首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Several plant viruses encode movement proteins (MPs) classified in the 30K superfamily. Despite a great functional diversity, alignment analysis of MP sequences belonging to the 30K superfamily revealed the presence of a central core region, including amino acids potentially critical for MP structure and functionality. We performed alanine‐scanning mutagenesis of the Ourmia melon virus (OuMV) MP, and studied the effects of amino acid substitutions on MP properties and virus infection. We identified five OuMV mutants that were impaired in systemic infection in Nicotiana benthamiana and Arabidopsis thaliana, and two mutants showing necrosis and pronounced mosaic symptoms, respectively, in N. benthamiana. Green fluorescent protein fusion constructs (GFP:MP) of movement‐defective MP alleles failed to localize in distinct foci at the cell wall, whereas a GFP fusion with wild‐type MP (GFP:MPwt) mainly co‐localized with plasmodesmata and accumulated at the periphery of epidermal cells. The movement‐defective mutants also failed to produce tubular protrusions in protoplasts isolated from infected leaves, suggesting a link between tubule formation and the ability of OuMV to move. In addition to providing data to support the importance of specific amino acids for OuMV MP functionality, we predict that these conserved residues might be critical for the correct folding and/or function of the MP of other viral species in the 30K superfamily.  相似文献   

2.
It has been clear for over a decade and a half that ancient signalling pathways controlling fundamental cellular processes are highly conserved throughout the eukaryotes. Two plant protein kinases, sucrose non-fermenting 1 (SNF1)-related protein kinase (SnRK1) and general control non-derepressible 2 (GCN2)-related protein kinase are reviewed here. These protein kinases show an extraordinary level of conservation with their fungal and animal homologues given the span of time since they diverged from them. However, close examination of the signalling pathways in which they operate also reveals intriguing differences in activation and function.  相似文献   

3.
Thromboxane A2 synthase (TXAS) is a member of the cytochrome P450 superfamily and catalyzes an isomerization reaction that converts prostaglandin H2 to thromboxane A2. As a step toward understanding the structure/function relationships of TXAS, we mutated amino acid residues predicted to bind the propionate groups of A- and D-pyrrole rings of the heme. These mutations at each of these residues (Asn-110, Trp-133, Arg-137, Arg-413, and Arg-478) resulted in altered heme binding, as evidenced by perturbation of the absorption spectra and EPR. The mutations, although causing no significant changes in the secondary structure of the proteins, induced tertiary structural changes that led to increased susceptibility to trypsin digestion and alteration of the intrinsic protein fluorescence. Moreover, these mutant proteins lost their binding affinity to the substrate analog, had a lower heme content and retained less than 5% of the wild-type catalytic activity. However, mutations at the neighboring amino acid of the aforementioned residues yielded mutant proteins retaining the biochemical and biophysical properties of the wild type TXAS. Aligning the TXAS sequence with the structurally known P450s, we proposed that in TXAS the A-ring propionate of the heme is hydrogen bonded to Asn-110, Arg-413, and Arg-478, whereas D-ring propionate is hydrogen bonded to Trp-133 and Arg-137. Furthermore, both A- and D-ring propionates bulge away from the heme plane and both lie on the proximal face of heme plane, a structure similar to P450terp.  相似文献   

4.
5.
Domains of the TMV movement protein involved in subcellular localization   总被引:5,自引:1,他引:4  
To identify and map functionally important regions of the tobacco mosaic virus movement protein, deletions of three amino acids were introduced at intervals of 10 amino acids throughout the protein. Mutations located between amino acids 1 and 160 abolished the capacity of the protein to transport virus from cell to cell, while some of the mutations in the C-terminal third of the protein permitted function. Despite extensive tests, no examples were found of intermolecular complementation between mutants, suggesting that function requires each movement protein molecule to be fully competent. Many of the mutants were fused to green fluorescent protein, and their subcellular localizations were determined by fluorescence microscopy in infected plants and protoplasts. Most mutants lost the ability to accumulate in one or more of the multiple subcellular sites targeted by wild-type movement protein, suggesting that specific functional domains were disrupted. The order in which accumulation at subcellular sites occurs during infection does not represent a targeting pathway. Association of the movement protein with microtubules or with plasmodesmata can occur in the absence of other associations. The region of the protein around amino acids 9–11 may be involved in targeting the protein to cortical bodies (probably associated with the endoplasmic reticulum) and to plasmodesmata. The region around residues 49–51 may be involved in co-alignment of the protein with microtubules. The region around residues 88–101 appears to play a role in targeting to both the cortical bodies and microtubules. Thus, the movement protein contains independently functional domains.  相似文献   

6.
Cysteine‐rich proteins (CRPs) encoded by some plant viruses in diverse genera function as RNA silencing suppressors. Within the N‐terminal portion of CRPs encoded by furoviruses, there are six conserved cysteine residues and a Cys–Gly–X–X–His motif (Cys, cysteine; Gly, glycine; His, histidine; X, any amino acid residue) with unknown function. The central domains contain coiled‐coil heptad amino acid repeats that usually mediate protein dimerization. Here, we present evidence that the conserved cysteine residues and Cys–Gly–X–X–His motif in the CRP of Chinese wheat mosaic virus (CWMV) are critical for protein stability and silencing suppression activity. Mutation of a leucine residue in the third coiled‐coil heptad impaired CWMV CRP activity for suppression of local silencing, but not for the promotion of cell‐to‐cell movement of Potato virus X (PVX). In planta and in vitro analysis of wild‐type and mutant proteins indicated that the ability of the CRP to self‐interact was correlated with its suppression activity. Deletion of up to 40 amino acids at the C‐terminus did not abolish suppression activity, but disrupted the association of CRP with endoplasmic reticulum (ER), and reduced its activity in the enhancement of PVX symptom severity. Interestingly, a short region in the C‐terminal domain, predicted to form an amphipathic α‐helical structure, was responsible for the association of CWMV CRP with ER. Overall, our results demonstrate that the N‐terminal and central regions are the functional domains for suppression activity, whereas the C‐terminal region primarily functions to target CWMV CRP to the ER.  相似文献   

7.
Huperzine A, a potential agent for therapy in Alzheimer's disease and for prophylaxis of organophosphate toxicity, has recently been characterized as a reversible inhibitor of cholinesterases. To examine the specificity of this novel compound in more detail, we have examined the interaction of the 2 stereoisomers of Huperzine A with cholinesterases and site-specific mutants that detail the involvement of specific amino acid residues. Inhibition of fetal bovine serum acetylcholinesterase by (-)-Huperzine A was 35-fold more potent than (+)-Huperzine A, with KI values of 6.2 nM and 210 nM, respectively. In addition, (-)-Huperzine A was 88-fold more potent in inhibiting Torpedo acetylcholinesterase than (+)-Huperzine A, with KI values of 0.25 microM and 22 microM, respectively. Far larger KI values that did not differ between the 2 stereoisomers were observed with horse and human serum butyrylcholinesterases. Mammalian acetylcholinesterase, Torpedo acetylcholinesterase, and mammalian butyrylcholinesterase can be distinguished by the amino acid Tyr, Phe, or Ala in the 330 position, respectively. Studies with mouse acetylcholinesterase mutants, Tyr 337 (330) Phe and Tyr 337 (330) Ala yielded a difference in reactivity that closely mimicked the native enzymes. In contrast, mutation of the conserved Glu 199 residue to Gln in Torpedo acetylcholinesterase produced only a 3-fold increase in KI value for the binding of Huperzine A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A striking difference of the life stages of the protozoan parasite Leishmania is a long flagellum in the insect stage promastigotes and a rudimentary organelle in the mammalian amastigotes. LmxMKK, a mitogen-activated protein (MAP) kinase kinase from Leishmania mexicana, is required for growth of a full-length flagellum. We identified LmxMPK3, a MAP kinase homologue, with a similar expression pattern as LmxMKK being not detectable in amastigotes, up-regulated during the differentiation to promastigotes, constantly expressed in promastigotes, and shut down during the differentiation to amastigotes. LmxMPK3 null mutants resemble the LmxMKK knockouts with flagella reduced to one-fifth of the wild-type length, stumpy cell bodies, and vesicles and membrane fragments in the flagellar pocket. A constitutively activated recombinant LmxMKK activates LmxMPK3 in vitro. Moreover, LmxMKK is likely to be directly involved in the phosphorylation of LmxMPK3 in vivo. Finally, LmxMPK3 is able to phosphorylate LmxMKK, indicating a possible feedback regulation. This is the first time that two interacting components of a signaling cascade have been described in the genus Leishmania. Moreover, we set the stage for the analysis of reversible phosphorylation in flagellar morphogenesis.  相似文献   

9.
10.
Amino acid residues on PotB and PotC involved in spermidine uptake were identified by random and site-directed mutagenesis. It was found that Trp(8), Tyr(43), Trp(100), Leu(110), and Tyr(261) in PotB and Trp(46), Asp(108), Glu(169), Ser(196), Asp(198), and Asp(199) in PotC were strongly involved in spermidine uptake and that Tyr(160), Glu(172), and Leu(274) in PotB and Tyr(19), Tyr(88), Tyr(148), Glu(160), Leu(195), and Tyr(211) in PotC were moderately involved in spermidine uptake. Among 11 amino acid residues that were strongly involved in spermidine uptake, Trp(8) in PotB was important for insertion of PotB and PotC into membranes. Tyr(43), Trp(100), and Leu(110) in PotB and Trp(46), Asp(108), Ser(196), and Asp(198) in PotC were found to be involved in the interaction with PotD. Leu(110) and Tyr(261) in PotB and Asp(108), Asp(198), and Asp(199) in PotC were involved in the recognition of spermidine, and Trp(100) and Tyr(261) in PotB and Asp(108), Glu(169), and Asp(198) in PotC were involved in ATPase activity of PotA. Accordingly, Trp(100) in PotB was involved in both PotD recognition and ATPase activity, Leu(110) in PotB was involved in both PotD and spermidine recognition, and Tyr(261) in PotB was involved in both spermidine recognition and ATPase activity. Asp(108) and Asp(198) in PotC were involved in PotD and spermidine recognition as well as ATPase activity. These results suggest that spermidine passage from PotD to the cytoplasm is coupled to the ATPase activity of PotA through a structural change of PotA by its ATPase activity.  相似文献   

11.
Ma J  Gu H 《BMB reports》2010,43(10):670-676
In this paper, a novel approach, ELM-PCA, is introduced for the first time to predict protein subcellular localization. Firstly, Protein Samples are represented by the pseudo amino acid composition (PseAAC). Secondly, the principal component analysis (PCA) is employed to extract essential features. Finally, the Elman Recurrent Neural Network (RNN) is used as a classifier to identify the protein sequences. The results demonstrate that the proposed approach is effective and practical.  相似文献   

12.
Information of protein subcellular location plays an important role in molecular cell biology. Prediction of the subcellular location of proteins will help to understand their functions and interactions. In this paper, a different mode of pseudo amino acid composition was proposed to represent protein samples for predicting their subcellular localization via the following procedures: based on the optimal splice site of each protein sequence, we divided a sequence into sorting signal part and mature protein part, and extracted sequence features from each part separately. Then, the combined features were fed into the SVM classifier to perform the prediction. By the jackknife test on a benchmark dataset in which none of proteins included has more than 90% pairwise sequence identity to any other, the overall accuracies achieved by the method are 94.5% and 90.3% for prokaryotic and eukaryotic proteins, respectively. The results indicate that the prediction quality by our method is quite satisfactory. It is anticipated that the current method may serve as an alternative approach to the existing prediction methods.  相似文献   

13.
Koltzscher M  Gerke V 《Biochemistry》2000,39(31):9533-9539
S100 proteins are small dimeric members of the EF-hand superfamily of Ca(2+) binding proteins thought to participate in mediating intracellular Ca(2+) signals by binding to and thereby regulating target proteins in a Ca(2+)-dependent manner. As dimer formation is crucial to S100 function, we applied a yeast two-hybrid approach in analyzing in vivo molecular aspects of S100 dimerization. We chose S100P, a member of the S100 family highly expressed in placenta, for detailed analysis and showed that S100P monomers strongly interact with one another but not with other S100 polypeptides, indicating that homodimer formation is obligatory for S100P. Analysis of the interaction of site-specific S100P mutants with the wild-type polypeptide or with other S100P mutant chains identifies conserved hydrophobic amino acid residues involved in mediating dimerization in vivo. Of these residues, F-15 is crucially important as a mutation to alanine abolishes dimerization even when the F15A S100P mutant polypeptide is allowed to interact with a wild-type chain. On the other hand, I-11, I-12, or F-89 need to be replaced by a less hydrophopic residue in both subunits for there to be a similar extent of interfere with dimerization. This proves that hydrophobic residues implicated through structural studies in S100 dimerization are involved in the dimer interaction in vivo and argues for a hierarchy of hydrophobic contacts stabilizing the dimer and thereby regulating S100 function.  相似文献   

14.
15.
16.
The key amino acid residues that influence the function of the Agrobacterium tumefaciens iron response regulator protein (Irr(At) ) were investigated. Several Irr(At) mutant proteins containing substitutions in amino acids corresponding to candidate metal- and haem-binding sites were constructed. The ability of the mutant proteins to repress the promoter of the membrane bound ferritin (mbfA) gene was investigated using a promoter-lacZ fusion assay. A single mutation at residue H94 significantly decreased the repressive activity of Irr(At) . Multiple mutation analysis revealed the importance of H45, H65, the HHH motif (H92, H93 and H94) and H127 for the repressor function of Irr(At) . H94 is essential for the iron responsiveness of Irr(At) . Furthermore, the Irr(At) mutant proteins showed differential abilities to complement the H(2) O(2) -hyper-resistant phenotype of an irr mutant.  相似文献   

17.
For a protein, an important characteristic is its location or compartment in a cell. This is because a protein has to be located in its proper position in a cell to perform its biological functions. Therefore, predicting protein subcellular location is an important and challenging task in current molecular and cellular biology. In this paper, based on AdaBoost.ME algorithm and Chou's PseAAC (pseudo amino acid composition), a new computational method was developed to identify protein subcellular location. AdaBoost.ME is an improved version of AdaBoost algorithm that can directly extend the original AdaBoost algorithm to deal with multi-class cases without the need to reduce it to multiple two-class problems. In some previous studies the conventional amino acid composition was applied to represent protein samples. In order to take into account the sequence order effects, in this study we use Chou's PseAAC to represent protein samples. To demonstrate that AdaBoost.ME is a robust and efficient model in predicting protein subcellular locations, the same protein dataset used by Cedano et al. (Journal of Molecular Biology, 1997, 266: 594-600) is adopted in this paper. It can be seen from the computed results that the accuracy achieved by our method is better than those by the methods developed by the previous investigators.  相似文献   

18.
Ma H  Lou Y  Lin WH  Xue HW 《Cell research》2006,16(5):466-478
Multiple repeats of membrane occupation and recognition nexus (MORN) motifs were detected in plant phosphatidylinositl monophosphate kinase (PIPK), a key enzyme in PI-signaling pathway. Structural analysis indicates that all the MORN motifs (with varied numbers at ranges of 7-9), which shared high homologies to those of animal ones, were located at N-terminus and sequentially arranged, except those of OsPIPK1 and AtPIPK7, in which the last MORN motif was separated others by an -100 amino-acid "island" region, revealing the presence of two kinds of MORN arrangements in plant PIPKs. Through employing a yeast-based SMET (sequence of membrane-targeting) system, the MORN motifs were shown being able to target the fusion proteins to cell plasma membrane, which were further confirmed by expression of fused MORN-GFP proteins. Further detailed analysis via deletion studies indicated the MORN motifs in OsPIPK 1, together with the 104 amino-acid "island" region are involved in the regulation of differential subcellular localization, i.e. plasma membrane or nucleus, of the fused proteins. Fat Western blot analysis of the recombinant MORN polypeptide, expressed in Escherichia coli, showed that MORN motifs could strongly bind to PA and relatively slightly to PI4P and PI(4,5)P2. These results provide informative hints on mechanisms of subcellular localization, as well as regulation of substrate binding, of plant PIPKs.  相似文献   

19.
The anthranilate synthase-phosphoribosyl transferase complex, a heterotetrameric enzyme made up of the TrpE and TrpD polypeptides, catalyzes three reactions comprising the first two steps of tryptophan biosynthesis in Salmonella typhimurium. All three activities of the complex are subject to feedback inhibition by tryptophan, which results from allosteric effects associated with the binding of one molecule of inhibitor to each of the TrpE subunits of the complex. Random in vitro chemical mutagenesis of the trpE gene was used to generate a collection of mutant forms of the complex which displayed varying degrees of resistance to feedback inhibition. Single amino acid substitutions, identified by DNA sequencing, were found at 14 different residues within the TrpE polypeptide. The residues were distributed throughout TrpE, but those that appeared to be most critical for regulation were found in two clusters, one at the extreme amino-terminal end, including residues Glu-39, Ser-40, and Ala-41, and the other in the middle of the polypeptide, including residues Asn-288, Pro-289, Met-293, Phe-294, and Gly-305. Kinetic and binding studies of the purified mutant complexes demonstrated that 9 of the 14 had a marked decrease in affinity for tryptophan with little or no change in substrate affinity or catalytic capacity. The remaining five enzymes exhibited more subtle changes, having small decreases in inhibitor affinity coupled with small increases in substrate affinity. Mutant enzymes that were not totally feed-back-resistant had a decreased kinetic response to tryptophan binding. All enzymes exhibited alterations in tryptophan-induced conformational changes as monitored by dye-ligand chromatography.  相似文献   

20.
The binding of proteins to glycosaminoglycans (GAGs) is the prerequisite for a large number of cellular processes and regulatory events and is associated to many pathologies. However, progress in the understanding of these mechanisms has been hampered by the lack of simple and comprehensive analytical tools for the identification of the structural attributes involved in protein/saccharide interaction. Characterization of GAG binding motifs on proteins has so far relied on site-directed mutagenesis studies, protein sequence mapping using synthetic peptides, molecular modeling, or structural analysis. Here, we report the development of a novel approach for identifying protein residues involved in the binding to heparin, the archetypal member of the GAG family. This method, which uses native proteins, is based on the formation of cross-linked complexes of the protein of interest with heparin beads, the proteolytic digestion of these complexes, and the subsequent identification of the heparin binding containing peptides by N terminus sequencing. Analysis of the CC chemokine regulated on activation, normal T-cell expressed, and secreted (RANTES), the envelope glycoprotein gC from pseudorabies virus and the laminin-5 alpha 3LG4/5 domain validated the techniques and provided novel information on the heparin binding motifs present within these proteins. Our results highlighted this method as a fast and valuable alternative to existing approaches. Application of this technique should greatly contribute to facilitate the structural study of protein/GAG interactions and the understanding of their biological functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号