首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y Araki  E G Ruby 《Biochemistry》1988,27(7):2624-2629
An enzyme activity, responsible for the attachment of diaminopimelic acid (DAP) to bdelloplast wall peptidoglycan, was studied in an in vitro, cell-free system. Most of the activity was found in the high-speed (20000g) supernatant fraction of homogenates of bdelloplasts prepared from a culture of the intracellular bacterium Bdellovibrio bacteriovorus 109J, growing synchronously within cells of Escherichia coli. Peptidoglycan preparations obtained either from E. coli ML35 or from the walls of bdelloplasts synchronously cultured for 40 or 90 min served as the acceptors in this reaction, whereas cell wall or peptidoglycan preparations obtained from Gram-positive bacteria could not function as acceptors of DAP. The attachment activity had an apparent Km value for DAP of 10 microM; for bdelloplast peptidoglycan, it was approximately 0.43 mg/mL, which is 13 microM with respect to peptidoglycan disaccharide peptide units. DAP attachment was partially inhibited by the structural analogues lanthionine, L-ornithine, beta-aminobutyric acid, and D-serine, as well as the cell wall synthesis inhibitors penicillin G, ampicillin, and cephalexin. This enzyme activity is present only during the intracellular stage of the bdellovibrio's developmental growth cycle and may serve a stage-specific function of biochemically modifying the cell in which it grows.  相似文献   

2.
A NAD-dependent 7alpha-hydroxysteroid dehydrogenase was purified 18-fold over the activity in crude cell extracts prepared from Bacteroides thetaiotaomicron NCTC 10852 using Bio-Gel A 1.5-M column chromatography. A molecular weight of 320 000 was estimated for the partially purified intact enzyme. Substrate saturation kinetics were performed using the 18-fold purified enzyme and the lowest Km values were obtained for 3alpha,7alpha-dihydroxy bile acid and bile salt substrates including chenodeoxycholic acid (Km 0.048 mM), glycochenodeoxycholic acid (Km 0.083 mM) and taurochenodeoxycholic acid (Km 0.059 mM). In contrast, 3alpha,7alpha,12alpha-trihydroxy bile acid and bile salts had higher Km values, i.e. cholic acid (Km 0.22 mM), glycoholic acid Km 0.32 mM) and taurocholic acid Km 0.26 mM). NAD had a Km value of 0.20 mM. The possible physiological significance of 7alpha-hydroxy bile acid oxidation to intestinal bacteroides strains was accessed by determining the rate of conversion of [14C]-cholic acid to 7-ketodeoxy[14C]cholic acid by whole cell suspensions under different incubation conditions. The rate of biotransformation of bile acid to keto-bile acid incubated anaerobically under N2 gas increased markedly when potential electron acceptors such as fumarate (10 mM) or menadione (4 mM) was added exogenously. These results suggest that bile acid oxidation reactions may be linked to energy-generating systems in this bacterium.  相似文献   

3.
A gene encoding a putative multicopper oxidase (MCO) was cloned from the soil bacterium Klebsiella sp. 601 and its corresponding enzyme was overexpressed in an Escherichia coli strain. Klebsiella sp. 601 MCO is composed of 536 amino acids with a molecular mass of 58.2 kDa. Theoretical calculation gave a pI value of 6.11. The amino acid sequence of Klebsiella sp. 601 MCO is strongly homologous to that of E. coli CueO with a similarity of 90% and an identity of 78%. Unlike E. coli CueO, Klebsiella sp. 601 MCO contains an extra 20 amino acids close to its C-terminus. The enzyme was purified to homogeneity by Ni-affinity chromatography. The purified enzyme was capable of using DMP (2,6-dimethoxyphenol), ABTS (2,2'-azino-bis(3-ethylbenzthiazolinesulfonic acid)), and SGZ (syringaldazine) as substrates with an optimal pH of 8.0 for DMP, 3.0 for ABTS, and 7.0 for SGZ. Klebsiella sp. 601 MCO was quite stable at pH 7.0 in which its activity was constant for 25 h without any significant change. Kinetic studies gave Km, kcat, and kcat//Km values of 0.49 mmol/L, 1.08 x 103 s-1, and 2.23 x 103 s-1.mmol/L-1, respectively, for DMP, 5.63 mmol/L, 6.64 x 103 s-1, and 1.18 x 103 s-1.mmol/L-1 for ABTS, and 0.023 mmol/L, 11 s-1, and 4.68 x 102 s-1.mmol/L-1 for SGZ.  相似文献   

4.
Acinetobacter calcoaceticus ATCC 23055 produces a large amount of 1,3-diaminopropane under normal growth conditions. The enzyme responsible, L-2,4-diaminobutyrate (DABA) decarboxylase (EC 4.1.1.-), was purified to electrophoretic homogeneity from this bacterium. The native enzyme had an M(r) of approximately 108,000, with a pI of 5.0, and was a dimer composed of identical or nearly identical subunits with apparent M(r) 53,000. The enzyme showed hyperbolic kinetics with a Km of 1.59 mM for DABA and 14.6 microM for pyridoxal 5'-phosphate as a coenzyme. The pH optimum was in the range 8.5-8.75, and Ca2+ gave a much higher enzyme activity than Mg2+ as a cationic cofactor. N-gamma-Acetyl-DABA, 2,3-diaminopropionic acid, ornithine and lysine were inert as substrates. The enzyme was different in subunit structure, N-terminal amino acid sequence and immunoreactivity from the DABA decarboxylase of Vibrio alginolyticus previously described.  相似文献   

5.
Diamine oxidase was previously measured in human pregnancy serum with putrescine or histamine as substrate. We have now documented the presence of spermidine oxidase activity in pregnancy serum by means of a specific radioactive assay with [14C]spermidine as substrate and Dowex 50 cation-exchange chromatography to separate products from substrate. The apparent Km of a partially purified preparation of this enzyme for spermidine was 10.9 microM and the Ki for aminoguanidine was 0.8 microM. The pH optimum (pH 9.0) and temperature optimum (55 degrees C) were identical with those for diamine oxidase. Spermidine oxidase activity and diamine oxidase activity eluted in a concerted fashion when pregnancy serum was subjected to cadaverine-Sepharose chromatography, gel filtration and ion-exchange chromatography. Spermidine oxidase became detectable in serum during pregnancy in the human approx. 8 weeks after the last menstrual period and increased with gestational age in concert with the increase in diamine oxidase activity, reaching a plateau at 20 weeks of gestation. Foetal-cord serum displayed virtually no activity of either enzyme. A 400-fold-purified preparation of diamine oxidase retained the same diamine oxidase/spermidine oxidase ratio as exhibited by crude pregnancy serum. These data suggest that in pregnancy serum, unlike foetal bovine serum, spermidine oxidase and diamine oxidase activity may be a single enzyme protein.  相似文献   

6.
1. The activity of fructose 1,6-bisphosphatase (EC 3.1.3.11) in the fatty endosperm of castor bean (Ricinus communis) increases 25-fold during germination and then declines. The developmental pattern follows that of catalase, a marker enzyme for gluconeogenesis in this tissue. 2. The enzyme at its peak of development was partially purified, and its properties were studied. It has an optimal activity at neutral pH (7.0-8.0). The apparent Km value for fructose 1,6-bisphosphate is 3.8 X 10(-5) M. The activity is inhibited by AMP allosterically with an apparent Ki value of 2.2 X 10(-4) M. The enzyme hydrolyses fructose 1,6-bisphosphate and not ribulose 1,5-bisphosphate or sedoehptulose 1,7-bisphosphate. 3. Treatment of the partially purified enzyme with acid leads to an 80% decrease in activity. The remaining activity is insensitive to AMP and has optimal activity at pH 6.7 and a high apparent Km value (2.5 X 10(-4) M) for fructose 1.6-bisphosphate. Enzyme extracted from the tissue with water instead of buffer has a similar modification. The effect of acid explains the discrepancies between this report and previous ones on the properties of the enzyme in this tissue. 4. The storage tissues of various fatty seedlings all contain a 'neutral' fructose 1,6-bisphosphatase. The activities of the enzyme from some of the tissues are inhibited by AMP. 5. The properties of the enzyme in fatty seedlings and in green leaves are discussed in comparison with that in animal tissues.  相似文献   

7.
The biosynthesis of deoxyhypusine (N-(4-aminobutyl)lysine) occurs by the transfer of the 4-aminobutyl moiety of spermidine to a specific lysine residue in a precursor of eukaryotic translation initiation factor 4D (eIF-4D). Deoxyhypusine synthase, the enzyme that catalyzes this reaction, was purified approximately 700-fold from rat testis. The Km values for the substrates, spermidine, the eIF-4-D precursor protein, and NAD+, were estimated as approximately 1, 0.08, and 30 microM, respectively. After incubation of partially purified enzyme with [1,8-3H]spermidine, NAD+, and the eIF-4D precursor, equal amounts of radioactivity were found in free 1,3-diaminopropane and in protein-bound deoxyhypusine. However, when the protein substrate (eIF-4D precursor) was omitted, radioactivity was found in 1,3-diaminopropane and in delta 1-pyrroline in nearly equal quantities, providing evidence that the cleavage of spermidine occurs, albeit at a slower rate, in the absence of the eIF-4D precursor. That NAD+, which is required for this reaction, functions as the hydrogen acceptor was demonstrated by the fact that radioactivity from spermidine labeled with 3H at position 5 is found in NADH as well as in delta 1-pyrroline. Transfer of this hydrogen from spermidine to the re face of the nicotinamide ring of NAD+, as determined by the use of dehydrogenases of known stereospecificity, defines the first step of deoxyhypusine synthesis as a pro-R, or A, stereospecific dehydrogenation. Based on these findings, an enzyme mechanism involving imine intermediate formation is proposed.  相似文献   

8.
Like many other bacteria, Nocardia sp. possess acid phosphatase activity. In N. brasiliensis, a human and animal pathogen, this activity was resolved into two enzyme forms by native gel electrophoresis. One (isozyme I) was partially purified and characterized. It exhibited an estimated molecular weight on SDS-PAGE of 50 kDa, a pH optimum of 5.2, and a Km value of 1.25 mM for p-nitrophenylphosphate. The N. brasiliensis enzyme was stable at 4 °C for at least 24 h, but readily inactivated at 60 °C. Ammonium molybdate, sodium fluoride and L-(+)-tartrate were found to be potent inhibitors of the enzyme. Although its function is presently unknown, by analogy to other bacterial systems it could be envisioned to play an important role in the physiology and pathogenicity of the microorganism.  相似文献   

9.
Spermine synthase, a propylamine transferase, which catalyses the biosynthesis of spermine from S-methyladenosylhomocystemine and spermidine has been purified to an apparent homogeneity (about 6000-fold) from bovine brain using spermine-Sepharose affinity chromatography. The enzyme preparation was free from S-adenosylmethionine decarboxylase and spermidine synthase activities. The molecular Stokes radius of the enzyme was calculated to be 4.16 nm. The enzyme has an apparent molecular weight of approximately 88 000, composing of two subunits of equal size. The enzyme showed a broad pH optimum between 7.0 and 8.0 and an acidic isoelectric point at pH 5.10. The apparent Km values for S-methyladenosylhomocysteamine was 0.6 microM and about 60 microM for spermidine. The enzyme showed strict specificity to spermidine as the propylamine acceptor. Both the reaction products, spermine and 5'-methylthioadenosine inhibited the enzyme activity, methylthioadenosine being a powerful competitive inhibitor with respect to S-methyladenosylhomocysteamine (Ki value of about 0.3 microM). Putrescine also inhibited competitively with respect to spermidine (Ki value of about 1.7 mM). Spermine synthase had no requirements for metal or other cofactors.  相似文献   

10.
A pterin deaminase catalyzing the hydrolytic deamination of various pteridines was found in the bacterium, Bacillus megaterium, and partially purified from bacterial extract. The specific activity was raised 90-fold over that of the crude extract. The pH optimum is around 7.3, and the Km value for 6-carboxypterin is 1.3 mM. The molecular weight of the enzyme was estimated by gel filtration to be about 110,000. The enzyme deaminated pterin, 6-carboxypterin, biopterin, 6-methylpterin, 7-methylpterin, xanthopterin, 6-hydroxymethylpterin, sepiapterin, isosepiapterin, folic acid, and 6,7-dimethylpterin to their corresponding lumazines, whereas guanine, 7-carboxypterin, leucopterin, isoxanthopterin, and 6-methylisoxanthopterin did not serve as substrates. The enzyme was inhibited by PCMB and 8-azaguanine.  相似文献   

11.
The enzyme catalysing the polyamine-stimulated modification of Physarum ornithine decarboxylase in vivo was partially purified and its activity on purified ornithine decarboxylase was examined with respect to its specificity for various amines. Spermidine, spermine and several polyamine analogues strongly promoted this reaction in vitro (apparent Km in the 0.1--0.5 mM range), whereas putrescine (apparent Km 5.33 mM) and several related diamines were not nearly as effective. In agreement with this, sensitivity studies performed in vivo also suggested that cellular spermidine, and not putrescine, is critical in modulating ornithine decarboxylase activity by this post-translational control. Unlike putrescine, or other diamines, 1,3-diaminopropane demonstrated a functional similarity to the polyamines in stimulating this reaction. This study has demonstrated a method whereby non-physiological amines capable of depressing ornithine decarboxylase activity by this natural feedback mechanism can be readily identified for further evaluation of their potential use in the experimental and medical control of polyamine biosynthesis.  相似文献   

12.
The yeast Candida boidinii when grown on spermidine, diaminopropane, putrescine or cadaverine as sole nitrogen source contains an N-acetyltransferase capable of acetylating the primary amino groups of spermine, spermidine, acetylspermidines, acetylputrescine and alpha, omega-diaminoalkanes. In the case of spermidine, the products were N1-acetylspermidine and N8-acetylspermidine in the ratio 50:45 with traces of other unidentified products. The enzyme was partially purified and the stoichiometry determined, together with apparent Km and V values for a number of substrates. The pH optimum was about 8.8 for putrescine and 9.3 for spermidine. The unstable enzyme was partially stabilized by 10% (v/v) glycerol or bovine serum albumin (5 mg/ml). The kinetic parameters were determined with putrescine as substrate and the mechanism shown to be of the sequential type. The enzyme was shown to be located in the mitochondria of C. boidinii, in contrast to mammalian N-acetyltransferases. The enzyme was found in a number of other yeast species when grown on spermidine or putrescine, but was only present in those species that had previously been found to contain polyamine oxidase. It is suggested that in C. boidinii, as in mammals, acetylation of spermidine and putrescine must precede their catabolism.  相似文献   

13.
Aeromonas sp. from Lamellidens marginalis produced L-asparaginase when grown at 37 degrees C. The optimum enzyme activity was at pH 9 when temperature was 45 degrees C. Half-life of partially purified enzyme at 50 degrees C and 55 degrees C was 35 and 20 min, respectively. Activation and deactivation energies of partially purified enzyme were 17.48 and 24.86 kcal mol-1 respectively. The enzyme exhibited a Km (L-asparagine) value of 4.9 x 10(-6) mol l-1 and a Vmax of 9.803 IU ml-1. Three metal ions inhibited the enzyme activity at 10-20 mumol l-1 concentrations. Catalytic activity was also inhibited by EDTA, iodoacetic acid, parachloromercuribenzoic acid and phenylmethylsulphonyl fluoride at 0.1 mumol l-1.  相似文献   

14.
Carboxynorspermidine synthase, mediates the nicotinamide-nucleotide-linked reduction of the Schiff base H2N(CH2)3N = CHCH2CH(NH2)COOH. This is formed from L-aspartic beta-semialdehyde (ASA) and 1,3-diaminopropane (DAP) and is reduced to carboxynorspermidine [H2N(CH2)3NH(CH2)2CH(NH2)COOH], an intermediate in the novel pathway for norspermidine (NSPD) biosynthesis. The enzyme was purified to apparent homogeneity from Vibrio alginolyticus and characterized. The overall purification was about 1800-fold over the crude extract, with a yield of 33%. The enzyme displayed an apparent Mr of 93500 +/- 1000 by gel filtration and 45100 +/- 500 by SDS-PAGE, indicating that the native form is probably composed of two subunits of similar size. The specific activity of the purified enzyme was 31.0 mumol carboxynorspermidine produced min-1 (mg protein)-1. The enzyme was activated by dithiothreitol, and inhibited by SH-reactive compounds. The pH and temperature optima were 7.25-7.5 and 37 degrees C, respectively. The Km value for the Schiff base was 4.68 mM, measured by varying the ASA concentration while keeping the DAP concentration constant. Putrescine was slightly active as a substrate, forming carboxyspermidine (at about 7% of the rate of DAP), but ethylenediamine, cadaverine and D-ASA were inert. The Km value for NADPH was 1.51 mM. NADH was a much poorer cofactor than NADPH. When V. alginolyticus was grown in the presence of 5 mM-NSPD, the specific activity of this enzyme was reduced by approximately 70%. NSPD also repressed two other enzymes responsible for its biosynthesis, 2,4-diaminobutyrate decarboxylase and carboxynorspermidine decarboxylase.  相似文献   

15.
Among spontaneous mutants of Escherichia coli selected for resistance against sulfonamides, thermosensitive strains were found. These were shown to possess a changed dihydropteroate synthase (EC 2.5.1.15), which had a substantially higher Km value for its normal substrate, p-aminobenzoic acid, and an about 150-fold higher Km for sulfonamides. The mutationally changed dihydropteroate synthase was found to be thermosensitive by in vitro assays. The thermosensitivity was used as an enzyme marker to demonstrate the complex formation between 2-amino-4-hydroxy-6-pyrophosphorylmethyl pteridine and sulfonamides by partially purified dihydropteroate synthase. The formation of folate from 2-amino-4-hydroxy-6-pyrophosphorylmethyl pteridine and p-aminobenzoylglutamic acid by dihydropteroate synthase was found to be very sensitive to inhibition by sulfonamides and very inefficient with the mutationally changed enzyme.  相似文献   

16.
The kynureninase-type enzymes of three fungi and one bacterium were isolated and examined kinetically for their ability to catalyze the hydrolysis of L-kynurenine and L-3-hydroxykynurenine. The phycomycete Rhizopus stolonifer was found to contain a single, constitutive enzyme with Km for L-3-hydroxykynurenine and L-kynurenine of 6.67 times 10-minus 6 and 2.5 times 10-minus 4 M, respectively. The ascomycetes Aspergillus niger and Penicillium roqueforti each contain an enzyme, induced by L-tryptophan, with similar Km for L-3-hydroxykynurenine and L-kynurenine ranging from 5.9 times 10-minus 5 to 14.3 times 10-minus 5 M, as well as a constitutive enzyme with Km for the two substrates of similar to 4 times 10-minus 6 M and 10-minus 4 M. The bacterium Pseudomonas fluorescens has a single, inducible enzyme with Km for L-3-hydroxykynurenine and L-kynurenine of 5 times 10-minus 4 and 7 times 10-minus 5 M. In addition, significant differences in maximal velocities (Vmax) were observed in two cases. The Vmax of the inducible activity from P. fluorescens was 4.5 times greater for L-kynurenine than L-3-hydroxykynurenine, whereas the Vmax of the constitutive activity from R. stolonifer was 2.5 times greater for L-3-hydroxykynurenine. It is concluded (i) that the constitutive activities are hydroxykynureninases involved in the biosynthesis of nicotinamide adenine dinucleotide from L-tryptophan, (ii) that the inducible activities are kynureninases involved in the catabolism of L-tryptophan to anthranilate, and (iii) that R. stolonifer and P. fluorescens, respectively, carry the most specific examples of each type of enzyme.  相似文献   

17.
NADPH-Dependent enoyl-CoA reductase [EC 1.3.1.8] was purified to homogeneity, for the first time, from the crude extract of Mycobacterium smegmatis. The molecular weight of this enzyme was estimated to be around 32,000 using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme reduced 2-trans-hexadecenoyl-CoA (Km value, 100 microM) and -eicosenoyl-CoA (Km value, 83 microM) almost equally well in the presence of NADPH as a sole electron donor. The Km value for NADPH was 34.5 microM. When NADP3H was incubated with 2-eicosenoyl-CoA and the purified enzyme, the sole tritiated product was arachidate. This enzyme was almost inert to enoyl-CoAs with chains less than 12 carbon atoms long. The purified enzyme still retained FMN, which was detectable by acid ammonium sulfate and was essential for full activity of the enzyme. The enzyme was sensitive to SH-reagents such as N-ethylmaleimide and monoiodoacetamide but was not sensitive to isonicotinamide hydrazide. Anti-NADPH-dependent-enoyl-CoA-reductase rabbit serum was found to inhibit the activities of both the reductase and the malonyl-CoA dependent fatty acid elongation system, supporting the involvement of the reductase in this elongation system.  相似文献   

18.
S-adenosylmethionine decarboxylase from baker''s yeast.   总被引:7,自引:2,他引:5       下载免费PDF全文
1. S-Adenosyl-L-methionine decarboxylase (S-adenosyl-L-methionine carboxy-lyase, EC 4.1.1.50) was purified more than 1100-fold from extracts of Saccharomyces cerevisiae by affinity chromatography on columns of Sepharose containing covalently bound methylglyoxal bis(guanylhydrazone) (1,1'[(methylethanediylidene)dinitrilo]diguanidine) [Pegg, (1974) Biochem J. 141, 581-583]. The final preparation appeared to be homogeneous on polyacrylamide-gel electrophoresis at pH 8.4. 2. S-Adenosylmethionine decarboxylase activity was completely separated from spermidine synthase activity [5'-deoxyadenosyl-(5'),3-aminopropyl-(1),methylsulphonium-salt-putrescine 3-aminopropyltransferase, EC 2.5.1.16] during the purification procedure. 3. Adenosylmethionine decarboxylase activity from crude extracts of baker's yeast was stimulated by putrescine, 1,3-diamino-propane, cadaverine (1,5-diaminopentane) and spermidine; however, the purified enzyme, although still stimulated by the diamines, was completely insensitive to spermidine. 4. Adenosylmethionine decarboxylase has an apparent Km value of 0.09 mM for adenosylmethionine in the presence of saturating concentrations of putrescine. The omission of putrescine resulted in a five-fold increase in the apparent Km value for adenosylmethionine. 5. The apparent Ka value for putrescine, as the activator of the reaction, was 0.012 mM. 6. Methylglyoxal bis(guanylhydrazone) and S-methyladenosylhomocysteamine (decarboxylated adenosylmethionine) were powerful inhibitors of the enzyme. 7. Adenosylmethionine decarboxylase from baker's yeast was inhibited by a number of conventional carbonyl reagents, but in no case could the inhibition be reversed with exogenous pyridoxal 5'-phosphate.  相似文献   

19.
Sulfoacetaldehyde sulfo-lyase, which decomposes sulfoacetaldehyde to sulfite and acetate, was extracted from a bacterium grown on taurine, and purified, and characterized. A method for assay of enzyme activity was devised on formation of a bisulfite adduct with benzaldehyde. The enzyme was purified 14-fold from an extract of cells grown on taurine and appeared homogeneous on disc-electrophoresis. The molecular weight of the enzyme was estimated to be 85,000 by gel filtration. The enzyme required thiamine pyrophosphate (TPP) and Mg2+ for activity and preincubation with TPP and Mg2+ was required for maximum activity. The optimum pH for activity was 7.5. The Km value for TPP was determined to be 2.7 muM and that for sulfoacetaldehyde to be 5.0mM. Sulfite was produced only from sulfoacetaldehyde among a variety of sulfonates tested. rho-Chloromercuribenzoate, EDTA, and sulfite, a reaction product, inhibited the enzyme reaction. The enzyme seemed to be inducible, since activity was found in extracts of cells grown on taurine but not on peptone.  相似文献   

20.
D-3-Aminoisobutyrate-pyruvate aminotransferase (EC 2.6.1.40) was purified 1900-fold from rat liver extract. The purified enzyme showed a molecular mass of 180 kDa by gel-permeation HPLC analysis using a TSK gel G3000SW column. Reductive polyacrylamide gel electrophoresis in sodium dodecyl sulfate resulted in identification of a single band of approx. 50 kDa, indicating that the native enzyme is probably a tetrametric protein. The specific activity of the purified enzyme was 1.14 mumol/min per mg protein. D-3-Aminoisobutyrate and beta-alanine were good amino donors. The Km value for L-3-aminoisobutyrate was 100-times larger than that for the D-isomer. The apparent Km values for D-3-aminoisobutyrate and beta-alanine were 35 and 282 microM, respectively. Pyruvate, glyoxylate, oxalacetate, 2-oxo-n-valerate, and 2-oxo-n-butyrate were good amino acceptors. The apparent Km values for pyruvate and glyoxylate were 32 and 44 microM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号