首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Shabala S  Hariadi Y 《Planta》2005,221(1):56-65
Considering the physiological significance of Mg homeostasis in plants, surprisingly little is known about the molecular and ionic mechanisms mediating Mg transport across the plasma membrane and the impact of Mg availability on transport processes at the plasmalemma. In this study, a non-invasive ion-selective microelectrode technique (MIFE) was used to characterize the effects of Mg availability on the activity of plasma membrane H+, K+, Ca2+, and Mg2+ transporters in the mesophyll cells of broad bean (Vicia faba L.) plants. Based on the stoichiometry of ion-flux changes and results of pharmacological experiments, we suggest that at least two mechanisms are involved in Mg2+ uptake across the plasma membrane of bean mesophyll cells. One of them is a non-selective cation channel, also permeable to K+ and Ca2+. The other mechanism, operating at concentrations below 30 M, was speculated to be an H+/Mg+ exchanger. Experiments performed on leaves grown at different levels of Mg availability (from deficient to excessive) showed that Mg availability has a significant impact on the activity of plasma-membrane transporters for Ca2+, K+, and H+. We discuss the physiological significance of Mg-induced changes in leaf electrophysiological responses to light and the ionic mechanisms underlying this process.  相似文献   

2.
A two‐week salt treatment (NaCl, 100 m M ) induced a 50% inhibition of acetylene reduction activity (ARA) of faba bean ( Vicia faba L. var. minor cv. Soravi) nodules, associated with a large increase in the nodule pool of amino acids. The concentration of proline in the different nodule compartments was determined after calculating their respective volumes from their areas on electron micrographs. The proline concentration exhibited a large increase, especially in the cytosol where its amount was 8‐fold enhanced under salt stress, whereas the low proline content of bacteroids was less affected. Increase of proline concentration in faba bean nodules subjected to salt stress was correlated with an enhancement of the cytosolic Δ1‐pyrroline‐5‐carboxylate synthetase (EC 2.7.2.11 + EC 1.2.1.41; P5CS) activity. Experiments with purified symbiosome preparations showed that the greatest proline content occurred in the peribacteroid space (PBS), where proline was the most abundant amino acid, with a concentration reaching 15.3 m M under salt stress. Proline accumulation in the PBS resulted both from a diffusive transport from the host cell to the symbiosomes through the peribacteroid membrane (PBM) and from the very low rate of uptake by faba bean bacteroids. This accumulation could be partly responsible for the 1.7‐fold enlargement of the symbiosome volume observed in salt‐stressed nodules. In incubations of bacteroids, isolated from salt‐stressed or unstressed plants and supplied with O2 by purified oxyleghemoglobin, addition of proline stimulated neither O2 consumption nor ARA. These results were consistent with proline playing a role as osmoticum, rather than energy source for bacteroid N2 fixation in amide‐exporting legumes such as faba bean.  相似文献   

3.
It has been suggested for some time that the architectural properties of leaf venation are related to leaf functions; however, experimental evidence is scant and, when present, mainly investigates water or carbohydrate transport patterns. Transport of inorganic nutrients in relationship to leaf anatomical structure remains, to a large extent, an unexplored area in plant physiology. In this study, we correlated ion flux profiles with the anatomical structure of bean (Vicia faba L.) leaf mesophyll tissue using a non-invasive ion flux measuring technique (microelectrode ion flux estimation) and scanning electron microscopy. Quasi-periodic patterns of net H+ and K+ flux distributions were found when the mesophyll surface was scanned along the longitudinal axis with 0.1-0.2 mm increments. These patterns showed a high correlation with anatomical features of the mesophyll tissue (i.e. the distribution of vascular bundles). The observed flux profiles were not time-dependent, showed qualitative similarity in both light and dark conditions, and resulted in heterogeneous plant physiological responses. The possible physiological role of the observed findings, specifically in relation to stomatal 'patchiness' and phloem loading mechanisms, is discussed.  相似文献   

4.
Salt‐affected farmlands are increasingly burdened by chlorides, carbonates, and sulfates of sodium, calcium, and magnesium. Intriguingly, the underlying physiological processes are studied almost always under NaCl stress. Two faba bean cultivars were subjected to low‐ and high‐salt treatments of NaCl, Na2SO4, and KCl. Assimilation rate and leaf water vapor conductance were reduced to approximately 25–30% without biomass reduction after 7 days salt stress, but this did not cause severe carbon shortage. The equimolar treatments of Na+, K+, and Cl? showed comparable accumulation patterns in leaves and roots, except for SO42? which did not accumulate. To gain a detailed understanding of the effects caused by the tested ion combinations, we performed nontargeted gas chromatography–mass spectrometry‐based metabolite profiling. Metabolic responses to various salts were in part highly linearly correlated, but only a few metabolite responses were common to all salts and in both cultivars. At high salt concentrations, only myo‐inositol, allantoin, and glycerophosphoglycerol were highly significantly increased in roots under all tested conditions. We discovered several metabolic responses that were preferentially associated with the presence of Na+, K+, or Cl?. For example, increases of leaf proline and decreases of leaf fumaric acid and malic acid were apparently associated with Cl? accumulation.  相似文献   

5.
Protoplasts from the suspension culture of sugar beet (Beta vulgaris L.) mesophyll were found to change their volume in response to short-term osmotic stress. When the sorbitol concentration in the external medium was increased 1.5-fold (from 0.4 to 0.6 M) or decreased from 0.4 to 0.25 M, the volume of protoplasts decreased and increased, respectively, by 55–60%. These changes started immediately after the shift in osmoticum concentration and completed within 1–3 min. In the presence of an endocytosis marker FM1-43, its fluorescence increased conspicuously after replacement of isotonic medium with the hypotonic solution but did not change after the substitution with hypertonic medium. At the same time, the hypertonic shrinkage of protoplasts was accompanied by accumulation of fluorescent material in the periplasmic space. The western blot analysis with the use of immune serum for conservative sequence of PIP-type aquaporins revealed their presence in the plasmalemma and intracellular membranes. This conclusion was confirmed by indirect immunofluorescence microscopy: the membrane-bound secondary antibodies labeled with a fluorescent probe Alexa-Fluor 488 were distributed comparatively uniformly on the boundary between the plasmalemma and the protoplast internal compartment. As evident from micrographs of protoplasts exposed to the hypotonic treatment, the fluorescence was smoothly distributed over the plasmalemma after protoplast swelling but its intensity was not so bright. The protoplast shrinkage during the hypertonic treatment resulted in heterogeneous alternate distribution of fluorescent and transparent plasmalemma regions, the fluorescence of stained regions being very intense. The results are interpreted as the evidence that the short-term osmotic stress activates exo-and endocytosis. The migrating regions of the plasmalemma were depleted of PIP-type aquaporins; hence, the induction of osmotic stress has no effect on the amount of this type aquaporins in the plasma membrane.  相似文献   

6.
Based on electron microscopic studies and visualization of calcium with the Ca indicator pyroantimonate, it was established that a prolonged incubation of the bean (Vicia faba L.) root nodules and isolated symbiosomes in EGTA-containing buffer depletes calcium in these nitrogen-fixing units. Other experiments demonstrated that the induction of calcium deficit in symbiosomes both in vivo and in vitro substantially decreases their nitrogenase activity. The addition of verapamil and ruthenium red, well-known inhibitors of Ca2+ channels, to the suspension of root nodules largely prevented both the EGTA-induced calcium efflux from the symbiosomes and the decrease in their nitrogenase activity. Similar effects of verapamil were also observed on isolated symbiosomes. The treatment of isolated symbiosomes with valinomycin in the presence of K+ induced a rapid efflux of Ca2+ from symbiosomes; this efflux was strongly inhibited by verapamil. The results present evidence for the existence in the peribacteroid membrane of a Ca2+-transporting system that exports Ca2+ from the symbiosomes.  相似文献   

7.
离子转运蛋白在维持细胞内pH稳态、离子动态平衡等方面发挥着重要作用。钠离子转运体和钾离子转运体在嗜盐耐盐微生物中广泛存在,其"保钾排钠"机制是微生物抗盐胁迫的两大策略之一。近年来,嗜盐耐盐微生物中许多新型钠、钾离子转运体被陆续发现,如RDD蛋白、UPF0118蛋白、DUF蛋白和KimA蛋白等;Fe3+、Mg2+等其他金属离子的转运蛋白也被证实可通过影响微生物胞内相容性溶质的合成起到渗透调节的作用。本文综述了嗜盐耐盐微生物中抗盐胁迫相关的各类离子转运蛋白,分析其分子结构和工作机理,并对这些蛋白在农业方面的应用进行了展望。继续发现新的离子转运蛋白,探究抗盐胁迫相关离子转运蛋白的结构和机理,解析各转运系统的协同作用及分子调控机制,将进一步加深对嗜盐耐盐微生物抗盐胁迫调控的认识,并为盐碱地农作物的改良等提供新的思路。  相似文献   

8.
Salinity effects on the cell membranes of four lines of wheat ( Triticum aestivum L.). and two cultivars of barley ( Hordeum vulgare L.), differing in salt resistance were investigated. Plants were grown for 10 days in 1/4-strength Hoagland solution and then for 5 more days in 1/4-strength Hoagland with and without NaCl (100 m M ) or (for Hordeum only) polyethylene glycol (PEG). Permeability to three non-electrolytes (urea, methylurea and ethylurea) of subepidermal cells of leaf sheaths ( Triticum ) and coleoptiles ( Hordeum ) was determined and membrane partiality calculated, a parameter which numerically indicates the degree of lipophilicity of a membrane. Non-electrolyte permeability significantly increased and membrane partiality decreased in the salt sensitive cultivars or lines under salt stress. Neither parameter changed significantly in the salt resistant lines and cultivar in a saline environment. Osmotic stress in Hordeum by PEG 10000 had no significant effect on permeability and thus membrane partiality neither in sensitive nor in resistant cultivars.
The osmotic component of salinity stress did not seem to be a major factor causing injury, rather ion toxicity may be a cause of cell damage. The results indicate differences in the membrane between salt sensitive and salt resistant genotypes. Salt resistance seems to be controlled by genetic factors independent of external salinity levels.  相似文献   

9.
Osmotic regulation of assimilate efflux from excised coats of developing Vicia faba (cv. Coles Prolific) seed was examined by exposing these to bathing solutions (adjusted to –0. 02 to –0. 75 MPa with sorbitol) introduced into the cavity vacated by the embryo. 14C photosynthate efflux was found to be independent of solution osmotic potentials below –0. 63 MPa. At higher osmotic potentials, efflux was stimulated and exhibited a biphasic response to osmotic potential with apparent saturation being reached at –0. 37 MPa. Efflux could be repeatedly stimulated and slowed by exposing seed coats to solutions of high and low osmotic potentials, respectively. Manipulation of components of tissue water potential, with slowly- and rapidly-permeating osmotica, demonstrated that turgor functioned as the signal regulating 14C photosynthate efflux. Com-partmental analysis of 14C photosynthate preloaded seed coats was consistent with exchange from 4 kinetically-distinct compartments. The kinetics of turgor-dependent efflux exhibited characteristics consistent with the transport mechanism residing in the plasma membranes of the unloading cells. These characteristics included the rapidity (<2 min) of the efflux response to turgor increases, similar rate constants for efflux from the putative turgor-sensitive and cytoplasmic compartments and the apparent small pool size from which turgor-dependent efflux could repeatedly occur. In contrast, influx of [14C] sucrose across the plasma and tonoplast membranes was found to be insensitive to turgor. The plasma membrane [14C] sucrose influx was unaffected by p-chloromercuribenzenesulfonic acid and erythrosin B and exhibited a linear dependence on the external sucrose concentration. This behaviour suggested that influx across the plasma membrane occurs by passive diffusion. Preloading excised seed coats with a range of solutes demonstrated that turgor-dependent efflux exhibited partial solute selectivity. Based on these findings, it is proposed that turgor controls assimilate exchange from the seed coat by regulating an efflux mechanism located in the plasma membranes of the unloading cells.  相似文献   

10.
Aims: To elucidate the potential use of microelectrode ion flux measurements to evaluate bacterial responses to heat treatment. Methods and Results: Escherichia coli K12 was used as a test bacterium to determine whether various heat treatments (55–70°C for 15 min) affected net ion flux across E. coli cell membranes using the MIFE? system to measure net K+ fluxes. No difference in K+ fluxes was observed before and after heat treatments regardless of the magnitude of the treatment. Applying hyperosmotic stress (3% NaCl w/v) during flux measurement led to a net K+ loss from the heat‐treated E. coli cells below 65°C as well as from nonheated cells. In contrast, with E. coli cells treated at and above 65°C, hyperosmotic stress disrupted the pattern of K+ flux observed at lower temperatures and resulted in large flux noise with random scatter. This phenomenon was particularly apparent above 70°C. Although E. coli cells lost the potential to recover and grow at and above 62°C, K+ flux disruption was not clearly observed until 68°C was reached. Conclusions: No changes in net K+ flux from heat‐stressed E. coli cells were observed directly as a result of thermal treatments. However, regardless of the magnitude of heat treatment above 55°C, loss of viability indicated by enrichment culture correlated with disrupted K+ fluxes when previously heated cells were further challenged by imposing hyperosmotic stress during flux measurement. This two‐stage process enabled evaluation of the lethality of heat‐treated bacterial cells within 2 h and may be an alternative and more rapid method to confirm the lethality of heat treatment. Significance and Impact of the Study: The ability to confirm the lethality of thermal treatments and to specify minimal time/temperature combinations by a nonculture‐dependent test offers an alternative system to culture‐based methods.  相似文献   

11.
在盆栽条件下,研究了开花期和灌浆期干旱胁迫(土壤含水量为田间最大持水量的45%~50%)对持绿性高粱(B35)和非持绿性高粱(三尺三)叶片水分、渗透调节物质以及叶绿体超微结构的影响.结果表明: 干旱胁迫下,两高粱品系叶片自由水含量下降,束缚水含量增加,相对含水量降低,水分饱和亏缺增加,相对电导率增大,但三尺三各指标的变化幅度均大于B35.对于渗透调节物质,干旱胁迫下,三尺三可溶性糖含量的增幅大于B35,脯氨酸含量的增幅小于B35,可溶性蛋白含量的降幅大于B35.干旱胁迫下,B35与三尺三的叶绿体超微结构均受到一定程度的破坏,但B35叶绿体结构保持相对完好,受损程度明显小于三尺三.在干旱胁迫下,持绿性高粱通过较强的渗透调节表现出更好的干旱适应能力.
  相似文献   

12.
It has long been recognized that inhibition of plant water transport by either osmotic stress or salinity is mediated by aquaporins (AQPs), but the function and regulation of AQPs are highly variable among distinct isoforms and across different species. In this study, cucumber seedlings were subjected to polyethylene glycol (PEG) or NaCl stress for duration of 2 h or 24 h. The 2 h treatment with PEG or NaCl had non‐significant effect on the expression of plasma membrane AQP (CsPIPs) in roots, indicating the decrease in hydraulic conductivity of roots (Lpr) and root cells (Lprc) measured in these conditions were due to changes in AQP activity. After both 2 h and 24 h PEG or NaCl exposure, the decrease in hydraulic conductivity of leaves (Kleaf) and leaf cells (Lplc) could be attributed to a down‐regulation of the two most highly expressed isoforms, CsPIP1;2 and CsPIP2;4. In roots, both Lpr and Lprc were further reduced after 24 h PEG exposure, but partially recovered after 24 h NaCl treatment, which were consistent with changes in the expression of CsPIP genes. Overall, the results demonstrated differential responses of CsPIPs in mediating water transport of cucumber seedlings, and the regulatory mechanisms differed according to applied stresses, stress durations and specific organs.  相似文献   

13.
Experimentation with woody perennials may be difficult due to slow plant growth and a lack of sufficient amounts of uniform plant material. In this study, we sought to determine whether rooted leaves could be used as a substitute for whole plants in ion accumulation studies. Grapevine leaves are particularly amenable for rooting since their petioles are of sufficient length for dipping in rooting hormone and for holding the leaf above the soil surface. To determine whether rooted leaves would be useful for salinity experiments, we investigated the ion uptake characteristics of rooted leaves derived from a backcross population that differed in Cl accumulation. Long-term ion accumulation studies conducted over several weeks and short-term radioactive uptake studies conducted over several hours were performed. The data showed that the Cl content of rooted grapevine leaves from different genotypes grown at 25 and 50 mM NaCl was similar to data reported by others. Short-term radioactive uptake assays did not always reveal differences in uptake between the genotypes. Therefore, we suggest that rooted leaves under certain conditions may provide a space-efficient method for generating sufficient amounts of plant material. This material could be used for studying whole plant, molecular and electrophysiological aspects of ion transport and for conducting experiments where root material from specific genotypes is required.  相似文献   

14.
The role of calcium in salt toxicity   总被引:18,自引:11,他引:18  
Salt toxicity comprises osmotic and ionic components both of which can severely affect root and shoot growth. Uptake of Na+ across the plasma membrane is very fast resulting in physiological effects on extracellular as well as intracellular sites. Sodium reduces binding of Ca2+ to the plasma membrane, inhibits influx while increasing efflux of Ca2+, and depletes the internal stores of Ca2+ from endomembranes. These changes in the cell Ca2+ homeostasis are suggested here to be the primary responses to salt stress that are perceived by root cells. Salt would almost instantly reduce the amount of Ca2+ being transferred to the leaf cells, with Ca2+ activity dropping and Na+ activity rising in the apoplasm of leaf cells. This Ca2+ signal would be transported to leaves together with, if not preceding, the signal of limited water supply. Hormonal signals are likely to be secondary in nature and caused by the Na+-related disturbance of the root cell Ca2+ homeostasis. Ameliorative effects of supplemental Ca2+ on salt stress are exerted through preventing Na+-related changes in the cell Ca2+ homeostasis.  相似文献   

15.
Summary For patch-clamp measurements cultured kidney (OK) cells were exposed to osmotic and mechanical stress. Superfusion of a cell in whole cell configuration with hypotonic media (190 mOsm) evokes strong depolarization, which is reversible by returning to the isotonic bath medium. In the cell-attached configuration the exposure to hypotonic media evokes up to six ion channels of homogeneous single-channel properties in the membrane patch. Subsequently, the channels became activated after a time lag of a few seconds. At an applied membrane potential of 0 mV, the corresponding membrane current is directed inward and shows a transient behavior in the time range of minutes. In the same membrane patch these ion channels can be activated by application of negative hydrostatic pressure. The channel has a single-channel conductance of about 22 pS and is permeable to Na+ and K+ as well as to Cl. It is suggested that volume regulation involves mechanoreceptor-operated ion channels.  相似文献   

16.
Almansouri  M.  Kinet  J.-M.  Lutts  S. 《Plant and Soil》2001,231(2):243-254
In order to determine the relative importance of ionic toxicity versus the osmotic component of salt stress on germination in durum wheat (Triticum durum Desf.), seeds of three cultivars differing in their salt and drought resistance (Omrabi-5, drought-resistant; Belikh, salt-resistant and Cando, salt-sensitive) were incubated in various iso-osmotic solutions of NaCl, mannitol and polyethylene-glycol (PEG) (osmotic potential of –0.15 (control solution) –0.58, –1.05 or –1.57 MPa). Moderate stress intensities only delayed germination, whereas the highest concentration of NaCl and PEG reduced final germination percentages. PEG was the most detrimental solute, while mannitol had no effect on final germination percentages. All osmotica reduced endosperm starch and soluble sugars content as well as -amylase activities recorded after 48 h of treatment while -amylase activities were, in contrast, slightly stimulated in all cultivars. Deleterious effects of NaCl and PEG were higher on isolated embryos germinated onto an in vitro Linsmaier and Skoog (LS) medium comparatively to whole seeds. All PEG-treated embryos, however, recovered after the stress relief while NaCl-treated embryos exhibited a lower rate of recovery and some extent of abnormal germination after rinsing. It was concluded that stress inhibition of germination could not be attributed to an inhibition of mobilisation of reserves and that the main effect of PEG occurred via an inhibition of water uptake while detrimental effects of NaCl may be linked to long-term effects of accumulated toxic ions. The behaviour of the three cultivars during germination did not fully reflect their mean level of putative stress resistance in field conditions and germination is, therefore, not recommended as a reliable selection criterion for breeding purposes.  相似文献   

17.
Yeasts are often exposed to variations in osmotic pressure in their natural environments or in their substrates when used in fermentation industries. Such changes may lead to cell death or activity loss. Previous work by our team has allowed us to relate the mortality of cells exposed to a combination of thermal and osmotic treatments to leakage of cellular components through an unstable membrane when lipid phase transition occurs. In this study, yeast viability was measured after numerous osmotic and thermal treatments. In addition, the fluidity of yeast membranes was assessed according to a(w) and temperature by means of 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy measurement. The results show that there is a negative correlation between the overall fluidity variation undergone by membranes during treatments and yeast survival. Using a diagram of membrane fluidity according to a(w) and temperature, we defined dehydration and rehydration methods that minimize fluidity fluctuations, permitting significantly increased yeast survival. Thus, such membrane fluidity diagram should be a potential tool for controlling membrane state during dehydration and rehydration and improve yeast survival. Overall fluidity measurements should now be completed by accurate structural analysis of membranes to better understand the plasma membrane changes occurring during dehydration and rehydration.  相似文献   

18.
Abstract Uptake and transport of Na and K was studied using the radioactive tracers 22Na and 42K in intact Aster tripolium L. seedlings grown at two salinities CS 10 and CS 100, (containing 10mol m?1 and 100 mol m?3 Na, respectively, together with other major ions in the proportions found in sea water). At both salinities a much greater proportion of the Na than K taken up by the plant was subsequently transported to the shoot. Most 42K fluxes were reduced by about 40% in CS 100 plants relative to CS 10 except root accumulation which increased. Experiments involving changing the salinity from CS 10 to CS 100 showed that 42K fluxes remained constant for at least 40 h, indicating that competition with Na for uptake sites was not the cause of the reduced flux in CS 100 plants. 22Na fluxes responded immediately to a change in salinity with all fluxes increasing six-fold when the salinity was raised. When the salinity was lowered, however, root accumulation returned to the level in CS 10 control plants whereas transport to the shoot was inhibited by the previous high salinity treatment, being reduced to only 35% of the rate in CS 10 plants. The time courses of osmotic adjustment and Na accumulation following an increase in salinity were found to be very similar, with sufficient Na being accumulated to account for the observed increase in sap osmotic pressure.  相似文献   

19.
《Cell reports》2023,42(4):112315
  1. Download : Download high-res image (229KB)
  2. Download : Download full-size image
  相似文献   

20.
Plasmalemma-rich microsomal vesicles were prepared from whole leaf and acid-washed epidermal tissue of Vicia faba L. cv. Osnabrücker Markt by aqueous two-phase partitioning in dextran T-500 and polyethylenglycol 1350 aqueous phases. These vesicles were tightly sealed and predominantly right-side out, and contained a K+ -stimulated, mg2+-dependent and vanadate-sensitive ATPase. The enzyme from both tissues exhibited nearly identical properties: pH optimum 6.4, Km for ATP 0.60 mM(whole leaf) and 0.67 mM (epidermis). Vmax -480 nmol (mg protein)1 min1 (whole leaf) and 510 nmol (mg protein)1 min1 (epidermis), I50 (Na3,VO4) 7.5 μM (whole leaf) and 15 μM (epidermis). The enzyme was not inhibited by NO3(50 mM)or sodium azide (I mM). DCCD (20 μM) reduced enzyme activity to 50% (whole leaf) and 58% (epidermis), gramicidin S (20 μM) to 36% (whole leaf) and 41%(epidermis). Ca2+ inhibited the ATPase [I50, C2+: 0.5 mM(whole leaf) and 0.8 mM(epidermis)]. Ca2+ inhibited the ATPase [I50, C2+ 0.5 mM(whole leaf) und 0.8 (epidermis)]. The vanadate-sensitive ATPase from whole leaf and epidermal tissue was slightly but significantly stimulated by fusicoccin (FC) at a concentration (0.13 μM) promoting stomatal opening. The stimulation was not seen in the solubilized ATPase. Stomata of the cultivar used here were insensitive lo (±)ABA up to 2 μM level which is effective in most other cultivars and species. Likewise, at this concentration no effect of ABA on the activity of the epidermal ATPase was observed. The data are discussed with respect to the interaction of FC and ABA with the ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号