首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using confocal microscopy, X‐ray microanalysis and the scanning ion‐selective electrode technique, we investigated the signalling of H2O2, cytosolic Ca2+ ([Ca2+]cyt) and the PM H+‐coupled transport system in K+/Na+ homeostasis control in NaCl‐stressed calluses of Populus euphratica. An obvious Na+/H+ antiport was seen in salinized cells; however, NaCl stress caused a net K+ efflux, because of the salt‐induced membrane depolarization. H2O2 levels, regulated upwards by salinity, contributed to ionic homeostasis, because H2O2 restrictions by DPI or DMTU caused enhanced K+ efflux and decreased Na+/H+ antiport activity. NaCl induced a net Ca2+ influx and a subsequent rise of [Ca2+]cyt, which is involved in H2O2‐mediated K+/Na+ homeostasis in salinized P. euphratica cells. When callus cells were pretreated with inhibitors of the Na+/H+ antiport system, the NaCl‐induced elevation of H2O2 and [Ca2+]cyt was correspondingly restricted, leading to a greater K+ efflux and a more pronounced reduction in Na+/H+ antiport activity. Results suggest that the PM H+‐coupled transport system mediates H+ translocation and triggers the stress signalling of H2O2 and Ca2+, which results in a K+/Na+ homeostasis via mediations of K+ channels and the Na+/H+ antiport system in the PM of NaCl‐stressed cells. Accordingly, a salt stress signalling pathway of P. euphratica cells is proposed.  相似文献   

2.
Plants have evolved complex mechanisms that allow them to withstand multiple environmental stresses, including biotic and abiotic stresses. Here, we investigated the interaction between herbivore exposure and salt stress of Ammopiptanthus nanus, a desert shrub. We found that jasmonic acid (JA) was involved in plant responses to both herbivore attack and salt stress, leading to an increased NaCl stress tolerance for herbivore-pretreated plants and increase in K+/Na+ ratio in roots. Further evidence revealed the mechanism by which herbivore improved plant NaCl tolerance. Herbivore pretreatment reduced K+ efflux and increased Na+ efflux in plants subjected to long-term, short-term, or transient NaCl stress. Moreover, herbivore pretreatment promoted H+ efflux by increasing plasma membrane H+-adenosine triphosphate (ATP)ase activity. This H+ efflux creates a transmembrane proton motive force that drives the Na+/H+ antiporter to expel excess Na+ into the external medium. In addition, high cytosolic Ca2+ was observed in the roots of herbivore-treated plants exposed to NaCl, and this effect may be regulated by H+-ATPase. Taken together, herbivore exposure enhance s A. nanus tolerance to salt stress by activating the JA-signalling pathway, increasing plasma membrane H + - ATPase activity, promoting cytosolic Ca2+ accumulation, and then restricting K+ leakage and reducing Na+ accumulation in the cytosol.  相似文献   

3.
This work investigated the importance of the ability of leaf mesophyll cells to control K+ flux across the plasma membrane as a trait conferring tissue tolerance mechanism in plants grown under saline conditions. Four wheat (Triticum aestivum and Triticum turgidum) and four barley (Hordeum vulgare) genotypes contrasting in their salinity tolerance were grown under glasshouse conditions. Seven to 10‐day‐old leaves were excised, and net K+ and H+ fluxes were measured from either epidermal or mesophyll cells upon acute 100 mM treatment (mimicking plant failure to restrict Na+ delivery to the shoot) using non‐invasive microelectrode ion flux estimation (the MIFE) system. To enable net ion flux measurements from leaf epidermal cells, removal of epicuticular waxes was trialed with organic solvents. A series of methodological experiments was conducted to test the efficiency of different methods of wax removal, and the impact of experimental procedures on cell viability, in order to optimize the method. A strong positive correlation was found between plants' ability to retain K+ in salt‐treated leaves and their salinity tolerance, in both wheat and especially barley. The observed effects were related to the ionic but not osmotic component of salt stress. Pharmacological experiments have suggested that voltage‐gated K+‐permeable channels mediate K+ retention in leaf mesophyll upon elevated NaCl levels in the apoplast. It is concluded that MIFE measurements of NaCl‐induced K+ fluxes from leaf mesophyll may be used as an efficient screening tool for breeding in cereals for salinity tissue tolerance.  相似文献   

4.
Based on sequence analysis, the salt overly sensitive (SOS1) gene has been suggested to function as a Na+/H+ antiporter located at the plasma membrane of plant cells, being expressed mostly in the meristem zone of the root and in the parenchyma cells surrounding the vascular tissue of the stem. In this study, we compared net H+ and Ca2+ fluxes and intracellular pH and [Ca2+]cyt in the root meristem zone of Arabidopsis wild‐type (WT) and sos mutants before and after salt stress. In addition, we studied the effect of pretreatment with amiloride (an inhibitor of Na+/H+ antiporters) on net ion fluxes, intracellular pH and intracellular Ca2+ activity ([Ca2+]cyt) in WT plants and sos1 mutants before and after salt stress. Net ion fluxes were measured using microelectrode ion flux estimation (MIFE) and intracellular pH and [Ca2+]cyt using fluorescence lifetime imaging microscopy (FLIM) techniques. During the first 15 min after NaCl application, sos1 mutants showed net H+ efflux and intracellular alkalinization in the meristem zone, whereas sos2 and sos3 mutants and WT showed net H+ influx and slight intracellular acidification in the meristem zone. Treatment with amiloride led to intracellular acidification and lower net H+ flux in WT plants and to a decrease in intracellular Ca2+ in WT and sos1 plants. WT plants pretreated with amiloride did not show positive net H+ flux and intracellular acidification. After NaCl application, internal pH shifted to higher values in WT and sos1 plants. However, absolute values of H+ fluxes were higher and internal pH values were lower in WT plants pretreated with amiloride compared with sos1 mutants. Therefore, the SOS1 transporter is involved in H+ influx into the meristem zone of Arabidopsis roots, or it may function as a Na+/H+ antiporter. Amiloride affects SOS1 and other Na+/H+ antiporters in plant cells because of its ability to decrease the H+ gradient across the plasma membrane.  相似文献   

5.
6.

Main conclusion

Salt stress reduces the ability of mesophyll tissue to respond to light. Potassium outward rectifying channels are responsible for 84 % of Na + induced potassium efflux from mesophyll cells. Modulation in ion transport of broad bean (Vicia faba L.) mesophyll to light under increased apoplastic salinity stress was investigated using vibrating ion-selective microelectrodes (the MIFE technique). Increased apoplastic Na+ significantly affected mesophyll cells ability to respond to light by modulating ion transport across their membranes. Elevated apoplastic Na+ also induced a significant K+ efflux from mesophyll tissue. This efflux was mediated predominately by potassium outward rectifying channels (84 %) and the remainder of the efflux was through non-selective cation channels. NaCl treatment resulted in a reduction in photosystem II efficiency in a dose- and time-dependent manner. In particular, reductions in Fv′/Fm′ were linked to K+ homeostasis in the mesophyll tissue. Increased apoplastic Na+ concentrations induced vanadate-sensitive net H+ efflux, presumably mediated by the plasma membrane H+-ATPase. It is concluded that the observed pump’s activation is essential for the maintenance of membrane potential and ion homeostasis in the cytoplasm of mesophyll under salt stress.  相似文献   

7.
Methyl jasmonate (MeJA) elicits stomatal closure in many plant species. Stomatal closure is accompanied by large ion fluxes across the plasma membrane (PM). Here, we recorded the transmembrane ion fluxes of H+, Ca2+ and K+ in guard cells of wild‐type (Col‐0) Arabidopsis, the CORONATINE INSENSITIVE1 (COI1) mutant coi1‐1 and the PM H+‐ATPase mutants aha1‐6 and aha1‐7, using a non‐invasive micro‐test technique. We showed that MeJA induced transmembrane H+ efflux, Ca2+ influx and K+ efflux across the PM of Col‐0 guard cells. However, this ion transport was abolished in coi1‐1 guard cells, suggesting that MeJA‐induced transmembrane ion flux requires COI1. Furthermore, the H+ efflux and Ca2+ influx in Col‐0 guard cells was impaired by vanadate pre‐treatment or PM H+‐ATPase mutation, suggesting that the rapid H+ efflux mediated by PM H+‐ATPases could function upstream of the Ca2+ flux. After the rapid H+ efflux, the Col‐0 guard cells had a longer oscillation period than before MeJA treatment, indicating that the activity of the PM H+‐ATPase was reduced. Finally, the elevation of cytosolic Ca2+ concentration and the depolarized PM drive the efflux of K+ from the cell, resulting in loss of turgor and closure of the stomata.  相似文献   

8.
Perception of salt stress in plant cells induces a change in the free cytosolic Ca2+, [Ca2+]cyt, which transfers downstream reactions toward salt tolerance. Changes in cytosolic H+ concentration, [H+]cyt, are closely linked to the [Ca2+]cyt dynamics under various stress signals. In this study, salt‐induced changes in [Ca2+]cyt, and [H+]cyt and vacuolar [H+] concentrations were monitored in single protoplasts of rice (Oryza sativa L. indica cvs. Pokkali and BRRI Dhan29) by fluorescence microscopy. Changes in cytosolic [Ca2+] and [H+] were detected by use of the fluorescent dyes acetoxy methyl ester of calcium‐binding benzofuran and acetoxy methyl ester of 2′, 7′‐bis‐(2‐carboxyethyl)‐5‐(and‐6) carboxyfluorescein, respectively, and for vacuolar pH, fluorescent 6‐carboxyfluorescein and confocal microscopy were used. Addition of NaCl induced a higher increase in [Ca2+]cyt in the salt‐tolerant cv. Pokkali than in the salt‐sensitive cv. BRRI Dhan29. From inhibitor studies, we conclude that the internal stores appear to be the major source for [Ca2+]cyt increase in Pokkali, although the apoplast is more important in BRRI Dhan29. The [Ca2+]cyt measurements in rice also suggest that Na+ should be sensed inside the cytosol, before any increase in [Ca2+]cyt occurs. Moreover, our results with individual mesophyll protoplasts suggest that ionic stress causes an increase in [Ca2+]cyt and that osmotic stress sharply decreases [Ca2+]cyt in rice. The [pH]cyt was differently shifted in the two rice cultivars in response to salt stress and may be coupled to different activities of the H+‐ATPases. The changes in vacuolar pH were correlated with the expressional analysis of rice vacuolar H+‐ATPase in these two rice cultivars.  相似文献   

9.
Effect of Sudden Salt Stress on Ion Fluxes in Intact Wheat Suspension Cells   总被引:4,自引:0,他引:4  
Although salinity is one of the major problems limiting agriculturalproduction around the world, the underlying mechanisms of highNaCl perception and tolerance are still poorly understood. Theeffects of different bathing solutions and fusicoccin (FC),a known activator of plasma membrane ATPase, on plasma membranepotential (Em) and net fluxes of Na+, K+and H+were studied inwheat suspension cells (Triticum aestivum) in response to differentNaCl treatments. Emof cells in Murashige and Skoog (MS) mediumwas less negative than in cells exposed to a medium containing10 mM KCl + 0.1 m M CaCl2(KSM) and to a basic salt medium (BSM),containing 1 m M KCl and 0.1 m M CaCl2. Multiphasic Na+accumulationin cells was observed, peaking at 13 min after addition of 120m M NaCl to MS medium. This time scale was in good agreementwith net Na+flux changes measured non-invasively by moving ion-selectivemicroelectrodes (the MIFE system). When 120 m M NaCl was addedto all media studied, a quick rise of Na+influx was reversedwithin the first 20 min. In both 120 and 20 m M NaCl treatmentsin MS medium, net Na+efflux was observed, indicating that activeNa+transporters function in the plant cell response to saltstress. Lower external K+concentrations (KSM and BSM) and FCpre-treatment caused shifts in Na+fluxes towards net influxat 120 m M NaCl stress. Copyright 2000 Annals of Botany Company Sodium, potassium, proton, membrane potential, fusicoccin, salt stress, wheat, Triticum aestivum  相似文献   

10.
Shabala S  Hariadi Y 《Planta》2005,221(1):56-65
Considering the physiological significance of Mg homeostasis in plants, surprisingly little is known about the molecular and ionic mechanisms mediating Mg transport across the plasma membrane and the impact of Mg availability on transport processes at the plasmalemma. In this study, a non-invasive ion-selective microelectrode technique (MIFE) was used to characterize the effects of Mg availability on the activity of plasma membrane H+, K+, Ca2+, and Mg2+ transporters in the mesophyll cells of broad bean (Vicia faba L.) plants. Based on the stoichiometry of ion-flux changes and results of pharmacological experiments, we suggest that at least two mechanisms are involved in Mg2+ uptake across the plasma membrane of bean mesophyll cells. One of them is a non-selective cation channel, also permeable to K+ and Ca2+. The other mechanism, operating at concentrations below 30 M, was speculated to be an H+/Mg+ exchanger. Experiments performed on leaves grown at different levels of Mg availability (from deficient to excessive) showed that Mg availability has a significant impact on the activity of plasma-membrane transporters for Ca2+, K+, and H+. We discuss the physiological significance of Mg-induced changes in leaf electrophysiological responses to light and the ionic mechanisms underlying this process.  相似文献   

11.
Net fluxes of H+and Ca2+were measured in the mesophyll tissueof broad bean (Vicia faba L.) leaves and in protoplasts derivedfrom these cells. NaCl at 90 m M enhanced H+extrusion in bothprotoplasts and tissue, but in different ways. Proton extrusionwas inhibited by vanadate, suggesting the involvement of theplasma membrane H+-ATPase in cell responses to salinity. Therewas virtually no effect of NaCl on the net Ca2+flux in protoplasts,while in the tissue a large transient Ca2+efflux followed thesalt treatment. Salt-induced Ca2+efflux was essentially independentof external Ca2+concentrations in the range 0.1 to 10 m M. Also,Ca2+flux responses were ‘saturated’ above 50 m MNaCl. It is suggested that almost all the measured Ca2+fluxoriginates from Na+/Ca2+and H+/Ca2+ion exchange in the cellwall. This conclusion was supported by the results of modellingcation exchange in the cell wall. Copyright 2000 Annals of BotanyCompany Salinity, membrane transporters, wall ion exchange, proton, calcium, Vicia faba  相似文献   

12.
Rapid calcium exchange for protons and potassium in cell walls of Chara   总被引:3,自引:2,他引:1  
Net fluxes of Ca2+, H+ and K+ were measured from intact Chara australis cells and from isolated cell walls, using ion-selective microelectrodes. In both systems, a stimulation in Ca2+ efflux (up to 100 nmol m?2 s?1, from an influx of ~40 nmol m?2 s?1) was detected as the H+ or K+ concentration was progressively increased in the bathing solution (pH 7.0 to 4.6 or K+ 0.2 to 10mol m?3, respectively). A Ca2+ influx of similar size occurred following the reverse changes. These fluxes decayed exponentially with a time constant of about 10 min. The threshold pH for Ca2+ efflux (pH 5.2) is similar to a reported pH threshold for acid-induced wall extensibility in a closely related characean species. Application of NH4+ to intact cells caused prolonged H+ efflux and also transient Ca2+ efflux. We attribute all these net Ca2+ fluxes to exchange in the wall with H+ or K+. A theoretical treatment of the cell wall ion exchanges, using the ‘weak acid Donnan Manning’ (WADM) model, is given and it agrees well with the data. The role of Ca2+ in the cell wall and the effect of Ca2+ exchanges on the measured fluxes of other ions, including bathing medium acidification by H+ efflux, are discussed.  相似文献   

13.
以披针叶黄华(Thermopsis lanceolata)试管苗为材料,通过组培方法研究其在0、0.2%、0.4%、0.6%、0.8%和1.0%NaCl和Na2SO4胁迫30d后的生长、有机渗透调节物质和无机渗透调节物质(Na+、K+和Ca2+)含量的变化,以探讨其耐盐性机制。结果显示:(1)随NaCl和Na2SO4胁迫浓度的增加,披针叶黄华试管苗叶片脯氨酸和可溶性糖含量均显著持续增加,且NaCl胁迫下脯氨酸上升的幅度均大于相同浓度Na2SO4胁迫下的增幅,而可溶性糖上升的幅度却小于相同浓度Na2SO4胁迫下的幅度;可溶性蛋白含量随NaCl浓度的增大呈先升高后降低的趋势,但随Na2SO4浓度的增加呈持续上升的趋势。(2)随NaCl和Na2SO4浓度的增加,披针叶黄华试管苗Na+含量呈增加趋势且各处理均显著高于对照,Ca2+含量和叶片K+含量却呈逐渐减少趋势且各处理均显著低于对照,而根系K+含量呈先降后升的趋势;Na2SO4胁迫下披针叶黄华试管苗叶片Na+含量上升幅度以及K+和Ca2+含量下降幅度均明显低于相同浓度NaCl胁迫组;而Na+/K+和Na+/Ca2+比值随NaCl和Na2SO4浓度增加而升高;NaCl胁迫下,叶片Na+/K+和Na+/Ca2+高于相同浓度Na2SO4胁迫下的比值,而根系Na+/K+和Na+/Ca2+却低于相同浓度Na2SO4胁迫下的比值。研究表明,盐胁迫下,披针叶黄华试管苗通过抑制叶片中Na+积累并增加可溶性糖和可溶性蛋白含量,在根系中维持较高K+和Ca2+含量以及较低水平Na+/K+和Na+/Ca2+比,以降低披针叶黄华细胞渗透势来适应盐渍环境;披针叶黄华对NaCl胁迫的调节能力弱于Na2SO4。  相似文献   

14.
高盐胁迫对罗布麻生长及离子平衡的影响   总被引:18,自引:2,他引:16  
采用网室盆栽试验,研究了不同浓度NaCl(100~400 mmol·L-1)胁迫30 d对罗布麻植株生物量积累、生长速率、根系活力、盐分和矿质离子吸收、分布等的影响.结果表明:100 mmol·L-1 NaCl处理30 d,罗布麻植株鲜质量和生长速率显著下降,但对其干质量没有影响;随着盐度的增加,罗布麻植株干质量、鲜质量和生长速率均显著降低.100~200 mmol·L-1 NaCl胁迫下,罗布麻根系活力明显高于对照;300~400 mmol·L-1 NaCl盐胁迫下,其活力显著降低.随着盐浓度的增加,罗布麻根、茎和叶片Na+含量逐渐增加、K+含量缓慢降低;叶片Ca2+、Mg2+含量明显降低,茎部Ca2+和根部Mg2+含量有不同程度的增加.盐胁迫明显降低了罗布麻根、茎和叶片K+/Na+、Ca2+/Na+和Mg2+/Na+的比率,植株选择性吸收和运输K+、Ca2+的能力显著提高.罗布麻植株很强的拒盐能力,以及对K+、Ca2+的选择性吸收和运输是其具有高盐适应性的主要原因.  相似文献   

15.
Endoplasmic reticulum (ER) stress and oxidative stress have recently been linked to the pathogenesis of inflammatory bowel diseases. Under physiological conditions, intestinal epithelial cells are exposed to ER and oxidative stress affecting the cellular ionic homeostasis. However, these altered ion flux ‘signatures’ during these stress conditions are poorly characterized. We investigated the kinetics of K+, Ca2+ and H+ ion fluxes during ER and oxidative stress in a colonic epithelial cell line LS174T using a non‐invasive microelectrode ion flux estimation technique. ER and oxidative stress were induced by cell exposure to tunicamycin (TM) and copper ascorbate (CuAsc), respectively, from 1 to 24 h. Dramatic K+ efflux was observed following acute ER stress with peak K+ efflux being ?30·6 and ?138·7 nmolm?2 s?1 for 10 and 50 µg ml?1, respectively (p < 0·01). TM‐dependent Ca2+ uptake was more prolonged with peak values of 0·85 and 2·68 nmol m?2 s?1 for 10 and 50 µg ml?1 TM, respectively (p < 0·02). Ion homeostasis was also affected by the duration of ER stress. Increased duration of TM treatment from 0 to 18 h led to increases in both K+ efflux and Ca2+ uptake. While K+ changes were significantly higher at each time point tested, Ca2+ uptake was significantly higher only after prolonged treatment (18 h). CuAsc also led to an increased K+ efflux and Ca2+ uptake. Functional assays to investigate the effect of inhibiting K+ efflux with tetraethylammonium resulted in increased cell viability. We conclude that ER/oxidative stress in colonic epithelial cells cause dramatic K+, Ca2+ and H+ ion flux changes, which may predispose this lineage to poor stress recovery reminiscent of that seen in inflammatory bowel diseases. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Evelin H  Giri B  Kapoor R 《Mycorrhiza》2012,22(3):203-217
The study aimed to investigate the effects of an AM fungus (Glomus intraradices Schenck and Smith) on mineral acquisition in fenugreek (Trigonella foenum-graecum) plants under different levels of salinity. Mycorrhizal (M) and non-mycorrhizal (NM) fenugreek plants were subjected to four levels of NaCl salinity (0, 50, 100, and 200 mM NaCl). Plant tissues were analyzed for different mineral nutrients. Leaf senescence (chlorophyll concentration and membrane permeability) and lipid peroxidation were also assessed. Under salt stress, M plants showed better growth, lower leaf senescence, and decreased lipid peroxidation as compared to NM plants. Salt stress adversely affected root nodulation and uptake of NPK. This effect was attenuated in mycorrhizal plants. Presence of the AM fungus prevented excess uptake of Na+ with increase in NaCl in the soil. It also imparted a regulatory effect on the translocation of Na+ ions to shoots thereby maintaining lower Na+ shoot:root ratios as compared to NM plants. Mycorrhizal colonization helped the host plant to overcome Na+-induced Ca2+ and K+ deficiencies. M plants maintained favorable K+:Na+, Ca2+:Na+, and Ca2+:Mg2+ ratios in their tissues. Concentrations of Cu, Fe, and Zn2+ decreased with increase in intensity of salinity stress. However, at each NaCl level, M plants had higher concentration of Cu, Fe, Mn2+, and Zn2+ as compared to NM plants. M plants showed reduced electrolyte leakage in leaves as compared to NM plants. The study suggests that AM fungi contribute to alleviation of salt stress by mitigation of NaCl-induced ionic imbalance thus maintaining a favorable nutrient profile and integrity of the plasma membrane.  相似文献   

17.
Summary The plasma membrane potential of Lettré cells has been determined with the optical indicator oxonol-V and found to be –57 mV at 37°C (range –20 to –80 mV depending on the physiological condition of the cells). Increasing extracellular K+ does not depolarize cells: even in the presence of 155mM K+ the potential is –41 mV; membrane potential is also insensitive to the chemical gradient of Na+,Mg2+, Ca2+ or Cl. Ouabain depolarizes the cells; H+ efflux from cells is stimulated by extracellular Na+. We propose that in Lettré cells the plasma membrane potential is generated by electrogenic cation pumps. The balancing fluxes of Na+ and K+ are mainly through electroneutral cation exchanges (Na+/K+ and Na+/H+) and the magnitude of the potential is limited by organic anion leaks. Such a mechanism may operate in other biological membranes also.  相似文献   

18.
The effects of an arbuscular mycorrhizal (AM) fungus, Glomus mosseae, and a phosphate-solubilizing microorganism (PSM), Mortierella sp., and their interactions, on nutrient (N, P and K) uptake and the ionic composition of different root tissues of the halophyte Kosteletzkya virginica (L.), cultured with or without NaCl, were evaluated. Plant biomass, AM colonization and PSM populations were also assessed. Salt stress adversely affected plant nutrient acquisition, especially root P and K, resulting in an important reduction in shoot dry biomass. Inoculation of the AM fungus or/and PSM strongly promoted AM colonization, PSM populations, plant dry biomass, root/shoot dry weight ratio and nutrient uptake by K. virginica, regardless of salinity level. Ion accumulation in root tissues was inhibited by salt stress. However, dual inoculation of the AM fungus and PSM significantly enhanced ion (e.g., Na+, Cl?, K+, Ca2+, Mg2+) accumulation in different root tissues, and maintained lower Na+/K+ and Ca2+/Mg2+ ratios and a higher Na+/Ca2+ ratio, compared to non-inoculated plants under 100 mM NaCl conditions. Correlation coefficient analysis demonstrated that plant (shoot or root) dry biomass correlated positively with plant nutrient uptake and ion (e.g., Na+, K+, Mg2+ and Cl?) concentrations of different root tissues, and correlated negatively with Na+/K+ ratios in the epidermis and cortex. Simultaneously, root/shoot dry weight ratio correlated positively with Na+/Ca2+ ratios in most root tissues. These findings suggest that combined AM fungus and PSM inoculation alleviates the deleterious effects of salt on plant growth by enabling greater nutrient (e.g., P, N and K) absorption, higher accumulation of Na+, K+, Mg2+ and Cl? in different root tissues, and maintenance of lower root Na+/K+ and higher Na+/Ca2+ ratios when salinity is within acceptable limits.  相似文献   

19.
Abstract The freshwater Charophyte Chora corallina dies when subjected to 70 molm?3 NaCl if the Ca2+ concentration is 0.1 mol m ?3. This stress is accompanied by a depolarization of the cell to a membrane potential more positive than EK, a net influx of Na+ into the vacuole, and a net loss of K+ from the vacuole. Raising the Ca2+ concentration to 7 mol m ?3 in the presence of elevated Na+ restores the Na+ to Ca2+ ratio to 10: 1 as in the control solution, and results in enhanced survival even though turgor is not regulated. Mg2+ is not a good substitute for Ca2+. It is suggested that the main reason that C. corallina fails to occupy saline habitats is its failure to regulate turgor, not sensitivity to Na +, since the latter is similar to that seen in C. buckellii, which is found in saline habitats.  相似文献   

20.
Relationships among several of the ion movements associated with the acrosome reaction of S. purpuratus were investigated. Egg jelly initiates 45Ca2+ and 22Na+ uptake, and K+ and H+ efflux. H+ efflux and 22Na+ uptake occur with approximately equivalent stoichiometries as rapidly as the appearance of acrosomal rods, perhaps reflecting a linked process. Most K+ loss, as measured either by 42K+ efflux or K+-ion-selective electrodes, occurs after the acrosome reaction is complete. Since an elevation of seawater K+ (from 10 to 15 mM) or the addition of 0.5 mM tetraethylammonium (TEA), an inhibitor of K+ channels, inhibits the acrosome reaction half-maximally, K+ movements or alterations of K+-dependent membrane potentials may regulate the triggering by jelly. Most, but not all, of the 45Ca2+ influx is inhibited with a mixture of 10 μM FCCP, 1 mM CN?, and 2 μg/ml oligomycin, suggesting that the mitochondria store most of the Ca2+. The extracellular Na+ concentration affects Ca2+ fluxes: sperm placed into 5 mM Na+ seawater have enhanced 45Ca2+ uptake, but do not undergo the acrosome reaction, unless 30 mM Na+ is also added. Low Na+ concentrations lead to spontaneous triggering, by allowing for both Ca2+ influx and Na+-dependent H+ efflux. At least one early Ca2+ requirement precedes the Na+ and H+ movements, as inferred from attempts at reversing the inhibitors of jelly induction of the acrosome reaction. When sperm are incubated with jelly in the absence of Ca2+, then washed and incubated with jelly in the presence of Ca2+, the acrosome reaction is triggered only upon the second incubation. However, when sperm are mixed with jelly in the presence of the other inhibitors (verapamil, TEA, 5 mM Na+ seawater, low pH, or elevated K+), they are altered so that even upon subsequent washing, jelly-mediated triggering is no longer possible. This suggests the existence of an intermediate state in the reaction pathway, that follows an event for which Ca2+ is required, but that precedes the Na+ and H+ movements, which are inhibited by all inhibitors of the acrosome reaction. These data are used to develop a partial sequence of ionic changes associated with the triggering mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号