首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although it is widely believed that horizontal patchiness exists in microbial sediment communities, determining the extent of variability or the particular members of the bacterial community which account for the observed differences among sites at various scales has not been routinely demonstrated. In this study, horizontal heterogeneity was examined in time and space for denitrifying bacteria in continental shelf sediments off Tuckerton, N.J., at the Rutgers University Long-Term Ecosystem Observatory (LEO-15). Characterization of the denitrifying community was done using PCR amplification of the nitrous oxide reductase (nosZ) gene combined with terminal restriction fragment length polymorphism analysis. Spatial scales from centimeters to kilometers were examined, while temporal variation was assayed over the course of 1995 to 1996. Sorenson's indices (pairwise similarity values) were calculated to permit comparison between samples. The similarities of benthic denitrifiers ranged from 0.80 to 0.85 for centimeter scale comparisons, from 0.52 to 0.79 for meter level comparisons, and from 0.23 to 0.53 for kilometer scale comparisons. Sorenson's indices for temporal comparisons varied from 0.12 to 0.74. A cluster analysis of the similarity values indicated that the composition of the denitrifier assemblages varied most significantly at the kilometer scale and between seasons at individual stations. Specific nosZ genes were identified which varied at centimeter, meter, or kilometer scales and may be associated with variability in meio- or macrofaunal abundance (centimeter scale), bottom topography (meter scale), or sediment characteristics (kilometer scale).  相似文献   

2.
We investigated communities of denitrifying bacteria from adjacent meadow and forest soils. Our objectives were to explore spatial gradients in denitrifier communities from meadow to forest, examine whether community composition was related to ecological properties (such as vegetation type and process rates), and determine phylogenetic relationships among denitrifiers. nosZ, a key gene in the denitrification pathway for nitrous oxide reductase, served as a marker for denitrifying bacteria. Denitrifying enzyme activity (DEA) was measured as a proxy for function. Other variables, such as nitrification potential and soil C/N ratio, were also measured. Soil samples were taken along transects that spanned meadow-forest boundaries at two sites in the H. J. Andrews Experimental Forest in the Western Cascade Mountains of Oregon. Results indicated strong functional and structural community differences between the meadow and forest soils. Levels of DEA were an order of magnitude higher in the meadow soils. Denitrifying community composition was related to process rates and vegetation type as determined on the basis of multivariate analyses of nosZ terminal restriction fragment length polymorphism profiles. Denitrifier communities formed distinct groups according to vegetation type and site. Screening 225 nosZ clones yielded 47 unique denitrifying genotypes; the most dominant genotype occurred 31 times, and half the genotypes occurred once. Several dominant and less-dominant denitrifying genotypes were more characteristic of either meadow or forest soils. The majority of nosZ fragments sequenced from meadow or forest soils were most similar to nosZ from the Rhizobiaceae group in alpha-Proteobacteria species. Denitrifying community composition, as well as environmental factors, may contribute to the variability of denitrification rates in these systems.  相似文献   

3.
We have examined the effects of sediment grain size and depth on the abundance and activity of aerobic bacteria at two coastal plain sites in Virginia. Samples were collected at centimeter intervals as well as meter intervals because fine‐scale sampling can be essential to assess microbial variability. At the Oyster site, grain size varied from 0.12 to 0.25 mm below 1.5 m depth and did not correlate with either bacterial abundance or activity. Perhaps due to the fairly uniform grain size at this site, variations in bacterial numbers were less than fivefold between replicate samples of 0,1 to 100 g and generally less than 15‐fold among closely spaced intervals (~5 cm). At the Abbott Pit site, grain size was about threefold greater (0.50 ± 0.17mm) in an interval of 4.35 to 5.0m below land surface than grain size in the surrounding sediments. In the same interval, bacterial abundance increased by 11‐fold and activity increased by 217‐fold relative to the surrounding sediments. Overall, grain size correlated significantly with bacterial abundance and activity below the soil zone at the Abbott Pit site. This suggests that changes in grain size, even at the centimeter scale, could have a predominant effect on microbial variability in sandy aquifers of the coastal plain. Besides grain size, depth correlated significantly with total organic carbon and bacterial abundance and activity at both sites, suggesting that depth is also an important factor controlling microbial variability in the subsurface environments.  相似文献   

4.
The community structure and potential activities of nitrifying and denitrifying bacteria were studied in the rhizosphere of Typha latifolia and Phragmites australis present in a free water system constructed wetland (CW). Potential nitrate reduction and nitrification activities were shown to be significantly higher in the rhizosphere when compared with the nonvegetated sediment. Higher rates were generally obtained for P. australis . The community structure of denitrifying bacteria in the rhizosphere differed from that found at the bulk sediment, as revealed by PCR-denaturing gradient gel electrophoresis (DGGE) of the nitrous oxide reductase encoding gene nosZ . Results also show a greater nosZ genotype diversification and suggest a plant species effect in rhizosphere samples obtained during events of low hydraulic retention times. Ammonia-oxidizing communities were less complex on the basis of PCR-DGGE analysis of the 16S rRNA gene. Retrieved sequences were all related to Nitrosomonas marina and Nitrosomonas ureae , being both present in rhizosphere and bulk sediment regardless of environmental changes. The results demonstrate the effect of vegetation on the functioning and structure of bacterial communities involved in the removal of nitrogen in the treatment cells of a CW and point to the use of vegetation coverage to promote nitrification or denitrification in particular areas.  相似文献   

5.
Small-scale variations in bacterial abundance and community structure were examined in salt marsh sediments from Virginia's eastern shore. Samples were collected at 5 cm intervals (horizontally) along a 50 cm elevation gradient, over a 215 cm horizontal transect. For each sample, bacterial abundance was determined using acridine orange direct counts and community structure was analyzed using randomly amplified polymorphic DNA fingerprinting of whole-community DNA extracts. A geostatistical analysis was used to determine the degree of spatial autocorrelation among the samples, for each variable and each direction (horizontal and vertical). The proportion of variance in bacterial abundance that could be accounted for by the spatial model was quite high (vertical: 60%, horizontal: 73%); significant autocorrelation was found among samples separated by 25 cm in the vertical direction and up to 115 cm horizontally. In contrast, most of the variability in community structure was not accounted for by simply considering the spatial separation of samples (vertical: 11%, horizontal: 22%), and must reflect variability from other parameters (e.g., variation at other spatial scales, experimental error, or environmental heterogeneity). Microbial community patch size based upon overall similarity in community structure varied between 17 cm (vertical) and 35 cm (horizontal). Overall, variability due to horizontal position (distance from the creek bank) was much smaller than that due to vertical position (elevation) for both community properties assayed. This suggests that processes more correlated with elevation (e.g., drainage and redox potential) vary at a smaller scale (therefore producing smaller patch sizes) than processes controlled by distance from the creek bank.  相似文献   

6.
The effect of standard agricultural management on the genetic heterogeneity of nitrous oxide reductase (nosZ) fragments from denitrifying prokaryotes in native and cultivated soil was explored. Thirty-six soil cores were composited from each of the two soil management conditions. nosZ gene fragments were amplified from triplicate samples, and PCR products were cloned and screened by restriction fragment length polymorphism (RFLP). The total nosZ RFLP profiles increased in similarity with soil sample size until triplicate 3-g samples produced visually identical RFLP profiles for each treatment. Large differences in total nosZ profiles were observed between the native and cultivated soils. The fragments representing major groups of clones encountered at least twice and four randomly selected clones with unique RFLP patterns were sequenced to verify nosZ identity. The sequence diversity of nosZ clones from the cultivated field was higher, and only eight patterns were found in clone libraries from both soils among the 182 distinct nosZ RFLP patterns identified from the two soils. A group of clones that comprised 32% of all clones dominated the gene library of native soil, whereas many minor groups were observed in the gene library of cultivated soil. The 95% confidence intervals of the Chao1 nonparametric richness estimator for nosZ RFLP data did not overlap, indicating that the levels of species richness are significantly different in the two soils, the cultivated soil having higher diversity. Phylogenetic analysis of deduced amino acid sequences grouped the majority of nosZ clones into an interleaved Michigan soil cluster whose cultured members are alpha-Proteobacteria. Only four nosZ sequences from cultivated soil and one from the native soil were related to sequences found in gamma-Proteobacteria. Sequences from the native field formed a distinct, closely related cluster (D(mean) = 0.16) containing 91.6% of the native clones. Clones from the cultivated field were more distantly related to each other (D(mean) = 0.26), and 65% were found outside of the cluster from the native soil, further indicating a difference in the two communities. Overall, there appears to be a relationship between use and richness, diversity, and the phylogenetic position of nosZ sequences, indicating that agricultural use of soil caused a shift to a more diverse denitrifying community.  相似文献   

7.
The diversity of the membrane-bound nitrate reductase (narG) and nitrous oxide reductase (nosZ) genes in fluorescent pseudomonads isolated from soil and rhizosphere environments was characterized together with that of the 16S rRNA gene by a PCR-restriction fragment length polymorphism assay. Fragments of 1,008 bp and 1,433 bp were amplified via PCR with primers specific for the narG and nosZ genes, respectively. The presence of the narG and nosZ genes in the bacterial strains was confirmed by hybridization of the genomic DNA and the PCR products with the corresponding probes. The ability of the strains to either reduce nitrate or totally dissimilate nitrogen was assessed. Overall, there was a good correspondence between the reductase activities and the presence of the corresponding genes. Distribution in the different ribotypes of strains harboring both the narG and nosZ genes and of strains missing both genes suggests that these two groups of strains had different evolutionary histories. Both dissimilatory genes showed high polymorphism, with similarity indexes (Jaccard) of between 0.04 and 0.8, whereas those of the 16S rRNA gene only varied from 0.77 to 0.99. No correlation between the similarity indexes of 16S rRNA and dissimilatory genes was seen, suggesting that the evolution rates of ribosomal and functional genes differ. Pairwise comparison of similarity indexes of the narG and nosZ genes led to the delineation of two types of strains. Within the first type, the similarity indexes of both genes varied in the same range, suggesting that these two genes have followed a similar evolution. Within the second type of strain, the range of variations was higher for the nosZ than for the narG gene, suggesting that these genes have had a different evolutionary rate.  相似文献   

8.
The effect of redox potential and pH on the phosphate mobility in two sediments were investigated using both consolidated and suspended sediments from the area where the Parana Medio long reservoir (Atgentina) is to be built (Smirnov, 1984). In addition to direct chemical sediment analysis, extraction techniques were carried out with a stepwise NH4Cl-NaOH-HCl shaking method, the latter supposedly separating the weakly bound, the Fe- and Al- bound and the Ca- bound phosphates in the sediments.Phosphate released into water depends upon redox potential and pH, which both were modified in an experimental setup. The source of the phosphate was the fraction of Fe and/or Al bound phosphate present both in the sediment and in the suspended solids.Abbreviations cm centimeter - km kilometer - gg gram - l liter - ¬m micrometer - °C grade centigrades - km2 square kilometer - m.s–1 meter per second - m3.s–1 cubic meter per second - mg.11 miligram per liter  相似文献   

9.
Diversity of the nitrous oxide reductase (nosZ) gene was examined in sediments obtained from the Atlantic Ocean and Pacific Ocean continental shelves. Approximately 1,100 bp of the nosZ gene were amplified via PCR, using nosZ gene-specific primers. Thirty-seven unique copies of the nosZ gene from these marine environments were characterized, increasing the nosZ sequence database fourfold. The average DNA similarity for comparisons between all 49 variants of the nosZ gene was 64% +/- 10%. Alignment of the derived amino acid sequences confirmed the conservation of important structural motifs. A highly conserved region is proposed as the copper binding, catalytic site (CuZ) of the mature protein. Phylogenetic analysis demonstrated three major clusters of nosZ genes, with little overlap between environmental and culture-based groups. Finally, the two non-culture-based gene clusters generally corresponded to sampling location, implying that denitrifier communities may be restricted geographically.  相似文献   

10.
Very little is known about the spatial organization of soil microbes across scales that are relevant both to microbial function and to field-based processes. The spatial distributions of microbes and microbially mediated activity have a high intrinsic variability. This can present problems when trying to quantify the effects of disturbance, management practices, or climate change on soil microbial systems and attendant function. A spatial sampling regime was implemented in an arable field. Cores of undisturbed soil were sampled from a 3 × 3 × 0.9 m volume of soil (topsoil and subsoil) and a biological thin section, in which the in situ distribution of bacteria could be quantified, prepared from each core. Geostatistical analysis was used to quantify the nature of spatial structure from micrometers to meters and spatial point pattern analysis to test for deviations from complete spatial randomness of mapped bacteria. Spatial structure in the topsoil was only found at the microscale (micrometers), whereas evidence for nested scales of spatial structure was found in the subsoil (at the microscale, and at the centimeter to meter scale). Geostatistical ranges of spatial structure at the micro scale were greater in the topsoil and tended to decrease with depth in the subsoil. Evidence for spatial aggregation in bacteria was stronger in the topsoil and also decreased with depth in the subsoil, though extremely high degrees of aggregation were found at very short distances in the deep subsoil. The data suggest that factors that regulate the distribution of bacteria in the subsoil operate at two scales, in contrast to one scale in the topsoil, and that bacterial patches are larger and more prevalent in the topsoil.  相似文献   

11.
K Inatomi 《DNA research》1998,5(6):365-371
The structural gene, nosZ, for the monomeric N2O reductase has been cloned and sequenced from the denitrifying bacterium Achromobacter cycloclastes. The nosZ gene encodes a protein of 642 amino acid residues and the deduced amino acid sequence showed homology to the previously derived sequences for the dimeric N2O reductases. The relevant DNA region of about 3.6 kbp was also sequenced and found to consist of four genes, nosDFYL based on the similarity with the N2O reduction genes of Pseudomonas stutzeri. The gene product of A. cycloclastes nosF (299 amino acid residues) has a consensus ATP-binding sequence, and the nos Y gene encodes a hydrophobic protein (273 residues) with five transmembrane segments, suggesting the similarity with an ATP-binding cassette (ABC) transporter which has two distinct domains of a highly hydrophobic region and ATP-binding sites. The nosL gene encodes a protein of 193 amino acid residues and the derived sequence showed a consensus sequence of lipoprotein modification/processing site. The expression of nosZ gene in Escherichia coli cells and the comparison of the translated sequences of the nosDFYL genes with those of bacterial transport genes for inorganic ions are discussed.  相似文献   

12.
Hypersaline microbial mat communities have recently been shown to be more diverse than once thought. The variability in community composition of hypersaline mats, both in terms of spatial and temporal dimensions, is still poorly understood. Because this information is essential to understanding the complex biotic and abiotic interactions within these communities, terminal restriction fragment analysis and 16S rRNA gene sequencing were used to characterize the near-surface community of a hypersaline microbial mat in Guerrero Negro, Mexico. Core samples were analyzed to assay community variability over large regional scales (centimeter to kilometer) and to track depth-related changes in population distribution at 250-μm intervals over a diel period. Significant changes in total species diversity were observed at increasing distances across the mat surface; however, key species (e.g. Microcoleus sp.) were identified throughout the mat. The vertical position and abundance of >50% of the 60 peaks detected varied dramatically over a diel cycle, including Beggiatoa sp., cyanobacteria, Chloroflexus sp., Halochromatium sp., Bacteroidetes sp. and several as-yet-identified bacteria. Many of these migrations correlated strongly with diel changes in redox conditions within the mat, contributing to strong day–night community structure differences.  相似文献   

13.
Because of conflicting results in previous studies, it is unclear whether litter diversity has a predictable impact on microbial communities or ecosystem processes. We examined whether effects of litter diversity depend on factors that could confound comparisons among previous studies, including leaf type, habitat type, identity of other leaves in the mixture, and spatial covariance at two scales within habitats. We also examined how litter diversity affects the saprotrophic microbial community using terminal restriction fragment length polymorphism to profile bacterial and fungal community composition, direct microscopy to quantify bacterial biomass, and ergosterol extraction to quantify fungal biomass. We found that leaf mixture diversity was rarely significant as a main effect (only for fungal biomass), but was often significant as an interaction with leaf type (for ash-free dry mass recovered, carbon-to-nitrogen ratio, fungal biomass, and bacterial community composition). Leaf type and habitat were significant as main effects for all response variables. The majority of variance in leaf ash-free dry mass and C/N ratio was explained after accounting for treatment effects and spatial covariation at the meter (block) and centimeter (litterbag) scales. However, a substantial amount of variability in microbial communities was left unexplained and must be driven by factors at other spatial scales or more complex spatiotemporal dynamics. We conclude that litter diversity effects are primarily dependent on leaf type, rather than habitat type or identity of surrounding leaves, which can guide the search for mechanisms underlying effects of litter diversity on ecosystem processes.  相似文献   

14.
High emissions of nitrous oxide (N(2)O) have recently been documented at municipal solid waste (MSW) landfills. However, the biodiversity of the bacterial populations involved remains unexplored. In this study, we investigated communities of ammonia-oxidizing bacteria (AOB) and denitrifying bacteria associated with the leachates from three MSW disposal sites by examining the diversity of the ammonia monooxygenase structural gene amoA and the nitrous oxide reductase gene nosZ, respectively. Cloning and phylogenetic analysis of the functional genes revealed novel and similar groups of prokaryotes involved in nitrogen cycling in the leachates with different chemical compositions. All amoA sequences recovered grouped within the Nitrosomonas europaea cluster in the Betaproteobacteria, with the vast majority showed only relatively moderate sequence similarities to known AOB but were exclusively most similar to environmental clones previously retrieved from wastewater treatment plants. All nosZ sequences retrieved did not cluster with any hitherto reported nosZ genes and were only remotely related to recognized denitrifiers from the Gammaproteobacteria and thus could not be affiliated. Significant overlap was found for the three denitrifying nosZ leachate communities. Our study suggests a significant selection of the novel N-cycling groups by the unique environment at these MSW disposal sites.  相似文献   

15.
The concept of spatial scale is at the research frontier in ecology, and although focus has been placed on trying to determine the role of spatial scale in structuring communities, there still is a further need to standardize which organism groups are to be used at which scale and under which circumstances in environmental assessment. This paper contributes to the understanding of the variability at different spatial scales (reach, stream, river basin) of metrics characterizing communities of different biological quality elements (macrophytes, fishes, macroinvertebrates and benthic diatoms) as defined by the Water Framework Directive. For this purpose, high-quality reaches from medium-sized lowland streams of Latvia, Ecoregion 15 (Baltic) were sampled using a nested hierarchical sampling design: (river basin → stream → reach). The variability of metrics within the different groups of biological quality elements confirmed that large-bodied organisms (macrophytes and fish) were less variable than small-bodied organisms (macroinvertebrates and benthic diatoms) at reach, stream and river basin scales. Single metrics of biological quality elements had the largest variation at the reach scale compared with stream and basin scales. There were no significant correlations between biodiversity indices of the different organism groups. The correlation between diversity indices (Shannon’s and Simpson’s) of the biological quality elements (macrophytes, fish, benthic macroinvertebrates and benthic diatoms) and a number of measured environmental variables varied among the different organism groups. Relationships between diversity indices and environmental factors were established for all groups of biological quality elements. Our results showed that metrics of macrophytes and fish could be used for assessing ecological quality at the river basin scale, whereas metrics of macroinvertebrates and benthic diatoms were most appropriate at a smaller scale.  相似文献   

16.
Intensive surveys have been conducted to unravel spatial patterns of benthic infauna communities. Although it has been recognized that benthic organisms are spatially structured along the horizontal and vertical dimensions of the sediment, little is known on how these two dimensions interact with each other. In this study we investigated the interdependence between the vertical and horizontal dimensions in structuring marine nematodes assemblages. We tested whether the similarity in nematode species composition along the horizontal dimension was dependent on the vertical layer of the sediment. To test this hypothesis, three-cm interval sediment samples (15 cm depth) were taken independently from two bedforms in three estuaries. Results indicated that assemblages living in the top layers are more abundant, species rich and less variable, in terms of species presence/absence and relative abundances, than assemblages living in the deeper layers. Results showed that redox potential explained the greatest amount (12%) of variability in species composition, more than depth or particle size. The fauna inhabiting the more oxygenated layers were more homogeneous across the horizontal scales than those from the reduced layers. In contrast to previous studies, which suggested that reduced layers are characterized by a specific set of tolerant species, the present study showed that species assemblages in the deeper layers are more causal (characterized mainly by vagrant species). The proposed mechanism is that at the superficial oxygenated layers, species have higher chances of being resuspended and displaced over longer distances by passive transport, while at the deeper anoxic layers they are restricted to active dispersal from the above and nearby sediments. Such restriction in the dispersal potential together with the unfavorable environmental conditions leads to randomness in the presence of species resulting in the high variability between assemblages along the horizontal dimension.  相似文献   

17.
Denitrification is a facultative respiratory pathway in which nitrite (NO2(-)), nitric oxide (NO), and nitrous oxide (N2O) are successively reduced to nitrogen gas (N(2)), effectively closing the nitrogen cycle. The ability to denitrify is widely dispersed among prokaryotes, and this polyphyletic distribution has raised the possibility of horizontal gene transfer (HGT) having a substantial role in the evolution of denitrification. Comparisons of 16S rRNA and denitrification gene phylogenies in recent studies support this possibility; however, these results remain speculative as they are based on visual comparisons of phylogenies from partial sequences. We reanalyzed publicly available nirS, nirK, norB, and nosZ partial sequences using Bayesian and maximum likelihood phylogenetic inference. Concomitant analysis of denitrification genes with 16S rRNA sequences from the same organisms showed substantial differences between the trees, which were supported by examining the posterior probability of monophyletic constraints at different taxonomic levels. Although these differences suggest HGT of denitrification genes, the presence of structural variants for nirK, norB, and nosZ makes it difficult to determine HGT from other evolutionary events. Additional analysis using phylogenetic networks and likelihood ratio tests of phylogenies based on full-length sequences retrieved from genomes also revealed significant differences in tree topologies among denitrification and 16S rRNA gene phylogenies, with the exception of the nosZ gene phylogeny within the data set of the nirK-harboring genomes. However, inspection of codon usage and G + C content plots from complete genomes gave no evidence for recent HGT. Instead, the close proximity of denitrification gene copies in the genomes of several denitrifying bacteria suggests duplication. Although HGT cannot be ruled out as a factor in the evolution of denitrification genes, our analysis suggests that other phenomena, such gene duplication/divergence and lineage sorting, may have differently influenced the evolution of each denitrification gene.  相似文献   

18.
The potential denitrification activity and the composition of the denitrifying bacterial community in a full-scale rockwool biofilter used for treating livestock manure composting emissions were analyzed. Packing material sampled from the rockwool biofilter was anoxically batch-incubated with 15N-labeled nitrate in the presence of different electron donors (compost extract, ammonium, hydrogen sulfide, propionate, and acetate), and responses were compared with those of activated sludge from a livestock wastewater treatment facility. Overnight batch-incubation showed that potential denitrification activity for the rockwool samples was higher with added compost extract than with other potential electron donors. The number of 16S rRNA and nosZ genes in the rockwool samples were in the range of 1.64–3.27 × 109 and 0.28–2.27 × 108 copies/g dry, respectively. Denaturing gradient gel electrophoresis analysis targeting nirK, nirS, and nosZ genes indicated that the distribution of nir genes was spread in a vertical direction and the distribution of nosZ genes was spread horizontally within the biofilter. The corresponding denitrifying enzymes were mainly related to those from Phyllobacteriaceae, Bradyrhizobiaceae, and Alcaligenaceae bacteria and to environmental clones retrieved from agricultural soil, activated sludge, freshwater environments, and guts of earthworms or other invertebrates. A nosZ gene fragment having 99% nucleotide sequence identity with that of Oligotropha carboxidovorans was also detected. Some nirK fragments were related to NirK from micro-aerobic environments. Thus, denitrification in this full-scale rockwool biofilter might be achieved by a consortium of denitrifying bacteria adapted to the intensely aerated ecosystem and utilizing mainly organic matter supplied by the livestock manure composting waste-gas stream.  相似文献   

19.
In order to understand the effect of the maize rhizosphere on denitrification, the diversity and the activity of the denitrifying community were studied in soil amended with maize mucilage. Diversity of the denitrifying community was investigated by polymerase chain reaction (PCR) amplification of total community DNA extracted from soils using gene fragments, encoding the nitrate reductase (narG) and the nitrous oxide reductase (nosZ), as molecular markers. To assess the underlying diversity, PCR products were cloned and 10 gene libraries were obtained for each targeted gene. Libraries containing 738 and 713 narG and nosZ clones, respectively, were screened by restriction fragment analysis, and grouped based on their RFLP (restriction fragment length polymorphism) patterns. In all, 117 and 171 different clone families have been identified for narG and nosZ and representatives of RFLP families containing at least two clones were sequenced. Rarefaction curves of both genes did not reach a clear saturation, indicating that analysis of an increasing number of clones would have revealed further diversity. Recovered NarG sequences were related to NarG from Actinomycetales and from Proteobacteria but most of them are not related to NarG from known bacteria. In contrast, most of the NosZ sequences were related to NosZ from alpha, beta, and gammaProteobacteria. Denitrifying activity was monitored by incubating the control and amended soils anaerobically in presence of acetylene. The N2O production rates revealed denitrifying activity to be greater in amended soil than in control soil. Altogether, our results revealed that mucilage addition to the soil results in a strong impact on the activity of the denitrifying community and minor changes on its diversity.  相似文献   

20.
Microelectrode oxygen profiles were measured in intertidal sediments from Ria Formosa (S. Portugal), a very productive shallow coastal lagoon. Four intertidal sampling sites were selected according to different sediment characteristics. Individual profiles revealed a high degree of lateral variability on a centimeter spatial scale. Nevertheless, consistent differences were observed between oxygen profiles measured in atmosphere-exposed and inundated intertidal sediments: in organically poor sand oxygen-penetration depth varied from 3 mm in inundated cores to more than 7 mm in exposed ones, while in organically rich muddy sand and mud it remained between 0.5–2.0 mm. The oxygen input from inundated to exposed conditions was estimated for each sampling site. Semi-diurnal tidal fluctuation, leading to periodical atmospheric exposure of sediments plays a major role in the oxygenation process of intertidal zones of Ria Formosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号