首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA-protein binding in interphase chromosomes   总被引:1,自引:1,他引:0       下载免费PDF全文
The metachromatic dye, azure B, was analyzed by microspectrophotometry when bound to DNA fibers and DNA in nuclei with condensed and dispersed chromatin. The interaction of DNA and protein was inferred from the amount of metachromasy (increased β/α-peak) of azure B that resulted after specific removal of various protein fractions. Dye bound to DNA-histone fibers and frog liver nuclei fixed by freeze-methanol substitution shows orthochromatic, blue-green staining under specific staining conditions, while metachromasy (blue or purple color) results from staining DNA fibers without histone or tissue nuclei after protein removal. The dispersed chromatin of hepatocytes was compared to the condensed chromatin of erythrocytes to see whether there were differences in DNA-protein binding in "active" and "inactive" nuclei. Extraction of histones with 0.02 N HCl, acidified alcohol, perchloric acid, and trypsin digestion all resulted in increased dye binding. The amount of metachromasy varied, however; removal of "lysine-rich" histone (extractable with 0.02 N HCl) caused a blue color, and a purplish-red color (µ-peak absorption) resulted from prolonged trypsin digestion. In all cases, the condensed and the dispersed chromatin behaved in the same way, indicating the similarity of protein bound to DNA in condensed and dispersed chromatin. The results appear to indicate that "lysine-rich" histone is bound to adjacent anionic sites of a DNA molecule and that nonhistone protein is located between adjacent DNA molecules in both condensed and dispersed chromatin.  相似文献   

2.
Dispersion of nuclear fibers of the spermatozoa of dogfish, man, and bull is made possible after treatment with a reducing and alkylating reagent coupled with an anionic detergent; the same detergent used at a low ionic strength dissociates the nuclear content of the rainbow trout sperm. Electron microscopy of such dispersed nuclear fibers has shown a beads-on-a-string configuration for these four types of sperm chromatin. These structures are morphologically similar to those described in somatic cell nuclei as nucleosomes, although in sperm chromatin the basic proteins associated with DNA were significantly different from histones.  相似文献   

3.
Nascent DNA (newly replicated DNA) was visualized in situ with regard to the position of the previously replicated DNA and to chromatin structure. Localization of nascent DNA at the replication sites can be achieved through pulse labeling of cells with labeled DNA precursors during very short periods of time. We were able to label V79 Chinese Hamster cells for as shortly as 2 min with BrdU; Br-DNA, detected by immunoelectron microscopy, occurs at the periphery of dense chromatin, at individual dispersed chromatin fibers, and within dispersed chromatin areas. In these regions DNA polymerase alpha was also visualized. After a 5-min BrdU pulse, condensed chromatin also became labeled. When the pulse was followed by a chase, a larger number of gold particles occurred on condensed chromatin. Double-labeling experiments, consisting in first incubating cells with IdU for 20 min, chased for 10 min and then labeled for 5 min with CldU, reveal CldU-labeled nascent DNA on the periphery of condensed chromatin, while previously replicated IdU-labeled DNA has been internalized into condensed chromatin. Altogether, these results show that the sites of DNA replication correspond essentially to perichromatin regions and that the newly replicated DNA moves rapidly from replication sites toward the interior of condensed chromatin areas.  相似文献   

4.
5.
Nascent DNA (newly replicated DNA) was visualized in situ with regard to the position of the previously replicated DNA and to chromatin structure. Localization of nascent DNA at the replication sites can be achieved through pulse labeling of cells with labeled DNA precursors during very short periods of time. We were able to label V79 Chinese Hamster cells for as shortly as 2 min with BrdU; Br-DNA, detected by immunoelectron microscopy, occurs at the periphery of dense chromatin, at individual dispersed chromatin fibers, and within dispersed chromatin areas. In these regions DNA polymerase α was also visualized. After a 5-min BrdU pulse, condensed chromatin also became labeled. When the pulse was followed by a chase, a larger number of gold particles occurred on condensed chromatin. Double-labeling experiments, consisting in first incubating cells with IdU for 20 min, chased for 10 min and then labeled for 5 min with CldU, reveal CldU-labeled nascent DNA on the periphery of condensed chromatin, while previously replicated IdU-labeled DNA has been internalized into condensed chromatin. Altogether, these results show that the sites of DNA replication correspond essentially to perichromatin regions and that the newly replicated DNA moves rapidly from replication sites toward the interior of condensed chromatin areas.  相似文献   

6.
J A Subirana 《FEBS letters》1992,302(2):105-107
The tendency of DNA to form fibers upon condensation with counterions is reviewed. It is shown that chromatin fibers may acquire a relatively constant diameter of about 30 nm simply as an optimal size achieved upon neutralization of DNA, without requiring a repetitive internal structure. Thus the size of chromatin fibers would not be determined by any specific spatial interaction between DNA and histones. The driving force for the formation of fibers in chromatin would be similar to that found in proteins when they acquire a compact globular shape.  相似文献   

7.
DNA is packaged into condensed chromatin fibers by association with histones and architectural proteins such as high mobility group (HMGB) proteins. However, this DNA packaging reduces accessibility of enzymes that act on DNA, such as proteins that process DNA after double strand breaks (DSBs). Chromatin remodeling overcomes this barrier. We show here that the Saccharomyces cerevisiae HMGB protein HMO1 stabilizes chromatin as evidenced by faster chromatin remodeling in its absence. HMO1 was evicted along with core histones during repair of DSBs, and chromatin remodeling events such as histone H2A phosphorylation and H3 eviction were faster in absence of HMO1. The facilitated chromatin remodeling in turn correlated with more efficient DNA resection and recruitment of repair proteins; for example, inward translocation of the DNA-end-binding protein Ku was faster in absence of HMO1. This chromatin stabilization requires the lysine-rich C-terminal extension of HMO1 as truncation of the HMO1 C-terminal tail phenocopies hmo1 deletion. Since this is reminiscent of the need for the basic C-terminal domain of mammalian histone H1 in chromatin compaction, we speculate that HMO1 promotes chromatin stability by DNA bending and compaction imposed by its lysine-rich domain and that it must be evicted along with core histones for efficient DSB repair.  相似文献   

8.
The structural organization of macronuclear chromatin of the ciliate Didinium nasutum was studied. The macronuclear genome of D. nasutum is represented by DNA molecules of subchromosomal size. At interphase, macronuclear chromatin is organized into chromatin of 100–200-nm clumps. Some of these clumps form short, thick fibers that consist of several chromatin clumps. Using the differential staining of nucleic acids on ultrathin sections, we revealed perichromatin fibers and granules on the surface of many chromatin clumps. A 3D model of the spatial distribution of chromatin clumps in the macronucleus was built based on serial ultrathin sections and peculiar features of chromatin spatial organization were studied.  相似文献   

9.
Widths of chromatin fibers prepared by spreading erythrocyte chromatin on water have been measured in different experimental conditions. Chromatin fibers from hemoglobin-free, EDTA-pretreated isolated nuclei, prepared by direct negative staining with uranyl acetate show an average width of 37 Å with a standard deviation of 13 Å. The same chromatin fibers, when previously treated with ethanol show a change in the average width from 37 to 138 Å. The same chromatin, when floated on a hemoglobin solution and then treated with ethanol shows a further enlargement of its average width, from 37 to 313 Å. These changes were compared with the measurements of chromatin fibers from whole erythrocytes spread on water. The average width of these fibers after ethanol treatment is 244 Å. These results show that the 240–250 Å chromatin fibers are the result of conformational changes of a thinner elementary fibril 30–40 Å wide, which are mainly dependent on the action of ethanol on this fibril and on the presence of additional proteins like hemoglobin.  相似文献   

10.
Silver staining of histone-depleted metaphase chromosomes   总被引:2,自引:0,他引:2  
To investigate a possible relationship between the core-like structures seen in silver-stained chromosomes (prepared by standard cytogenetic methods) and the scaffolds observed in histone-depleted chromosomes, the ability of the scaffold to stain with silver has been examined. Isolated chromosomes were histone-depleted by washing in ammonium acetate or by spreading the chromosomes on an ammonium acetate hypophase. The residual chromosome structures were carbon-platinum shadowed or stained with silver, and then examined by electron microscopy. The results provide clear evidence that the scaffold structure has a high affinity for silver and is therefore similar in its silver-staining potential to the core structure in standard chromosomes. This suggests that the silver core in standard chromosomes may represent the scaffold visualized by histone depletion. The peripherally dispersed DNA radiating from the scaffold also proved to be silver-reactive, and additional experiments demonstrated that purified DNA is capable of binding silver. This result indicates that cytological silver staining is not simply a matter of staining protein, as has previously been thought, but may also involve the staining of chromosomal DNA. In the ammonium acetate-treated and carbon-platinum-shadowed preparations, the scaffold structure was highly variable in its morphology and appeared to be composed of undispersed or incompletely dehistonized chromatin fibers. The silver-stained scaffold reflected this variability. Taken together with other evidence, these findings lead to a questioning of the reality of chromosome core structures.  相似文献   

11.
12.
13.
14.
A protein chromosome scaffold structure has been proposed that acts as a structural framework for attachment of chromosomal DNA. There are several troubling aspects of this concept: (1) such structures have not been seen in many previous thin-section and whole-mount electron microscopy studies of metaphase chromosomes, while they are readily seen in leptotene and zygotene chromosomes; (2) such a structure poses problems for sister chromatid exchanges; and (3) the published photographs show a marked variation in the amount of scaffold in different whole-mount preparations. An alternative explanation is that the scaffold in whole-mount preparations represents incomplete dispersion of the high concentration of chromatin in the center of chromosomes, and when the histones are removed and the DNA dispersed, the remaining nonhistone proteins (NHPs) aggregate to form a chromosome-shaped structure. Two studies were done to determine if the scaffold is real or an artifact: (1) Chinese hamster mitotic cells and isolated chromosomes were examined using two protein stains -EDTA-regressive staining and phosphotungstic acid (PTA) stain. The EDTA-regressive stain showed ribonucleoprotein particles at the periphery of the chromosomes but nothing at the center of the chromosomes. The PTA stain showed the kinetochore plates but no central structures; and (2) isolated chromosomes were partially dispersed to decrease the high concentration of chromatin in the center of the chromosome, then treated with 4 M ammonium acetate or 2 M NaCl to dehistonize them and disperse the DNA. Under these circumstances, no chromosome scaffold was seen. We conclude that the scaffold structure is an artifact resulting from incomplete dispersion of central chromatin and aggregation of NHPs in dehistonized chromosomes.  相似文献   

15.
16.
Human and mouse sperm nuclei obtained by sonication or mechanical agitation of freshly isolated sperm in the presence of anionic detergent were purified through a sucrose gradient and stained with acridine orange (AO); their fluorescence intensity was measured by flow cytometry. The green fluorescence, characteristic of AO binding to DNA by intercalation, was twice lower per unit of DNA for human sperm nuclei than for human peripheral blood lymphocytes. After extraction of basic proteins with 0.08 N HCl, AO binding to DNA increased 3.2-fold for lymphocytes and only 1.3-fold for sperm indicating that, in contrast to somatic cells, the proteins restricting AO binding to DNA are essentially non-extractable from sperm at that low pH. Treatment of human and mouse nuclei with dithiothreitol (DTT), a sulfhydryl reducing agent, and trypsin, removed constraints responsible for the restriction of AO binding. Specifically, as a result of DTT treatment alone there was up to a 20–30% increase of AO binding; upon subsequent addition of trypsin there was a further rapid rise in AO binding up to a final level of approximately 5 times the original AO binding to isolated sperm nuclei. Electron microscopy of DTT-treated human sperm nuclei showed that the reducing agent caused chromatin decondensation to a level whereby 20–30 Å diameter fibers interconnecting chromatin bodies about 30–75 nm in diameter were revealed. Trypsin digestion in the presence of DTT converted the chromatin bodies into a network of fibrous structures about 150 Å in diameter. Both electron microscopy and flow cytometry demonstrated an extremely large intercellular variation among human sperm nuclei in response to DTT and trypsin treatment indicating heterogeneity of chromatin structure. In contrast, AO staining of mouse sperm nuclei increased homogeneously in response to DTT and trypsin treatment.  相似文献   

17.
The morphology of chromosomes (certain rod-shaped structures) is highly reproducible despite the high condensation of chromatin fibers (∼1 mm) into chromosomes (∼1 μm). However, the mechanism underlying the condensation of chromatin fibers into chromosomes is unclear. We assume that investigation of the internal structure of chromosomes will aid in elucidating the condensation process. In order to observe the detailed structure of a chromosome, we stretched a human chromosome by using a micromanipulator and observed its morphology along the stretched region by scanning probe microscopy (SPM). We found that the chromosome consisted of some fibers that were thicker than chromatin fibers. The found fiber was composed of approximately 90-nm-wide beads that were linked linearly. To explore the components of the fiber, we performed immunofluorescence staining of the stretched chromosome. Fluorescence signals of topoisomerase (Topo) IIα, which is known to interact with and support chromatin fibers, and DNA were detected both on the found fiber and beads. Furthermore, after micrococcal nuclease and trypsin treatments, the fibers were found to be mechanically supported by proteins. These results suggest that chromosome comprises an intermediate structure between chromatin fibers and chromosomes.  相似文献   

18.
The structure of metaphase chromatin in a human tumor cell line, TG cells, was investigated using thin sections selectively stained for DNA with the Feulgen-like osmium-ammine reaction. The bulk of metaphase chromatin was characterized by the nucleosomal configuration. Some specimens were pretreated by silver staining for selective visualization of acidic proteins of the nucleolar organizer regions. In these specimens, the osmium-amine DNA tracer revealed that the chromatin present at the sites of silver granule localization had a completely extended configuration, and never gave rise to nucleosomal structures.  相似文献   

19.
20.
Cytological and biochemical experiments were undertaken to elucidate the mechanisms responsible for the reciprocal Giemsa staining of BrdU-substituted and unsubstituted chromosome regions subjected to high or low pH NaH2PO4 treatments. These experiments included staining of chromosome preparations with ethidium bromide (EB), acridine orange (AO), or dansyl chloride, digestion of BrdU-substituted and unsubstituted chromatin with pancreatic DNase I, and SDS polyacrylamide gel electrophoresis of the proteins extracted from, and those remaining in isolated, fixed, air-dried nuclei subjected to either NaH2PO4 treatment. The collective evidence from this and previous work clearly indicates that, although the staining reactions following the different pH treatments are reciprocal, the mechanisms of induction of the staining effects are not. After the high pH treatment, BrdU-substituted and unsubstituted chromosome regions are palely and intensely stained with Giemsa, respectively. This treatment preferentially solubilizes BrdU-substituted DNA, probably as a result of the photolysis or high temperature hydrolysis of BrdU-DNA. Concomitantly, this treatment selectively denatures the BrdU-DNA. The reduction in the amount of DNA in the BrdU regions leads to a quantitative decrease in Giemsa-dye binding, resulting in pale staining relative to unsubstituted regions. The extraction of BrdU-substituted DNA does not appear to simultaneously extract much chromosomal protein. After the low pH treatment, BrdU-substituted and unsubstituted regions appear intensely and palely stained with Giemsa, respectively. BrdU substitution greatly increases the binding affinity of histone H1 to DNA, and the low pH treatment preferentially extracts the less tightly bound H1 of the unsubstituted chromatin. This extraction of H1 is presumably responsible for the preferential dispersion of unsubstituted DNA outside the boundaries of the chromosome onto the surrounding area of the slide. The unsubstituted chromosome regions subsequently stain relatively palely with Giemsa, because the DNA in these regions is more dispersed than that in the BrdU-substituted regions. The low pH treatment concomitantly denatures the unsubstituted DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号