首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
2.
Abstract: Excess activation of NMDA receptors is felt to participate in secondary neuronal damage after traumatic brain injury (TBI). Increased extracellular glutamate is active in this process and may result from either increased release or decreased reuptake. The two high-affinity sodium-dependent glial transporters [glutamate transporter 1 (GLT-1) and glutamate aspartate transporter (GLAST)] mediate the bulk of glutamate transport. We studied the protein levels of GLT-1 and GLAST in the brains of rats after controlled cortical impact-induced TBI. With use of subtype-specific antibodies, GLT-1 and GLAST proteins were quantitated by immunoblotting in the ipsilateral and contralateral cortex at 2, 6, 24, 72, and 168 h after the injury. Sham-operated rats served as control. TBI resulted in a significant decrease in GLT-1 (by 20–45%; p < 0.05) and GLAST (by 30–50%; p < 0.05) protein levels between 6 and 72 h after the injury. d -[3H]Aspartate binding also decreased significantly (by 30–50%; p < 0.05) between 6 and 72 h after the injury. Decreased glial glutamate transporter function may contribute to the increased extracellular glutamate that may mediate the excitotoxic neuronal damage after TBI. This is a first report showing altered levels of glutamate transporter proteins after TBI.  相似文献   

3.
4.
Protein kinase C (PKC) regulates the activity and/or cell surface expression of several different neurotransmitter transporters, including subtypes of glutamate transporters. In the present study, the effects of pharmacological inhibitors of PKC were studied in primary astrocyte cultures that express the glutamate aspartate transporter (GLAST) subtype of glutamate transporter. We found that general inhibitors of PKC, bisindolylmaleimide I (Bis I), bisindolylmaleimide II (Bis II), staurosporine and an inhibitor of classical PKCs, Gö6976, had no effect on Na+‐dependent glutamate transport activity. However, rottlerin, a putative specific inhibitor of PKCδ, decreased transport activity with an IC50 value (less than 10 µm ) that is comparable to that reported for inhibition of PKCδ. The effect of rottlerin was very rapid (maximal effect within 5 min) and was due to a decrease in the capacity (Vmax) for transport. Rottlerin also caused a drastic loss of GLAST immunoreactivity within 5 min, suggesting that rottlerin accelerates GLAST degradation/proteolysis. Rottlerin had no effect on cell surface or total expression of the transferrin receptor, providing evidence that the effect on GLAST cannot be attributed to a non‐specific internalization/degradation of plasma membrane proteins. Down‐regulation of PKCδ with chronic phorbol ester treatment did not block rottlerin‐mediated inhibition of transport activity. These results suggest a novel mechanism for regulation of the GLAST subtype of glutamate transporter and indicate that there is a rottlerin target that is capable of controlling the levels of GLAST by controlling the rate of degradation or limited proteolysis. It appears that the target for rottlerin may not be PKCδ.  相似文献   

5.
6.
L-glutamate is both the major brain excitatory neurotransmitter and a potent neurotoxin in mammals. Glutamate excitotoxicity is partly responsible for cerebral traumas evoked by ischemia and has been implicated in several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). In contrast, very little is known about the function or potential toxicity of glutamate in the insect brain. Here, we show that decreasing glutamate buffering capacity is neurotoxic in Drosophila. We found that the only Drosophila high-affinity glutamate transporter, dEAAT1, is selectively addressed to glial extensions that project ubiquitously through the neuropil close to synaptic areas. Inactivation of dEAAT1 by RNA interference led to characteristic behavior deficits that were significantly rescued by expression of the human glutamate transporter hEAAT2 or the administration in food of riluzole, an anti-excitotoxic agent used in the clinic for human ALS patients. Signs of oxidative stress included hypersensitivity to the free radical generator paraquat and rescue by the antioxidant melatonin. Inactivation of dEAAT1 also resulted in shortened lifespan and marked brain neuropil degeneration characterized by widespread microvacuolization and swollen mitochondria. This suggests that the dEAAT1-deficient fly provides a powerful genetic model system for molecular analysis of glutamate-mediated neurodegeneration.  相似文献   

7.
Appropriate removal of l-glutamate from the synaptic cleft is important for prevention of the excitotoxic effects of this neurotransmitter. The Na+-dependent glutamate/aspartate transporter GLAST is regulated in the short term, by a transporter-dependent decrease in uptake activity while in the long term, a receptor’s-dependent decrease in GLAST protein levels leads to a severe reduction in glutamate uptake. The promoter region of the mouse glast gene harbors an Activator Protein-1 site (AP-1). To gain insight into the molecular mechanisms triggered by Glu-receptors activation involved in GLAST regulation, we took advantage of the neonatal mouse cerebellar prisms model. We characterized the glutamate uptake activity; the glutamate-dependent effect on GLAST protein levels and over the interaction of nuclear proteins with a mouse glast promoter AP-1 probe. A time and dose dependent decrease in transporter activity matching with a decrease in GLAST levels was recorded upon glutamate treatment. Moreover, a significant increase in glast AP-1 DNA binding was found. Pharmacological experiments established that both effects are mediated through α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors, favoring the notion of the critical involvement of glutamate in the regulation of its binding partners: receptors and transporters.  相似文献   

8.
Glutamate excitotoxicity plays an important role in the development of secondary injuries that occur following traumatic brain injury (TBI), and contributes significantly to expansion of the total volume of injury. Acute increases in extracellular glutamate levels have been detected in both experimental brain trauma models and in human patients, and can lead to over-stimulation of glutamate receptors, resulting in a cascade of excitotoxic-related mechanisms culminating in neuronal damage. These elevated levels of glutamate can be effectively controlled by the astrocytic glutamate transporters GLAST (EAAT1) and GLT-1 (EAAT2). However, evidence indicate these transporters and splice variant are downregulated shortly following the insult, which then precipitates glutamate-mediated excitotoxic conditions. Lack of success with glutamate receptor antagonists as a potential source of clinical intervention treatment following TBI has resulted in the necessity for a better understanding of the mechanisms that underlie the process of excitotoxicity, including the function and regulation of glutamate transporters. Such new insight should improve the likelihood of development of novel avenues for therapeutic intervention following TBI.  相似文献   

9.
Abstract: The glutamate transporters in the plasma membranes of neural cells secure termination of the glutamatergic synaptic transmission and keep the glutamate levels below toxic concentrations. Astrocytes express two types of glutamate transporters, GLAST (EAAT1) and GLT1 (EAAT2). GLT1 predominates quantitatively and is responsible for most of the glutamate uptake activity in the juvenile and adult brain. However, GLT1 is severely down-regulated in amyotrophic lateral sclerosis, a progressive neurodegenerative disease. Furthermore, selective loss of this transporter occurs in cultured astroglia. Expression of GLAST, but not of GLT1, seems to be regulated via the glutamate receptor signalling. The present study was undertaken to examine whether neuronal factors, other than glutamate, influence the expression of astroglial glutamate transporters. The expression of GLT1 and GLAST was examined in primary cultures of cerebellar granule neurons, cortical neurons, and astrocytes under different experimental conditions, including those that mimic neuron-astrocyte interactions. Pure astroglial cultures expressed only GLAST, whereas astrocytes grown in the presence of neurons expressed both GLAST (at increased levels) and GLT1. The induction of GLT1 protein and its mRNA was reproduced in pure cortical astroglial cultures supplemented with conditioned media from cortical neuronal cultures or from mixed neuron-glia cultures. This treatment did not change the levels of GLAST. These results suggest that soluble neuronal factors differentially regulate the expression of GLT1 and GLAST in cultured astroglia. Further elucidation of the molecular nature of the secreted neuronal factors and corresponding signalling pathways regulating the expression of the astroglial glutamate transporters in vitro may reveal mechanisms important for the understanding and treatment of neurological diseases.  相似文献   

10.
Abstract: Low extracellular glutamate content is maintained primarily by high-affinity sodium-dependent glutamate transport. Three glutamate transporter proteins have been cloned: GLT-1 and GLAST are astroglial, whereas EAAC1 is neuronal. The effects of axotomy on glutamate transporter expression was evaluated in adult rats following unilateral fimbria-fornix and corticostriatal lesions. The hippocampus and striatum were collected at 3, 7, 14, and 30 days postlesion. Homogenates were immunoblotted using antibodies directed against GLT-1, GLAST, EAAC1, and glial fibrillary acidic protein and assayed for glutamate transport by d -[3H]aspartate binding. GLT-1 immunoreactivity was decreased within the ipsilateral hippocampus and striatum at 14 days postlesion. GLAST immunoreactivity was decreased within the ipsilateral hippocampus and striatum at 7 and 14 days postlesion. No alterations in EAAC1 immunoreactivity were observed. d -[3H]Aspartate binding was decreased at 14 days postlesion within the ipsilateral hippocampus and at 7 and 14 days postlesion within the ipsilateral striatum. By 30 days postlesion, glutamate transporters and d -[3H]aspartate binding returned to control levels. This study demonstrates the down-regulation of primarily glial, and not neuronal, glutamate transporters following regional disconnection.  相似文献   

11.
12.
13.
14.
This article aimed to reveal the mechanism of long noncoding RNA (lncRNA) urothelial cancer-associated 1 (UCA1) regulated astrocyte activation in temporal lobe epilepsy (TLE) rats via mediating the activation of the JAK/STAT signaling pathway. A model of TLE was established based on rats via kainic acid (KA) injection. All rats were divided into the Sham group (without any treatments), KA group, normal control (NC; injection with empty vector) + KA group, and UCA1 + KA group. The Morris water maze was used to test the learning and memory ability of rats, and the expression of UCA1 in the hippocampus was determined by quantitative real time polymerase chain reaction (qRT-PCR). Surviving neurons were counted by Nissl staining, and expression levels of glial cells glial fibrillary acidic protein (GFAP), p-JAK1, and p-STAT3 and glutamate/aspartate transporter (GLAST) were analyzed by immunofluorescence and Western blot analysis. A rat model of TLE was established by intraperitoneal injection of KA. qRT-PCR and fluorescence analyses showed that UCA1 inhibited astrocyte activation in the hippocampus of epileptic rats. Meanwhile, the Morris water maze analysis indicated that UCA1 improved the learning and memory in epilepsy rats. Moreover, the Nissl staining showed that UCA1 might have a protective effect on neuronal injury induced by KA injection. Furthermore, the immunofluorescence and Western blot analysis revealed that the overexpression of UCA1 inhibited KA-induced abnormal elevation of GLAST, astrocyte activation of the JAK/STAT signaling pathway, as well as hippocampus of epilepsy rats. UCA1 inhibited hippocampal astrocyte activation and JAK/STAT/GLAST expression in TLE rats and improved the adverse reactions caused by epilepsy.  相似文献   

15.
Fetal ischemia or hypoxia can lead to cerebral palsy, mental retardation and epilepsy. We propose that the production of nitric oxide and oxygen radicals by neurons when ischemic or hypoxic brain is reperfused may contribute to cerebral injury. Ischemia will depolarize neuronal membranes causing the synaptic discharge of the excitatory neurotransmitter glutamate, which in turn opens the voltage-dependent, N-methyl-D-aspartic acid-specific glutamate receptor/ionophore, allowing calcium to accumulate in the neuron. Calcium in turn activates an oxygen-dependent neuronal nitric oxide synthetase, which oxidizes arginine to produce nitric oxide (.NO) when oxygen is readmitted to brain by reperfusion. Nitric oxide reacts with the oxygen radical superoxide (O2-), also produced by reperfusion, to form peroxynitrite (ONOO-). Peroxynitrite can diffuse for several micrometers before decomposing to form the powerful and cytotoxic oxidants hydroxyl radical and nitrogen dioxide. The hypothesis is consistent with available evidence on the protective action of glutamate antagonists and of oxygen radical scavengers for limiting cerebral infarction following focal ischemia.  相似文献   

16.
GLAST is the predominant glutamate transporter in the cerebellum and contributes substantially to glutamate transport in forebrain. This astroglial glutamate transporter quickly binds and clears synaptically released glutamate and is principally responsible for ensuring that synaptic glutamate concentrations remain low. This process is associated with a significant energetic cost. Compartmentalization of GLAST with mitochondria and proteins involved in energy metabolism could provide energetic support for glutamate transport. Therefore, we performed immunoprecipitation and co-localization experiments to determine if GLAST might co-compartmentalize with proteins involved in energy metabolism. GLAST was immunoprecipitated from rat cerebellum and subunits of the Na(+)/K(+) ATPase, glycolytic enzymes, and mitochondrial proteins were detected. GLAST co-localized with mitochondria in cerebellar tissue. GLAST also co-localized with mitochondria in fine processes of astrocytes in organotypic hippocampal slice cultures. From these data, we hypothesized that mitochondria participate in a macromolecular complex with GLAST to support oxidative metabolism of transported glutamate. To determine the functional metabolic role of this complex, we measured CO(2) production from radiolabeled glutamate in cultured astrocytes and compared it to overall glutamate uptake. Within 15min, 9% of transported glutamate was converted to CO(2). This CO(2) production was blocked by inhibitors of glutamate transport and glutamate dehydrogenase, but not by an inhibitor of glutamine synthetase. Our data support a model in which GLAST exists in a macromolecular complex that allows transported glutamate to be metabolized in mitochondria to support energy production.  相似文献   

17.
Interleukin-1 (IL-1) is a mediator of brain injury induced by ischemia, trauma, and chronic neurodegenerative disease. IL-1 also has a protective role by preventing neuronal cell death from glutamate neurotoxicity. However, the cellular mechanisms of IL-1 action remain unresolved. In the mammalian retina, glutamate/aspartate transporter (GLAST) is a Na(+)-dependent, major glutamate transporter localized to Müller glial cells, and loss of GLAST leads to glaucomatous retinal degeneration (T. Harada, C. Harada, K. Nakamura, H. A. Quah, A. Okumura, K. Namekata, T. Saeki, M. Aihara, H. Yoshida, A. Mitani, and K. Tanaka, J. Clin. Investig. 117:1763-1770, 2007). We show here that IL-1 increases glutamate uptake in Müller cells by a mechanism that involves increased membrane Na(+)/K(+)-ATPase localization, required for counteracting the Na(+)-glutamate cotransport. IL-1 activated the p38 mitogen-activated protein kinase (MAPK)/capase 11 pathway, which destabilizes the actin cytoskeleton allowing Na(+)/K(+)-ATPase membrane redistribution. Furthermore, pretreatment with IL-1 protected retinal neurons from glutamate neurotoxicity through p38 MAPK signaling. Our observations suggested that IL-1 acts as a potential neuroprotective agent by modulating the functions of the glia-neuron network.  相似文献   

18.

Background

Clearance of synaptically released glutamate, and hence termination of glutamatergic neurotransmission, is carried out by glutamate transporters, most especially glutamate transporter-1 (GLT-1) and the glutamate-aspartate transporter (GLAST) that are located in astrocytes. It is becoming increasingly well appreciated that changes in the function and expression of GLT-1 and GLAST occur under different physiological and pathological conditions. Here we investigated the plasticity in expression of GLT-1 and GLAST in the spinal dorsal horn using immunohistochemistry following partial sciatic nerve ligation (PSNL) in rats.

Results

Animals were confirmed to develop hypersensitivity to mechanical stimulation by 7 days following PSNL. Baseline expression of GLT-1 and GLAST in naive animals was only observed in astrocytes and not in either microglia or neurons. Microglia and astrocytes showed evidence of reactivity to the nerve injury when assessed at 7 and 14 days following PSNL evidenced by increased expression of OX-42 and GFAP, respectively. In contrast, the total level of GLT-1 and GLAST protein decreased at both 7 and 14 days after PSNL. Importantly, the cellular location of GLT-1 and GLAST was also altered in response to nerve injury. Whereas activated astrocytes showed a marked decrease in expression of GLT-1 and GLAST, activated microglia showed de novo expression of GLT-1 and GLAST at 7 days after PSNL and this was maintained through day 14. Neurons showed no expression of GLT-1 or GLAST at any time point.

Conclusion

These results indicate that the expression of glutamate transporters in astrocytes and microglia are differentially regulated following nerve injury.  相似文献   

19.
In absence epilepsy, epileptogenic processes are suspected of involving an imbalance between GABAergic inhibition and glutamatergic excitation. Here, we describe alteration of the expression of glutamate transporters in rats with genetic absence (the Genetic Absence Epilepsy Rats from Strasbourg: GAERS). In these rats, epileptic discharges, recorded in the thalamo-cortical network, appear around 40 days after birth. In adult rats no alteration of the protein expression of the glutamate transporters was observed. In 30-day-old GAERS protein levels (quantified by western blot) were lower in the cortex by 21% and 35% for the glial transporters GLT1 and GLAST, respectively, and by 32% for the neuronal transporter EAAC1 in the thalamus compared to control rats. In addition, the expression and activity of GLAST were decreased by 50% in newborn GAERS cortical astrocytes grown in primary culture. The lack of modification of the protein levels of glutamatergic transporters in adult epileptic GAERS, in spite of mRNA variations (quantified by RT-PCR), suggests that they are not involved in the pathogeny of spike-and-wave discharges. In contrast, the alteration of glutamate transporter expression, observed before the establishment of epileptic discharges, could reflect an abnormal maturation of the glutamatergic neurone-glia circuitry.  相似文献   

20.
Glutamate transporters in hyperammonemia   总被引:2,自引:0,他引:2  
Evidence suggests that increases in brain ammonia due to congenital urea cycle disorders, Reye Syndrome or liver failure have deleterious effects on the glutamate neurotransmitter system. In particular, ammonia exposure of the brain in vivo or in vitro preparations leads to alterations of glutamate transport. Exposure of cultured astrocytes to ammonia results in reduced high affinity uptake sites for glutamate due to a reduction in expression of the astrocytic glutamate transporter GLAST. On the other hand, acute liver failure leads to decreased expression of a second astrocytic glutamate transporter GLT-1 and a consequent reduction in glutamate transport sites in brain. Effects of the chronic exposure of brain to ammonia on cellular glutamate transport are less clear. The loss of glutamate transporter activity in brain in acute liver failure and hyperammonemia is associated with increased extracellular brain glutamate concentrations which may be responsible for the hyperexcitability and cerebral edema observed in hyperammonemic disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号