首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
赵轩  邓竞  马潇雨  朱旭东  张萍 《微生物学报》2022,62(5):1656-1668
RNA干扰(RNA interference,RNAi)是一种保守的真核生物基因调控机制,它利用小的非编码RNA介导转录/转录后的基因沉默。虽然部分真菌丢失了RNAi系统,但随着对真菌RNAi机制研究的增加,越来越多的证据表明,真菌的RNAi系统不但参与维持基因组完整性,其在调节真菌生长发育、介导异染色质组装、促进着丝粒进化、调节真菌耐药性与毒力等方面也具有重要作用。本文主要对真菌中RNAi的生物学功能进行综述,以期为进一步深入研究真菌RNA干扰机制提供一定的理论与研究基础。  相似文献   

2.
3.
4.
5.
The centromere is the region of the eukaryotic chromosome that determines kinetochore formation and sister chromatid cohesion. Centromeres interact with spindle microtubules to ensure chromatid segregation during mitosis and homologous chromosome segregation during meiosis I. In recent years, the overall organization of centromeres in several eukaryotic species has been described, yet the mechanisms of centromere definition remain elusive. Understanding the evolutionary origin of the centromere may well elucidate aspects of its function. With such intention, we hypothesize that centromeres were derived from telomeres during the evolution of the eukaryotic chromosome. We propose that the proto-eukaryotic cell could not have evolved a nucleus without concurrently evolving a new tubulin-based cytoskeleton, the microtubules, and a specific chromosomal region that enabled the chromosome-microtubule interaction, the centromere. The repetitive nature of the subtelomeric regions that gave rise to the centromeres forced the concerted evolution of the centromeres. Although this implies the absence of a conserved primary sequence, a conserved centromere-specific structural motif could still exist and determine where in the chromosome the centromere is to be formed.To support the “centromeres-from-telomeres” hypothesis, we discuss several situations, in meiosis and mitosis, where telomeric regions took over centromeric roles. The recently discovered phenomenon of centromere repositioning is also discussed because it has revealed new insights into how neocentromeres evolve.  相似文献   

6.
7.
8.
The centromere is essential for precise and equal segregation of the parental genome into two daughter cells during mitosis. CENP-A is a unique histone H3 variant conserved in eukaryotic centromeres. The assembly of CENP-A to the centromere is mediated by Holliday junction recognition protein (HJURP) in early G1 phase. However, it remains elusive how HJURP governs CENP-A incorporation into the centromere. Here we show that human HJURP directly binds to Mis18β, a component of the Mis18 complex conserved in the eukaryotic kingdom. A minimal region of HJURP for Mis18β binding was mapped to residues 437–460. Depletion of Mis18β by RNA interference dramatically impaired HJURP recruitment to the centromere, indicating the importance of Mis18β in HJURP loading. Interestingly, phosphorylation of HJURP by CDK1 weakens its interaction with Mis18β, consistent with the notion that assembly of CENP-A to the centromere is achieved after mitosis. Taken together, these data define a novel molecular mechanism underlying the temporal regulation of CENP-A incorporation into the centromere by accurate Mis18β-HJURP interaction.  相似文献   

9.
10.
11.
12.
13.
14.
Although the human genome sequence is generally considered “finished”, the latest assembly (NCBI Build 36.1) still presents a number of gaps. Some of them are defined as “clone gaps” because they separate neighboring contigs. Evolutionary new centromeres are centromeres that repositioned along the chromosome, without marker order variation, during evolution. We have found that one human “clone gap” at 18q21.2 corresponds to an evolutionary new centromere in Old World Monkeys (OWM). The partially sequenced gap revealed a satellite-like structure. DNA stretches of the same satellite were found in the macaque (flanking the chromosome 18 centromere) and in the marmoset (New World Monkey), which was used as an outgroup. These findings strongly suggested that the repeat was present at the time of novel centromere seeding in OWM ancestor. We have provided, therefore, the first instance of a specific sequence hypothesized to have played a role in triggering the emergence of an evolutionary new centromere. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
16.
17.
18.
Regulation of heterochromatin by histone methylation and small RNAs   总被引:12,自引:0,他引:12  
Heterochromatin mediates various nuclear processes including centromere function, gene silencing and nuclear organization. Although it was discovered nearly 75 years ago, the pathways involved in heterochromatin establishment, assembly and epigenetic maintenance have been elusive. Recent reports have demonstrated that distinct and novel chromatin-associated factors, including DNA, RNA and histone modifications, are involved in each of these events. These new findings define a novel conserved mechanism of heterochromatin formation that is likely to have an impact on all eukaryotic silencing pathways.  相似文献   

19.
The conformational dependence of 13C chemical shift values of RNA riboses determined by liquid-state NMR spectroscopy was evaluated using data deposited for RNA structures in the RCSD and BMRB data bases. Results derived support the applicability of the canonical coordinates approach of Rossi and Harbison (J Magn Reson 151:1–8, 2001) in liquid-state NMR to assess the sugar pucker of ribose units in RNA. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号