limited phylogenetic distribution, possibly due to accelerated evolution stimulated by plant-pathogen arms races. Partly due to lack of clues from primary sequences, insight into the biochemical functions or molecular targets of these proteins has been slow to emerge. However, for some proteins important progress has recently been made in this direction. Expression of the genes for small secreted proteins is in many cases specifically induced after infection, which should help to advance our still very limited understanding of how plant pathogens recognize and respond to the host environment.  相似文献   

13.
Directional sensing during chemotaxis   总被引:3,自引:0,他引:3  
Janetopoulos C  Firtel RA 《FEBS letters》2008,582(14):2075-2085
Cells have the innate ability to sense and move towards a variety of chemoattractants. We investigate the pathways by which cells sense and respond to chemoattractant gradients. We focus on the model system Dictyostelium and compare our understanding of chemotaxis in this system with recent advances made using neutrophils and other mammalian cell types, which share many molecular components and signaling pathways with Dictyostelium. This review also examines models that have been proposed to explain how cells are able to respond to small differences in ligand concentrations between the anterior leading edge and posterior of the cell. In addition, we highlight the overlapping functions of many signaling components in diverse processes beyond chemotaxis, including random cell motility and cell division.  相似文献   

14.
A major problem in biology is to understand how complex tissue shapes may arise through growth. In many cases this process involves preferential growth along particular orientations raising the question of how these orientations are specified. One view is that orientations are specified through stresses in the tissue (axiality-based system). Another possibility is that orientations can be specified independently of stresses through molecular signalling (polarity-based system). The axiality-based system has recently been explored through computational modelling. Here we develop and apply a polarity-based system which we call the Growing Polarised Tissue (GPT) framework. Tissue is treated as a continuous material within which regionally expressed factors under genetic control may interact and propagate. Polarity is established by signals that propagate through the tissue and is anchored in regions termed tissue polarity organisers that are also under genetic control. Rates of growth parallel or perpendicular to the local polarity may then be specified through a regulatory network. The resulting growth depends on how specified growth patterns interact within the constraints of mechanically connected tissue. This constraint leads to the emergence of features such as curvature that were not directly specified by the regulatory networks. Resultant growth feeds back to influence spatial arrangements and local orientations of tissue, allowing complex shapes to emerge from simple rules. Moreover, asymmetries may emerge through interactions between polarity fields. We illustrate the value of the GPT-framework for understanding morphogenesis by applying it to a growing Snapdragon flower and indicate how the underlying hypotheses may be tested by computational simulation. We propose that combinatorial intractions between orientations and rates of growth, which are a key feature of polarity-based systems, have been exploited during evolution to generate a range of observed biological shapes.  相似文献   

15.
A major goal of post-genomic biology is to reconstruct and model in silico the metabolic networks of entire organisms. Work on bacteria is well advanced, and is now under way for plants and other eukaryotes. Genome-scale modelling in plants is much more challenging than in bacteria. The challenges come from features characteristic of higher organisms (subcellular compartmentation, tissue differentiation) and also from the particular severity in plants of a general problem: genome content whose functions remain undiscovered. This problem results in thousands of genes for which no function is known ('undiscovered genome content') and hundreds of enzymatic and transport functions for which no gene is yet identified. The severity of the undiscovered genome content problem in plants reflects their genome size and complexity. To bring the challenges of plant genome-scale modelling into focus, we first summarize the current status of plant genome-scale models. We then highlight the challenges - and ways to address them - in three areas: identifying genes for missing processes, modelling tissues as opposed to single cells, and finding metabolic functions encoded by undiscovered genome content. We also discuss the emerging view that a significant fraction of undiscovered genome content encodes functions that counter damage to metabolites inflicted by spontaneous chemical reactions or enzymatic mistakes.  相似文献   

16.
Intercellular protein trafficking through plasmodesmata   总被引:11,自引:0,他引:11  
Ding  Biao 《Plant molecular biology》1998,38(1-2):279-310
  相似文献   

17.
当前人口激增、环境污染、生态破坏等问题层出不穷。改良农艺性状,如提高产量、增强逆境耐受能力,是作物遗传改良的重要目标,是推动农业高质量发展的基础。泛素-蛋白酶体系统(UPS)是一种快速的选择性水解植物体产生的冗余蛋白和被损坏蛋白的体系。目前,研究发现泛素-蛋白酶系统影响植物的发育、生殖和重要的农艺性状:如应对环境胁迫、开花诱导和种子大小等。综述了近年来的研究成果,阐述了蛋白酶体UPS组分和各亚基的重要功能,并描述了泛素-蛋白酶系统是如何影响植物农艺性状的。最后,讨论了未来的研究热点和利用UPS改良作物的潜力。  相似文献   

18.
In most eukaryotic cells, microtubules (MTs) are assembled at identified nucleating sites, such as centrosomes or spindle pole bodies. Higher plant cells do not possess such centrosome-like structures. Thus, the fundamental issues of where and how the intracellular plant MTs are nucleated remain highly debatable. A large body of evidence indicates that plant MTs emerge from the nuclear periphery. In this study, we developed an in vitro assay in which isolated maize nuclei nucleate MT assembly at a tubulin concentration (14 [mu]M of neurotubulin) that is not efficient for spontaneous MT assembly. No MT-stabilizing agents, such as taxol or dimethyl sulfoxide, were used. Our model provides evidence that the nuclear surface functions as a MT-nucleating site in higher plant cells. A monoclonal antibody raised against a pericentriolar antigen immunostained the surface of isolated nuclei, and a 100-kD polypeptide in 4 M urea-treated nuclear extracts was detected.  相似文献   

19.
Significant advances have been made during the past year in the genetic and molecular dissection of the plant circadian system. Several proteins involved in circadian clock regulation have been identified and the way that their interactions contribute to temporal organization is starting to emerge. In addition, genomic approaches have identified hundreds of genes under clock control, providing a molecular basis to our understanding of how the clock coordinates plant physiology and development with daily and seasonal environmental cycles.  相似文献   

20.
Posttranslational modifications of tubulin currently emerge as key regulators of microtubule functions. Polyglutamylation generates a variety of modification patterns that are essential for controlling microtubule functions in different cell types and organelles, and deregulation of these patterns has been linked to ciliopathies, cancer and neurodegeneration. How the different glutamylating enzymes determine precise modification patterns has so far remained elusive. Using computational modelling, molecular dynamics simulations and mutational analyses we now show how the carboxy‐terminal tails of tubulin bind into the active sites of glutamylases. Our models suggest that the glutamylation sites on α‐ and β‐tubulins are determined by the positioning of the tails within the catalytic pocket. Moreover, we found that the binding modes of α‐ and β‐tubulin tails are highly similar, implying that most enzymes could potentially modify both, α‐ and β‐tubulin. This supports a model in which the binding of the enzymes to the entire microtubule lattice, but not the specificity of the C‐terminal tubulin tails to their active sites, determines the catalytic specificities of glutamylases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号