首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An updated linkage and comparative map of porcine chromosome 18   总被引:2,自引:0,他引:2  
Swine chromosome 18 (SSC18) has the poorest marker density in the USDA-MARC porcine linkage map. In order to increase the marker density, seven genes from human chromosome 7 (HSA7) expected to map to SSC18 were selected for marker development. The genes selected were: growth hormone releasing hormone receptor (GHRHR), GLI-Kruppel family member (GLI3), leptin (LEP), capping protein muscle Z-line alpha 2 subunit (CAPZA2), beta A inhibin (INHBA), T-cell receptor beta (TCRB) and T-cell receptor gamma (TCRG). Large-insert clones (YACs, BACs and cosmids) that contained these genes, as well as two previously mapped microsatellite markers (SW1808 and SW1984), were identified and screened for microsatellites. New microsatellite markers were developed from these clones and mapped. Selected clones were also physically assigned by fluorescence in situ hybridization (FISH). Fifteen new microsatellite markers were added to the SSC18 linkage map resulting in a map of 28 markers. Six genes have been included into the genetic map improving the resolution of the SSC18 and HSA7 comparative map. Assignment of TCRG to SSC9 has identified a break in conserved synteny between SSC18 and HSA7.  相似文献   

2.
We have assigned all nine linkage groups of a Brassica oleracea genetic map to each of the nine chromosomes of the karyotype derived from mitotic metaphase spreads of the B. oleracea var. alboglabra line A12DHd using FISH. The majority of probes were BACs, with A12DHd DNA inserts, which give clear, reliable FISH signals. We have added nine markers to the existing integrated linkage map, distributed over six linkage groups. BACs were definitively assigned to linkage map positions through development of locus-specific PCR assays. Integration of the cytogenetic and genetic linkage maps was achieved with 22 probes representing 19 loci. Four chromosomes (2, 4, 7, and 9) are in the same orientation as their respective linkage groups (O4, O7, O8, and O6) whereas four chromosomes (1, 3, 5, and 8) and linkage groups (O3, O9, O2, and O1) are in the opposite orientation. The remaining chromosome (6) is probably in the opposite orientation. The cytogenetic map is an important resource for locating probes with unknown genetic map positions and is also being used to analyze the relationships between genetic and cytogenetic maps.  相似文献   

3.
A 5000rad whole-genome radiation hybrid (RH) panel was created for the horse. The usefulness of the panel for generating physically ordered maps of individual equine chromosomes was tested by typing 24 markers on horse Chromosome 11 (ECA11). The overall retention of markers on this chromosome was 43.6%. Almost complete retention of two of the typed markers—CA062 and AHT44—clearly indicated the location of thymidine kinase gene on the short arm of ECA11. Seven of the typed markers were FISH mapped to align the RH and cytogenetic maps. With the RH-MAPPER approach, a physically ordered map comprising four linkage groups and incorporating all the markers was obtained. The study provides the first comprehensive map for a horse chromosome that integrates all available mapping data and adds new information that spans the entire length of the equine chromosome. The map clearly underlines the resolving power and utility of the panel and emphasizes the need to have uniformly distributed cytogenetic markers for appropriate alignment of RH map with the chromosome. A comparative status of the ECA11 map in relation to the corresponding human/mouse chromosome is presented. Received: 7 June 2001 / Accepted: 4 October 2001  相似文献   

4.
The reliability of genome analysis and proficiency of genetic manipulation requires knowledge of the correspondence between the genetic and cytogenetic maps. In the present study, we integrated cytogenetic and microsatellite-based linkage maps for Zhikong scallop, Chlamys farreri. Thirty-eight marker-anchored BAC clones standing for the 19 linkage groups were used to be FISH probes. Of 38 BAC clones, 30 were successfully located on single chromosome by FISH and used to integrate the genetic and cytogenetic map. Among the 19 linkage groups, 12 linkage groups were physically anchored by 2 markers, 6 linkage groups were anchored by 1 marker, and one linkage group was not anchored any makers by FISH. In addition, using two-color FISH, six linkage groups were distinguished by different chromosomal location; linkage groups LG6 and LG16 were placed on chromosome 10, LG8 and LG18 on chromosome 14. As a result, 18 of 19 linkage groups were localized to 17 pairs of chromosomes of C. farreri. We first integrated genetic and cytogenetic map for C. farreri. These 30 chromosome specific BAC clones in the cytogenetic map could be used to identify chromosomes of C. farreri. The integrated map will greatly facilitate molecular genetic studies that will be helpful for breeding applications in C. farreri and the upcoming genome projects of this species.  相似文献   

5.
The developments of molecular marker-based genetic linkage maps are now routine. Physical maps based on contigs of large insert genomic clones have been established in several plant species. However, integration of genetic, physical, and cytological maps is still a challenge for most plant species. Here we present an integrated map of rice (Oryza sativa L.) chromosome 5, developed by fluorescence in situ hybridization mapping of 18 bacterial artificial chromosome (BAC) clones or PI-derived artificial chromosome (PAC) clones on meiotic pachytene chromosomes. Each BAC/PAC clone was anchored by a restriction fragment length polymorphism marker mapped to the rice genetic linkage map. This molecular cytogenetic map shows the genetic recombination and sequence information of a physical map, correlated to the cytological features of rice chromosome 5. Detailed comparisons of the distances between markers on genetic, cytological, and physical maps, revealed the distributions of recombination events and molecular organization of the chromosomal features of rice chromosome 5 at the pachytene stage. Discordance of distances between the markers was found among the different maps. Our results revealed that neither the recombination events nor the degree of chromatin condensation were evenly distributed along the entire length of chromosome 5. Detailed comparisons of the correlative positions of markers on the genetic, cytological, and physical maps of rice chromosome 5 provide insight into the molecular architecture of rice chromosome 5, in relation to its cytological features and recombination events on the genetic map. The prospective applications of such an integrated cytogenetic map are discussed.  相似文献   

6.
We present a genetic map based on microsatellite polymorphisms for the African human malaria vector, Anopheles gambiae. Polymorphisms in laboratory strains were detected for 89% of the tested microsatellite markers. Genotyping was performed for individual mosquitoes from 13 backcross families that included 679 progeny. Three linkage groups were identified, corresponding to the three chromosomes. We added 22 new markers to the existing X chromosome map, for a total of 46 microsatellite markers spanning a distance of 48.9 cM. The second chromosome has 57 and the third 28 microsatellite markers spanning a distance of 72.4 and 93.7 cM, respectively. The overall average distance between markers is 1.6 cM (or 1.1, 1.2, and 3.2 cM for the X, second, and third chromosomes, respectively). In addition to the 131 microsatellite markers, the current map also includes a biochemical selectable marker, Dieldrin resistance (Dl), on the second chromosome and five visible markers, pink-eye (p) and white (w) on the X, collarless (c) and lunate (lu) on the second, and red-eye (r) on the third. The cytogenetic locations on the nurse cell polytene chromosomes have been determined for 47 markers, making this map an integrated tool for cytogenetic, genetic, and molecular analysis.  相似文献   

7.
Amarillo FI  Bass HW 《Genetics》2007,177(3):1509-1526
A cytogenetic FISH map of maize pachytene-stage chromosome 9 was produced with 32 maize marker-selected sorghum BACs as probes. The genetically mapped markers used are distributed along the linkage maps at an average spacing of 5 cM. Each locus was mapped by means of multicolor direct FISH with a fluorescently labeled probe mix containing a whole-chromosome paint, a single sorghum BAC clone, and the centromeric sequence, CentC. A maize-chromosome-addition line of oat was used for bright unambiguous identification of the maize 9 fiber within pachytene chromosome spreads. The locations of the sorghum BAC-FISH signals were determined, and each new cytogenetic locus was assigned a centiMcClintock position on the short (9S) or long (9L) arm. Nearly all of the markers appeared in the same order on linkage and cytogenetic maps but at different relative positions on the two. The CentC FISH signal was localized between cdo17 (at 9L.03) and tda66 (at 9S.03). Several regions of genome hyperexpansion on maize chromosome 9 were found by comparative analysis of relative marker spacing in maize and sorghum. This transgenomic cytogenetic FISH map creates anchors between various maps of maize and sorghum and creates additional tools and information for understanding the structure and evolution of the maize genome.  相似文献   

8.
Genetic linkage map of human chromosome 21   总被引:19,自引:0,他引:19  
Two of the most common disorders affecting the human nervous system, Down syndrome and Alzheimer's disease, involve genes residing on human chromosome 21. A genetic linkage map of human chromosome 21 has been constructed using 13 anonymous DNA markers and cDNAs encoding the genes for superoxide dismutase 1 (SOD1) and the precursor of Alzheimer's amyloid beta peptide (APP). Segregation of restriction fragment length polymorphisms (RFLPs) for these genes and DNA markers was traced in a large Venezuelan kindred established as a "reference" pedigree for human linkage analysis. The 15 loci form a single linkage group spanning 81 cM on the long arm of chromosome 21, with a markedly increased frequency of recombination occurring toward the telomere. Consequently, 40% of the genetic length of the long arm corresponds to less than 10% of its cytogenetic length, represented by the terminal half of 21q22.3. Females displayed greater recombination than males throughout the linkage group, with the difference being most striking for markers just below the centromere. Definition of the linkage relationships for these chromosome 21 markers will help refine the map position of the familial Alzheimer's disease gene and facilitate investigation of the role of recombination in nondisjunction associated with Down syndrome.  相似文献   

9.
The objective of this project was to integrate the currently available linkage maps for bovine chromosome 7 (BTA7) by combining data sets from eight research groups. A total of 54 unique markers were typed in eight pedigrees. Multilocus linkage analysis with CRI-MAP produced a bovine chromosome 7 consensus framework map of 27 loci ordered with odds greater than 1000:1. Furthermore, we present a bovine chromosome 7 comprehensive map integrating 54 loci. The locus order is in general agreement with the recently published linkage maps except for one discrepancy. The order of loci BM9289, BMS713, and ILSTS001 was reversed in the consensus framework map relative to the published USDA-MARC bovine chromosome 7 linkage map.  相似文献   

10.
We used structural genomic resources for Sorghum bicolor (L.) Moench to target and develop multiple molecular cytogenetic probes that would provide extensive coverage for a specific chromosome of sorghum. Bacterial artificial chromosome (BAC) clones containing molecular markers mapped across sorghum linkage group A were labeled as probes for fluorescence in situ hybridization (FISH). Signals from single-, dual-, and multiprobe BAC-FISH to spreads of mitotic chromosomes and pachytene bivalents were associated with the largest sorghum chromosome, which bears the nucleolus organizing region (NOR). The order of individual BAC-FISH loci along the chromosome was fully concordant to that of marker loci along the linkage map. In addition, the order of several tightly linked molecular markers was clarified by FISH analysis. The FISH results indicate that markers from the linkage map positions 0.0-81.8 cM reside in the short arm of chromosome 1 whereas markers from 81.8-242.9 cM are located in the long arm of chromosome 1. The centromere and NOR were located in a large heterochromatic region that spans approximately 60% of chromosome 1. In contrast, this region represents only 0.7% of the total genetic map distance of this chromosome. Variation in recombination frequency among euchromatic chromosomal regions also was apparent. The integrated data underscore the value of cytological data, because minor errors and uncertainties in linkage maps can involve huge physical regions. The successful development of multiprobe FISH cocktails suggests that it is feasible to develop chromosome-specific "paints" from genomic resources rather than flow sorting or microdissection and that when applied to pachytene chromatin, such cocktails provide an especially powerful framework for mapping. Such a molecular cytogenetic infrastructure would be inherently cross-linked with other genomic tools and thereby establish a cytogenomics system with extensive utility in development and application of genomic resources, cloning, transgene localization, development of plant "chromonomics," germplasm introgression, and marker-assisted breeding. In combination with previously reported work, the results indicate that a sorghum cytogenomics system would be partially applicable to other gramineous genera.  相似文献   

11.
Trisomy 21: Association between reduced recombination and nondisjunction   总被引:27,自引:16,他引:11       下载免费PDF全文
To assess the association between recombination and nondisjunction of chromosome 21, we analyzed cytogenetic and DNA markers in 104 trisomy 21 individuals and their parents. Our DNA marker studies of parental origin were informative in 100 cases, with the overwhelming majority (94) being maternal in origin. This value is significantly higher than the 75%-80% maternal nondisjunction rate typically observed in cytogenetic studies of trisomy 21 and illustrates the increased accuracy of the molecular approach. Using the maternally derived cases and probing at 19 polymorphic sites on chromosome 21, we created a genetic map that spans most of the long arm of chromosome 21. The map was significantly shorter than the normal female linkage map, indicating that absence of pairing and/or recombination contributes to nondisjunction in a substantial proportion of cases of trisomy 21.  相似文献   

12.
To link the cytogenetic map for mouse chromosome 16 (Chr 16) to the more detailed recombinational and physical maps, multiple probes were mapped by fluorescence in situ hybridization (FISH). Sixteen large insert clones (YACs, BACs, and PACs) containing markers that have been assigned to the Chr 16 recombinational map were localized to a cytogenetic band or subband by high-resolution FISH. This linkage of the cytogenetic and recombinational maps provides a useful tool for assigning new probe locations and for defining breakpoints in mice with chromosomal rearrangements. A direct application of these probes is demonstrated by identifying mice trisomic for distal Chr 16 using FISH analysis of interphase nuclei.  相似文献   

13.
The previous genetic mapping data have suggested that most of the rainbow trout sex chromosome pair is pseudoautosomal, with very small X-specific and Y-specific regions. We have prepared an updated genetic and cytogenetic map of the male rainbow trout sex linkage group. Selected sex-linked markers spanning the X chromosome of the female genetic map have been mapped cytogenetically in normal males and genetically in crosses between the OSU female clonal line and four different male clonal lines as well as in outcrosses involving outbred OSU and hybrids between the OSU line and the male clonal lines. The cytogenetic maps of the X and Y chromosomes were very similar to the female genetic map for the X chromosome. Five markers on the male maps are genetically very close to the sex determination locus ( SEX ), but more widely spaced on the female genetic map and on the cytogenetic map, indicating a large region of suppressed recombination on the Y chromosome surrounding the SEX locus. The male map is greatly extended at the telomere. A BAC clone containing the SCAR (sequence characterized amplified region) Omy - 163 marker, which maps close to SEX , was subjected to shotgun sequencing. Two carbonyl reductase genes and a gene homologous to the vertebrate skeletal ryanodine receptor were identified. Carbonyl reductase is a key enzyme involved in production of trout ovarian maturation hormone. This brings the number of type I genes mapped to the sex chromosome to six and has allowed us to identify a region on zebrafish chromosome 10 and medaka chromosome 13 which may be homologous to the distal portion of the long arm of the rainbow trout Y chromosome.  相似文献   

14.
《Genomics》1995,29(3)
Three sets of linkage maps (index, comprehensive microsatellite, and unified) have been constructed for human chromosome 14 based on genotypes from the CEPH reference pedigrees. The index maps consist of 18 microsatellite markers, with heterozygosities of at least 68% and intermarker spacing no greater than 11 cM. The sex-average comprehensive microsatellite map is 125 cM in length and includes 115 markers with 54 loci uniquely placed with odds for marker order of at least 1000:1. The sex-average index map length is 121 cM, and the female- and male-specific maps are 143 and 101 cM, respectively. A unified map was also constructed from 147 loci (162 marker systems), which includes 32 RFLP markers in addition to the 115 microsatellites. The sex-average length of the unified map is 128 cM with 69 loci uniquely placed. Our maps are anchored by a microsatellite telomere marker sCAW1 (D14S826), developed from a telomere YAC clone TYAC196, which extends the linkage map to the physical terminus of the long arm of chromosome 14. Furthermore, we have also physically mapped seven of the loci by fluorescencein situhybridization of cosmid clones orAlu-PCR products amplified from YACs containing the marker sequences. Together with previously established cytogenetic map designations for other loci, our maps display links between genetic markers for 10 of 13 cytogenetic bands of chromosome 14 at the 550 genome band resolution.  相似文献   

15.
Han Y  Zhang Z  Huang S  Jin W 《BMC genetics》2011,12(1):18-7

Background

Integration of molecular, genetic and cytological maps is still a challenge for most plant species. Recent progress in molecular and cytogenetic studies created a basis for developing integrated maps in cucumber (Cucumis sativus L.).

Results

In this study, eleven fosmid clones and three plasmids containing 45S rDNA, the centromeric satellite repeat Type III and the pericentriomeric repeat CsRP1 sequences respectively were hybridized to cucumber metaphase chromosomes to assign their cytological location on chromosome 2. Moreover, an integrated molecular cytogenetic map of cucumber chromosomes 2 was constructed by fluorescence in situ hybridization (FISH) mapping of 11 fosmid clones together with the cucumber centromere-specific Type III sequence on meiotic pachytene chromosomes. The cytogenetic map was fully integrated with genetic linkage map since each fosmid clone was anchored by a genetically mapped simple sequence repeat marker (SSR). The relationship between the genetic and physical distances along chromosome was analyzed.

Conclusions

Recombination was not evenly distributed along the physical length of chromosome 2. Suppression of recombination was found in centromeric and pericentromeric regions. Our results also indicated that the molecular markers composing the linkage map for chromosome 2 provided excellent coverage of the chromosome.  相似文献   

16.
Recently two main genetic maps [Rohrer et al. Genetics 136, 231 (1994); Archibald et al. Mamm. Genome 6, 157 (1995)] and a cytogenetic map [Yerle et al. Mamm. Genome 6, 175 (1995)] for the porcine genome were reported. As only a very few microsatellites are located on the cytogenetic map, it appears to be important to increase the relationships between the genetic and cytogenetic maps. This document describes the regional mapping of 100 genetic markers with a somatic cell hybrid panel. Among the markers, 91 correspond to new localizations. Our study enabled the localization of 14 new markers found on both maps, of 54 found on the USDA map, and of 23 found on the PiGMaP map. Now 21% and 43% of the markers on the USDA and PiGMaP linkage maps respectively are physically mapped. This new cytogenetic information was then integrated within the framework of each genetic map. The cytogenetic orientation of the USDA linkage maps for Chromosomes (Chrs) 3, 8, 9, and 16 and of PiGMaP for Chr 8 was determined. USDA and PiGMaP linkage maps are now oriented for all chromosomes, except for Chrs 17 and 18. Moreover, the linkage group ``R' from the USDA linkage map was assigned to Chr 6. Received: 21 September 1995 / Accepted: 19 January 1996  相似文献   

17.
More than 375,000 BAC-end sequences (BES) of the CHORI-243 ovine BAC library have been deposited in public databases. blastn searches with these BES against HSA18 revealed 1806 unique and significant hits. We used blastn-anchored BES for an in silico prediction of gene content and chromosome assignment of comparatively mapped ovine BAC clones. Ovine BES were selected at approximately 1.3-Mb intervals of HSA18 and incorporated into a human-sheep comparative map. An ovine 5000-rad whole-genome radiation hybrid panel (USUoRH5000) was typed with 70 markers, all of which mapped to OAR23. The resulting OAR23 RH map included 43 markers derived from BES with high and unique BLAST hits to the sequence of the orthologous HSA18, nine EST-derived markers, 16 microsatellite markers taken from the ovine linkage map and two bovine microsatellite markers. Six new microsatellite markers derived from the 43 mapped BES and the two bovine microsatellite markers were linkage-mapped using the International Mapping Flock (IMF). Thirteen additional microsatellite markers were derived from other ovine BES with high and unique BLAST hits to the sequence of the orthologous HSA18 and also positioned on the ovine linkage map but not incorporated into the OAR23 RH map. This resulted in 24 markers in common and in the same order between the RH and linkage maps. Eight of the BES-derived markers were mapped using fluorescent in situ hybridization (FISH), to thereby align the RH and cytogenetic maps. Comparison of the ovine chromosome 23 RH map with the HSA18 map identified and localized three major breakpoints between HSA18 and OAR23. The positions of these breakpoints were equivalent to those previously shown for syntenic BTA24 and HSA18. This study presents evidence for the usefulness of ovine BES when constructing a high-resolution comprehensive map for a single sheep chromosome. The comparative analysis confirms and refines knowledge about chromosomal conservation and rearrangements between sheep, cattle and human. The constructed RH map demonstrates the resolution and utility of the newly constructed ovine RH panel.  相似文献   

18.
Integration of chicken genomic resources to enable whole-genome sequencing   总被引:1,自引:0,他引:1  
Different genomic resources in chicken were integrated through the Wageningen chicken BAC library. First, a BAC anchor map was created by screening this library with two sets of markers: microsatellite markers from the consensus linkage map and markers created from BAC end sequencing in chromosome walking experiments. Second, HINdIII digestion fingerprints were created for all BACs of the Wageningen chicken BAC library. Third, cytogenetic positions of BACs were assigned by FISH. These integrated resources will facilitate further chromosome-walking experiments and whole-genome sequencing.  相似文献   

19.
A molecular genetic linkage map of mouse chromosome 13 was constructed using cloned DNA markers and interspecific backcross mice from two independent crosses. The map locations of Ctla-3, Dhfr, Fim-1, 4/12, Hexb, Hilda, Inhba, Lamb-1.13, Ral, Rrm2-ps3, and Tcrg were determined with respect to the beige (bg) and satin (sa) loci. The map locations of these genes confirm and extend regions of homology between mouse chromosome 13 and human chromosomes 5 and 7, and identify a region of homology between mouse chromosome 13 and human chromosome 6. The molecular genetic linkage map of chromosome 13 provides a framework for establishing linkage relationships between cloned DNA markers and known mouse mutations and for identifying homologous genes in mice and humans that may be involved in disease processes.  相似文献   

20.
A. Zhan  J. Hu  X. Hu  M. Hui  M. Wang  W. Peng  X. Huang  S. Wang  W. Lu  C. Sun  Z. Bao 《Animal genetics》2009,40(6):821-831
We constructed the microsatellite-based linkage maps using 318 markers typed in two F1 outbred families of Zhikong scallop ( Chlamys farreri ). The results showed an extremely high proportion (56.2%) of non-amplifying null alleles and a high ratio (30%) of segregation distortion. By aligning different individual-based linkage maps, 19 linkage groups were identified, which are consistent with the haploid chromosome number of Zhikong scallop. The integrated linkage map contains 154 markers covering 1561.8 cM with an average intermarker spacing of 12.3 cM and 77.0% of genome coverage. We found that the heterogeneity in recombination rate was not determined by sexes but by different individuals on 18 linkage regions. The phenotypic marker of general shell colour was placed on LG4, which was flanked by microsatellite markers CFLD064 and CFBD055 . Four size-related traits including shell length (SL), shell width (SW), shell height (SH) and gross weight (GW) were analysed to identify the putative quantitative trait loci (QTL). Under the half-sib model, using dam as common parent, three, two, two and one QTL affecting SL, SW, SH and GW exceeded the genome-wide thresholds respectively. While using sir as common parent, a larger number of QTL were detected for these four traits: four, five, three and two for SL, SW, SH and GW respectively. The single QTL explained 3.7–19.2% of the phenotypic variation. The linkage map and the QTL associated with economic traits will provide useful information for marker-assisted selection of Zhikong scallop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号