首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
beta-cardiac myosin subfragment 1 (betaS1) tertiary structure and dynamics were characterized with proteolytic digestion, nucleotide analogue trapping kinetics, and intrinsic fluorescence changes accompanying nucleotide binding. Proteolysis of betaS1 produces the 25, 50, and 20 kDa fragments and a new cut within the 50-kDa fragment at Arg369. F-actin inhibits cleavage of the 50-kDa fragment and fails to inhibit cleavage at the 50/20 kDa junction, suggesting betaS1 presents an actoS1 conformation fundamentally different from skeletal S1. Time-dependent changes in Mg(2+)-ATPase accompanying proteolysis identifies cleavage points that lie within the energy transduction pathway. The nucleotide analogue trapping kinetics reveal the presence of a reversible weakly actin attached state. Comparison of nucleotide analogue induced betaS1 structures with the transient structures occurring during ATPase indicates analogue induced and transient structures are in a one-to-one correspondence. Tryptophan fluorescence enhancement accompanies the binding or trapping of nucleotide or nucleotide analogues. Isolation of Trp508 fluorescence shows it is an ATP-sensitive tryptophan and that its vicinity changes conformation sequentially with the transient intermediates accompanying ATPase. These studies elucidate energy transduction and suggest how mutations of betaS1 implicated in disease might undermine function, stability, or efficiency.  相似文献   

2.
The solution structure of a biologically active modified linear endothelin-1 analogue, ET1-21[Cys(Acm)1,15, Aib3,11, Leu7], has been determined for the first time by two-dimensional nuclear magnetic resonance spectroscopy in a methanol-d3/water solvent mixture. Out of approximately one hundred linear peptide analogues tested by biological assay, this peptide, together with a dozen others, showed significant ETB selective agonist activity. Here we report the solution structure of an ETB selective agonist of a full-length, synthetic linear endothelin analogue. The calculated structures indicate that the peptide adopts an alpha-helical conformation between residues Ser5-His16, whilst both N- and C-termini show no preferred conformation. These results suggest that the disulphide bridges normally associated with endothelin and sarafotoxin peptides may not necessarily be important for either ETB receptor binding activity or the formation of a helical conformation in solution.  相似文献   

3.
The side chain of Tyr and Phe was fixed into the gauche (−) or gauche (+) conformation by using the Tic or Htc structures, and into the trans conformation by using an aminobenzazepine-type (Aba) structure. When incorporated into dermorphin or deltorphin II, the Tic and Htc analogues all showed a large decrease in both μ and δ affinities and activities. Fixation of Phe3 in the trans rotamer resulted in a large increase in δ affinity in the dermorphin analogue, whereas in the [Aba3-Gly4] deltorphin II analogue, good δ affinity is maintained despite the removal of the Glu side chain. Whereas several authors propose a gauche (−) preferred conformation for the Phe3 side chain, these results suggest a trans conformation at the δ receptor. The use of these conformationally constrained residues for evaluating the preferred solution conformation in the flexible N-terminal tripeptide Tyr-D-Ala-Phe is illustrated. The 1H-nmr parameters—chemical shift, temperature dependence, and nuclear Overhauser effects to the D-Ala2 methyl protons in the different analogues—provide direct evidence to confirm the proposed sandwich conformation in the native peptides. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
MiniANP is a synthetic pentadecapeptide analogue of atrial natriuretic polypeptide (ANP). We have used the proline-scanning mutagenesis and the analogue peptides with shorter backbones to characterize the turn-like conformation at residue 6-9 and an extended structure of Gly5-Gly6 as the receptor-bound structure of miniANP. A docking study of miniANP at the binding site of the type A natriuretic peptide receptor (NPR-A) supported the deduced conformation in the receptor-bound structure.  相似文献   

5.
Deglycobleomycin binds to and degrades the self-complementary oligonucleotide d(CGCTAGCG)(2) in a sequence selective fashion. A previous modeling study [J. Am. Chem. Soc. 120, (1998), 7450] had shown that, during binding to double stranded DNA, the conformation of the methylvalerate domain of deglycoBLM approximated that of S-proline. In the belief that an analogue of deglycoBLM structurally constrained to mimic the DNA-bound conformation might exhibit facilitated DNA binding and cleavage, an analogue of deglycoBLM was prepared in which the methylvalerate moiety was replaced by S-proline. This deglycoBLM analogue, as well as the related analogue containing R-proline, was synthesized on a TentaGel resin. Both of the analogues were found to be capable of binding Fe(2+) and activating O(2) for transfer to styrene. However, both deglycoBLM analogues exhibited diminished abilities to effect the relaxation of supercoiled plasmid DNA, and neither mediated sequence selective DNA cleavage.  相似文献   

6.
Conformational searches on three closely related pp60(c-src) protein tyrosine kinase inhibitors of varying potencies were performed to determine a structural basis for their activity. The first was a linear peptide (PDNEYAFFQf), the second its 10-membered cyclic analogue, and the third a cyclic analogue with a para carboxyphenylalanine in place of one the F residues. A common backbone conformation with an antiparallel beta-sheet-like geometry capped by similar beta-turns was found for all three peptides, which may be a binding conformation and gives a candidate pharmacophore for further testing. The interaction between some polar side chains and between some of the aromatic rings may be important for maintaining the correct conformation. The differences in potencies of these inhibitors may be attributed to certain thermodynamic and chemical reasons.  相似文献   

7.
The effects of replacing L-pyroglutamic acid with the cyclopropane analogue 2,3-methanopyroglutamic acid (2,3-MeGlp) on conformation and enzymatic stability have been investigated in 2,3-MeGlp-NHMe and the novel thyrotropin releasing hormone (TRH) analogue [2,3-MeGlp1]-TRH by x-ray diffraction and nmr. While 2,3-MeGlp-NHMe adopts a folded conformation (small psi angle) in the solid state, several conformations are available to the molecule in solution. 1H-nmr of the diastereomeric mixture [(+/- )-2,3-MeGlp1]-TRH indicates a close orientation of the pyrrolidone and imidazole rings. The 2,3-MeGlp-His amide bond is considerably more stable to pyroglutamate aminopeptidase than the Glp-His bond in TRH.  相似文献   

8.
The kinetic mechanism of the catalytic subunit of the cAMP-dependent protein kinase has been investigated employing the heptapeptide Kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly) as substrate. Initial velocity measurements performed over a wide range of ATP and Kemptide concentrations indicated that the reaction follows a sequential mechanistic pathway. In line with this, the results of product and substrate inhibition studies, the patterns of dead end inhibition obtained employing the nonhydrolyzable ATP analogue, AMP X PNP (5'-adenylylimidodiphosphate), and equilibrium binding determinations, taken in conjunction with the patterns of inhibition observed with the inhibitor protein of the cAMP-dependent protein kinase that are reported in the accompanying paper (Whitehouse, S., and Walsh, D.A. (1983) J. Biol. Chem. 258, 3682-3692), are best fit by a steady state Ordered Bi-Bi kinetic mechanism. Although the inhibition patterns obtained employing the synthetic peptide analogue in which the phosphorylatable serine was replaced by alanine were apparently incompatible with this mechanism, these inconsistencies appear to be due to some element of the structure of this latter peptide such that it is not an ideal dead end inhibitor substrate analogue. The data presented both here and in the accompanying paper suggest that both this substrate, analogue and the ATP analogue, AMP X PNP, do not fully mimic the binding of Kemptide and ATP, respectively, in their mechanism of interaction with the protein kinase. It is proposed that, as with some other kinase reactions, the configuration of the terminal anhydride bond of ATP assumes a conformation once the nucleotide is bound to the protein kinase that assists in the binding of either Kemptide or the inhibitor protein but not the alanine-substituted peptide and that AMP X PNP, because of its terminal phosphorylimido bond, cannot assume this conformation which favors protein (or peptide) binding.  相似文献   

9.
A 50 pico-second molecular dynamics simulation on a cyclic LHRH antagonist analogue Ac-D-Phe1-D-Phe2-D-Trp3-Ser4-Glu5-D-Arg6-Leu7-Lys8+ ++-Pro9-D-Ala10-NH2 (where the cyclisation is via an amide linkage between the Glu5 and Lys8 side chains), reveals some hitherto unseen conformational features. The LHRH analogue is found to adopt a near beta-sheet type of conformation with the reversal in the chain being brought about by a D-Trp3-Ser4-Glu5-D-Arg6 beta turn. The N- and C-terminal ends of the peptide come close together and interact through a network of hydrogen bonds. Additional hydrogen bonds expected of a sheet type of conformation stabilise the lowest energy minima. A conformational search of all possible cyclic structures of a model system c(Glu-D-Ala-Ala-Lys) which was used to determine the starting structure for the simulation studies of the cyclic LHRH antagonist analogue is also highlighted. The influence of the cyclic part on the conformation of this LHRH analogue is discussed.  相似文献   

10.
The conformational properties of the somatostatin analogue 201-456 (1) have been studied by high field n.m.r. in DMSO. This analogue is the base structure of nine derivates synthesized by Bauer et al. and shows a very low biological activity, although derived structures such as SMS 201-995 (2) are very potent. Our study has shown an important difference between the most stable conformation of the two compounds: although the beta turn type II' structure at the Phe3-Trp4-Lys5 level is present in both analogues, an important conformational change appears at the cystine bridge. In SMS 201-995 the beta turn/beta sheet conformation is stabilized by the additional amino-acids D-Phe1 and Thr8 (ol) through intramolecular H-bonds.  相似文献   

11.
This paper reports on an insulin analogue with 12.5-fold receptor affinity, the highest increase observed for a single replacement, and on its solution structure, determined by NMR spectroscopy. The analogue is [D-AlaB26]des-(B27-B30)-tetrapeptide-insulin-B26-amide. C-terminal truncation of the B-chain by four (or five) residues is known not to affect the functional properties of insulin, provided the new carboxylate charge is neutralized. As opposed to the dramatic increase in receptor affinity caused by the substitution of D-Ala for the wild-type residue TyrB26 in the truncated molecule, this very substitution reduces it to only 18% of that of the wild-type hormone when the B-chain is present in full length. The insulin molecule in solution is visualized as an ensemble of conformers interrelated by a dynamic equilibrium. The question is whether the "active" conformation of the hormone, sought after in innumerable structure/function studies, is or is not included in the accessible conformational space, so that it could be adopted also in the absence of the receptor. If there were any chance for the active conformation, or at least a predisposed state to be populated to a detectable extent, this chance should be best in the case of a superpotent analogue. This was the motivation for the determination of the three-dimensional structure of [D-AlaB26]des-(B27-B30)-tetrapeptide-insulin-B26-amide. However, neither the NMR data nor CD spectroscopic comparison of a number of related analogues provided a clue concerning structural features predisposing insulin to high receptor affinity. After the present study it seems more likely than before that insulin will adopt its active conformation only when exposed to the force field of the receptor surface.  相似文献   

12.
Halorhodopsin (HR) and sensory rhodopsin (SR) have been regenerated with retinal analogues that are covalently locked in the 6-s-cis or 6-s-trans conformations. Both pigments regenerate more completely with the locked 6-s-trans retinal and produce analogue pigments with absorption maxima (577 nm for HR and 592 nm for SR) nearly identical to those of the native pigments (577 and 587 nm). This indicates that HR and SR bind retinal in the 6-s-trans conformation. The opsin shift for the locked 6-s-trans analogue in HR is 1,200 cm-1 less than that for the native chromophore (5,400 cm-1). The opsin shift for the 6-s-trans analogue in SR is 1,100 cm-1 less than that for the native retinal (5,700 cm-1). This demonstrates that approximately 20% of the opsin shift in these pigments arises from a protein-induced change in the chromophore conformation from twisted 6-s-cis in solution to planar 6-s-trans in the protein. The reduced opsin shift observed for the locked 6-s-cis analogue pigments compared with the locked 6-s-trans pigments may be due to a positive electrostatic perturbation near C7.  相似文献   

13.
New analogues of deltorphin I (DT I), in which the Phe residue in position 3, and the Val residue in position 5 or 6 are replaced with respective amphiphilic alpha-hydroxymethylamino acid residues (HmAA), were synthesized and tested for receptor affinity and selectivity to mu and delta opioid receptors. The analogue with (R)-HmPhe at position 3 lost receptor selectivity, as a result of a partial decrease of affinity to delta and a significant increase of affinity to mu receptors. In contrast, an analogue with (S)-HmPhe in the same position, was very potent and more specific to delta receptors than parent DT I. The analogue with (R)-HmVal at position 5 expressed higher delta affinity and selectivity than parent DT I. The analogue with other possible isomer (S)-HmVal was less selective for delta opioid receptors, as a result of decreasing affinity to delta and increasing affinity to mu receptors. The analogues with (R)- or (S)-HmVal in position 6 expressed equally low receptor affinity and selectivity. The data obtained support a previously proposed model of active conformation of deltorphins.  相似文献   

14.
To elucidate the receptor-bound conformation of glucagon-like peptide-1 (GLP-1), a series of conformationally constrained GLP-1 analogues were synthesized by introducing lactam bridges between Lys(i) and Glu(i)(+4) to form alpha-helices at various positions. The activity and affinity of these analogues to GLP-1 receptors suggested that the receptor-bound conformation comprises two alpha-helical segments between residues 11-21 and 23-34. It is notable that the N-terminal alpha-helix is extended to Thr(11), and that Gly(22) plays a pivotal role in arranging the two alpha-helices. Based on these findings, a highly potent bicyclic GLP-1 analogue was synthesized which is the most conformationally constrained GLP-1 analogue reported to date.  相似文献   

15.
An analogue of the bovine pancreatic trypsin inhibitor (BPTI) folding intermediate that contains only the disulphide bond between Cys5 and Cys55 has been prepared in Escherichia coli by protein engineering methods, with the other four Cys residues replaced by Ser. Two-dimensional 1H nuclear magnetic resonance studies of the analogue have resulted in essentially complete resonance assignments of the folded form of the protein. The folded protein has a compact conformation that is structurally very similar to that of native BPTI, although there are subtle differences and the folded conformation is not very stable. Approximately half of the protein molecules are unfolded at 3 degrees C, and this proportion increases at higher temperatures. The folded and unfolded conformations are in slow exchange. The conformational properties of the analogue can explain many aspects of the kinetic role that the normal (5-55) intermediate plays in the folding of BPTI.  相似文献   

16.
Leu-enkephalin, [D-Ala2]Leu-enkephalin, and [D-Ala2]Leu-enkephalinamide (agonists) and [L-Ala2]Leu-enkephalin (inactive analogue) bind to lipid bilayer consisting of phosphatidylcholine and phosphatidylserine. The conformations that these compounds assume, once bound to perdeuterated phospholipid bilayer, have been shown to be unique, as shown by the transferred nuclear Overhauser effect (TRNOE) of 1H NMR spectroscopy. In addition, their location in the bilayer was analyzed by TRNOE in the presence of spin-labeled phospholipids. These analyses showed a clear relationship between the activity and the peptide-membrane interaction. The three active peptides, when bound to membranes, adopt the same conformation, characterized by a type II' beta-turn around Gly3-Phe4 and a gamma-turn around Gly2 (or D-Ala2). The inactive analogue, [L-Ala2]Leu-enkephalin, displayed a completely different TRNOE pattern corresponding to a different conformation in the membrane-bound state. The tyrosine residue of the active compounds is not inserted into the interior of membrane, but it is inserted into the bilayer for the L-Ala2 analogue. According to these results, [L-Ala2]Leu-enkephalin may be explained to be inactive because the mode of binding to the membranes is different from that of active compounds.  相似文献   

17.
C S Wu  J T Yang 《Biopolymers》1988,27(3):423-430
The conformation of a 13-residue C-peptide analogue of ribonuclease A——in surfactant solutions was studied by CD. The CD spectrum of the peptide in excess NaDodSO4 solution was typical for a helical conformation; the spectrum appeared to be virtually independent of pH (2.5–6) and temperature (3–25°C). Analysis of the CD data indicated a helicity of about 65–70% with no α-sheet and β-turn; this corresponded to 8 or 9 residues in the helical form or slightly more than two turns of α-helix. This compares with an average of about one turn of α-helix for the C-peptide analogue in water at pH 4.7 and 7°C. The conformation of the peptide in cationic surfactant, dodecyl ammonium chloride, and nonionic surfactant, dodecyl heptaoxyethylene ether, solution resembled that in water. We concluded that the C-peptide analogue can develop a maximum helicity close to the corresponding segment in ribonuclease A in hydrophobic environment provided by the clustering of NaDodSO4 molecules to the cationic side groups of the peptide, except that the end effects may destabilize two or three residues each at both ends of the helix. Thus, in the interior of a protein molecule this hydrophobic effect may overshadow the charged-group effect than can be explained by the helix dipole model for the helical segments on the exterior of the protein molecule.  相似文献   

18.
Although racemic allylbenzylmethylphenylammonium iodide 1b displays spontaneous resolution crystallizing in a homochiral mode as a conglomerate, its phosphonium analogue rac-2b crystallizes in a heterochiral lattice forming racemic compound in the solid state. The more pronounced conformation freedom for 2b molecules manifests itself by multiple molecules crystallization (Z' = 3) of (S)-2b with the three independent molecules having different conformation.  相似文献   

19.
New analogues of 7-methylguanosine 5'-monophosphate (m7GMP) were synthesized with modified 5'-phosphate moieties by replacement of -O with -H, -CH3, or -NH2. Additional analogues were synthesized with 8-methyl- or 8-aminoguanine base substitutions or ring-opened ribose (2',3'-diol). These compounds were analyzed by 1H and 31P NMR for solution conformation. In addition, they were also analyzed for biological activity as analogues of mRNA 5'-caps by competition as inhibitors of translation in reticulocyte lysate. Substitution of oxygen on the 5'-monophosphate moiety by -H and -CH3 diminished the activity of the cap analogue as a competitive inhibitor; however, replacement by -NH2 did not diminish the activity of the analogue as an inhibitor. It was inferred from this result that cap binding proteins require a hydrogen bond acceptor as opposed to having an exclusive requirement for a second anionic group on the alpha-phosphate moiety. Inhibition results obtained with C8-substituted m7GMP analogues indicated that the 8-amino derivative was a better inhibitor than the 8-methyl derivative of m7GMP. The former is primarily anti whereas the latter is primarily syn with respect to glycosidic bond conformation. This result further supports the model that the anti conformation is the preferred form of the cap structure for interaction with cap binding proteins. The 2',3'-diol derivative of m7GMP was inactive as an inhibitor of translation.  相似文献   

20.
A series of analogues of dopamine (DA) with varying degrees of conformational flexibility have been examined as potential substrates or competitive inhibitors of the enzyme norepinephrine N-methyltransferase (NMT). A conformationally defined (rigid) analogue of the fully extended conformation of DA, 2-amino-6, 7-dihydroxybenzonorbornene hydrobromide (3; 6, 7-D2HX) proved to be a better substrate than the non-catechol parent 2-aminobenzonorbornene (4; 2HX). However, analogues 3 and 4 displayed equivalent competitive inhibitory activity toward phenylethanolamine (PEA). Neither 6, 7-ADTN (5), a DA analogue in the 2-aminotetralin (2AT) system, nor 6, 7-DTHIQ (7), a DA analogue in the tetrahydroisoquinoline (THIQ) system, showed substrate activity; 6, 7-ADTN was a poorer competitive inhibitor than the parent 2AT but 6, 7-DTHIQ was a better competitive inhibitor than its parent, THIQ (8). A tricyclic conformationally defined analogue 9 of 6, 7-ADTN was devoid of either substrate or inhibitory activity. From these results it may be concluded that a fully extended side chain conformation is required for NMT substrate activity, and the better substrate activity for 6, 7-D2HX compared to 4 is consistent with a proper catechol orientation for interaction with the norepinephrine (NE) binding site of NMT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号