首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Differential Responses of Crab Neuromuscular Synapses to Cesium Ion   总被引:1,自引:0,他引:1       下载免费PDF全文
Excitatory postsynaptic potentials (EPSP's) generated in crab muscle fibers by a single motor axon, differ in amplitude and facilitation. Some EPSP's are large at low frequencies of stimulation and show little facilitation; others are smaller and show pronounced facilitation. When K+ is replaced by Cs+ in the physiological solution, all EPSP's increase in amplitude, but small EPSP's increase proportionately more than large ones. Quantal content of transmission, determined by external recording at single synaptic regions, undergoes a much larger increase at facilitating synapses. The increase in quantal content of transmission is attributable to prolongation of the nerve terminal action potential in Cs+. After 1–2 h of Cs+ treatment, defacilitation of synaptic potentials occurs at synapses which initially showed facilitation. This indicates that Cs+ treatment drastically increases the fraction of the "immediately available" transmitter store released by each nerve impulse, especially at terminals with facilitating synapses. It is proposed that facilitating synapses normally release less of the "immediately available" store of transmitter than poorly facilitating synapses. Possible reasons for this difference in performance are discussed.  相似文献   

2.
The action of thiamine on neuromuscular transmission in the frog sartorius muscle was investigated. It was found that thiamine at a concentration of 1×10–14 to 1×10–4 M increases transmitter secretion at the nerve endings. This is demonstrated by the increased frequency, amplitude, and quantal content of miniature endplate potentials, and is due to the enhanced likelihood of transmitter release. The role of thiamine in regulating synaptic transmission and the mechanism of its interaction with thiamine-sensitive receptors are examined.A. V. Palladin Institute of Biochemistry, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 6, pp. 794–800, November–December, 1985.  相似文献   

3.
Thiamine at a concentration of 1×10–14 to 1×10–4 M facilitated neuromuscular transmission at the glutaminergic synapse of the crayfish adapter, manifesting as increased amplitude and quantal content of excitatory postsynaptic potentials and raised frequency of miniature excitatory postsynaptic potentials. Thiamine augmented spontaneous electrical activity and the amplitude of synaptic potentials in the longitudinal muscle of guinea pig taenia coli. It was found from studying the effects of thiamine on the membrane potential of rat brain synaptosomes that its presynaptic action is brought about by depolarization of the nerve terminal membrane. Interaction between thiamine and the nerve endings was described by a Hill coefficient of 0.22–0.30, indicating that it has several binding sites within the structure of the receptor concerned.A. V. Palladin Institute of Biochemistry, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 5, pp. 621–629, September–October, 1986.  相似文献   

4.
This article compares four models of amplitude fluctuations in postsynaptic potentials. The convolution of two binomial distributions and the beta model proved the best fit with experimentally obtained data (as compared with the binomial model). The beta model is based on the assumption that the probability of quantal transmitter release is a random variable with a beta distribution. Numbers of quantal generators as estimated by the beta model were found to resemble numbers of morphological identifiable synaptic boutons. Findings from research using this model showed that the binomial parameter n may be interpreted as the number of transmitter release sites functioning with a probability in excess of 0.2. The findings obtained confirm the postulated functional diversity of release sites at interneuronal synapses.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 21, No. 6, pp. 780–788, November–December, 1989.  相似文献   

5.
Involvement of the adenylate cyclase system in cholinergic modulation of synaptic transmission was investigated in area CA1 in rat hippocampal slices. Microiontophoretic application of acetylcholine as well as addition of carbachol to the superfusate or of tolbutamide (a cAMP-dependent protein kinase inhibitor) depressed transmission at synapses formed by Schaffer collaterals and commissural fibers with dendrites of pyramidal cells belonging to hippocampal area CA1. Both numbers of free quanta of neurotransmitter and the likelihood of transmitter release decreased following carbachol action. Atropine suppressed the inhibitory action of carbachol on synaptic transmission. Dibutyryl cAMP and forskolin increased the amplitude of synaptic potentials and suppressed, either partially or in full, the inhibitory effects of cholinomimetics on synaptic potentials. It was concluded that cholinomimetics and activators of the adenylate cyclase system exert opposing effects on neurotransmission at synapses formed between Schaffer collaterals/commissural fibers and dendrites of pyramidal neurons belonging to hippocampal area CA1.Institute of Biophysics, Academy of Sciences of the USSR, Pushchino. Translated from Neirofiziologiya, Vol. 21, No. 4, pp. 435–442, July–August, 1989.  相似文献   

6.
Synaptic delay of single-quantum response with low mean quantal size (0.05–1) was measured during experiments on preparations of frog neuromuscular junctions using extracellular focal recording of presynaptic action potentials and endplate currents. It was found that distribution of these synaptic delays is of a polymodal nature and mean intermodal interval equaled 0.22±0.01 msec over 13 experiments. An increase in quantal size produced only a redistribution of mode weighting, while mean modal interval remained unchanged. A reduction in temperature induced an increase in the modal interval with the temperature coefficient Q10=2.42±0.14 (n=15). The explanation is suggested that the process of quantal transmitter release is determined by interaction between the calcium-dependent mechanism for raising the likelihood of release on the one hand and the rhythmic operation of the system producing transmitter release on the other. The latter stage in the process depends on temperature, not intracellular Ca2+ concentration. The polymodal distribution of synaptic delay reflects the rhythmic operation of the transmitter release zone.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 18, No. 6, pp. 748–756, November–December, 1986.  相似文献   

7.
Presynaptic and postsynaptic potentials were examined by intracellular recording at a crayfish neuromuscular junction. During normal synaptic transmission, the action potentials were recorded in the terminal region of the excitatory axon and postsynaptic responses were obtained in the muscle fibers. We found that it was possible to modify the synaptic transmission by applying depolarizing or hyperpolarizing currents through the presynaptic intracellular electrode. Typically, a 7-15 mV depolarization lasting longer than 50 msec leads to a large (500%) enhancement of transmitter release, even though the preterminal action potential is reduced in amplitude. Hyperpolarization increases the amplitude of the action potential, but slightly reduces the transmitter release. These results are different from those reported for other neuromuscular synapses and the squid giant synapse, but are similar in many respects to the results reported for several invertebrate central synapses. We conclude, first, that different synapses may have markedly different responses to conditioning by membrane polarization and, secondly, that maintained low-level depolarization may induce a potentiated state in the nerve terminal, perhaps brought about by slow entry of calcium.  相似文献   

8.
It was found during experiments on isolated frog spinal cord involving extracellular recording from the dorsal roots (sucrose bridging) and intracellular recording from motoneurons by microelectrodes that 10 mM of the M-cholinomimetic arecoline produces motoneuronal depolarization which is matched by depolarizing electronic ventral root potentials and a rise in motoneuronal input resistance. Arecoline changes synaptic transmission by increasing the amplitude of postsynaptic potentials during intracellular recording and that of motoneuronal reflex discharges in the ventral roots but reduces the duration of dorsal root potentials. In the presence of arecoline, L-glutamate-induced motoneuronal response increases. Facilitation of synaptic transmission produced by arecoline in the spinal cord is bound up with cholinergic M2- activation, since it is suppressed by atropine but not by low concentrations of pirenzipine; it is also coupled with a reduction in adenylcyclase activity. When motoneuronal postsynaptic response has been suppressed, as in the case of surplus calcium or theophylline, arecoline produces an inhibitory effect on the amplitude of motoneuronal monosynaptic reflex discharges which is suppressed by pirenzipine at a concentration of 1×10–7 M. This would indicate the presence at the primary afferent terminals of presynaptic cholinergic M1 receptors which mediate its inhibition of impulses of transmitter release. This effect is independent of changes in cyclic nucleotide concentration.A. M. Gorkii Medical Institute, Donetsk. Translated from Neirofiziologiya, Vol. 19, No. 3, pp. 399–405, May–June, 1987.  相似文献   

9.
We have elucidated some of the mechanisms by which ethanol (EtOH) reduces synaptic efficacy at model glutamatergic synapses. The crayfish phasic and tonic neuromuscular junctions are superb models for directly assessing the effects of EtOH on pre-synaptic components of synaptic transmission. The ability to perform quantal analysis of synaptic transmission has allowed us to assess pre-synaptic alterations of release. Using this system, we report that the application of EtOH, within a range observed in intoxicated humans (44 and 88 mM), resulted in a diminution of excitatory post-synaptic potentials (EPSP) amplitudes. Additionally, using focal macro-patch recordings, quantal synaptic currents were recorded to assess the pre-synaptic component as potential target sites for EtOH's action. At the tonic neuromuscular junctions, EtOH (88 mM) reduced the probability of release (p), and in some cases, reduced the number of the release sites (n), but did not alter facilitation index nor did it affect the latency of vesicular release. At the phasic neuromuscular junction, a reduction in synaptic charge occurred during the presence of EtOH. Thus, the observed decrease in synaptic strength is at least partially attributable to a pre-synaptic alteration, specifically the release of fewer vesicles.  相似文献   

10.
Microelectrode registration of synaptic potentials in the frog cutaneous-pectoris muscle has shown dimedrol (7.9 X 10(-5) M) to act on synaptic transmission decreasing the quantal content, estimated by mean EPP amplitude to mean miniature EPP amplitude ratio, the quantal content calculated by variation coefficient of EPP amplitude being unaffected. The data suggest possible transmitter release and depletion of mediator stock. The experiments on isolated motor nerve fibers have demonstrated dimedrol to cause the increase in transmitter release probability by widening the action potentials in the terminals and thus enhancing Ca2+ influx.  相似文献   

11.
Chemical synaptic transmission is a fundamental component of interneuronal communications in the central nervous system (CNS). Discharge of a presynaptic vesicle containing a few thousand molecules (a quantum) of neurotransmitter into the synaptic cleft generates a transmitter concentration signal that drives postsynaptic ion-channel receptors. These receptors exhibit multiple states, with state transition kinetics dependent on neurotransmitter concentration. Here, a novel and simple analytical approach for describing gating of multi-state receptors by signals with complex continuous time courses is used to describe the generation of glutamate-mediated quantal postsynaptic responses at brain synapses. The neurotransmitter signal, experienced by multi-state N-methyl-D-aspartate (NMDA)- and L-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-type glutamate receptors at specific points in a synaptic cleft, is approximated by a series of step functions of different intensity and duration and used to drive a Markovian, multi-state kinetic scheme that describes receptor gating. Occupancy vectors at any point in time can be computed interatively from the occupancy vectors at the times of steps in transmitter concentration. Multi-state kinetic schemes for both the low-affinity AMPA subtype of glutamate receptor and for the high-affinity NMDA subtype are considered, and expected NMDA and AMPA components of synaptic currents are calculated. The amplitude of quantal responses mediated by postsynaptic receptor clusters having specific spatial distributions relative to foci of quantal neurotransmitter release is then calculated and related to the displacement between the center of the postsynaptic receptor cluster and the focus of synaptic vesicle discharge. Using this approach we show that the spatial relation between the focus of release and the center of the postsynaptic receptor cluster affects synaptic efficacy. We also show how variation in this relation contributes to variation in synaptic current amplitudes.  相似文献   

12.
The mechanism of action of chlordimeform on the mealworm nerve-muscle preparation was studied with microelectrodes. Chlordimeform affected neither the mean amplitude nor the frequency of spontaneous miniature excitatory postsynaptic potentials. Extracellular focal recordings show that in the presence of 0.8 mM chlordimeform the presynaptic spike is almost unchanged, but the quantal content for evoked transmitter release is reduced. It is suggested that chlordimeform decreases the influx of calcium at the presynaptic terminal during the active phase of the nerve terminal action potential, thereby inhibiting evoked transmitter release.  相似文献   

13.
4-Aminopyridine markedly potentiates transmitter release at the frog pectoris neuromuscular junction by increasing the quantal content even when applied at low concentrations (5-20 microM). This enhancement of transmitter release is associated with greater minimum synaptic latency, but the dispersion of the synaptic latencies does not appear much affected. This is in contrast with the action of tetraethylammonium (0.2-0.5 mM) in which case similar enhancement of transmitter release results not only in larger minimum synaptic latency but also in greater dispersion of the synaptic latencies. The time course of transmitter release associated with enhanced transmitter output is hence much more prolonged in the presence of tetraethylammonium than 4-aminopyridine, at least for low concentrations of 4-aminopyridine (5-20 microM). This indicates that their presynaptic actions differ significantly. This conclusion is further strengthened by the finding that unlike tetraethylammonium, 4-aminopyridine induces bursts of release, presumably by producing multiple action potentials in the nerve terminal. Tetraethylammonium probably acts by blocking the delayed potassium conductance, but the blockade of Ca2+-activated K+ conductance cannot be excluded. 4-Aminopyridine, however, probably blocks the fast inactivating (IA) K+ current, but it also may be acting directly on the voltage-dependent Ca2+ conductance or on the intracellular Ca2+ buffering.  相似文献   

14.
Spontaneous quantal and nonquantal acetylcholine release were investigated at an ambient temperature range of 10–35°C in a preparation of white mouse hemidiaphragm. Quantal transmitter release was assessed by the frequency of miniature endplate potentials and nonquantal secretion by the level of H-effect. Spontaneous quantal release rose exponentially in step with increasing temperature. Two relative maxima, one of 20°C and the other of 35°C were noted in the temperature dependence of nonquantal transmitter release. Nonquantal release of acetylcholine did not take place at a temperature of 10°C. The effective energy of activation of quantal release was calculated as 57.0 kJ/mole over the temperature range investigated; that of the nonquantal release process at intervals of 15–20°C and 25–35°C measured 45.5 and 38.2 kJ/mole respectively. It is suggested that an active transport system process rather than simple diffusion of acetylcholine molecules is responsible for nonquantal release of this neurotransmitter.S. V. Kurashov Medical Institute, Kazan'. Translated from Neirofiziologiya, Vol. 18, No. 3, pp. 361–367, May–June, 1986.  相似文献   

15.
The effects of cadmium ions on synaptic transmission in the frog tectum were investigated in acute experiments using quantal EEG recording techniques (readings of extracellular monosynaptic potential induced by activating the synapses of a single axon) [1]. Superfusion of the tectum by 10–200 µM CdCl2 reversibly inhibits EEG quanta, reduces their duration (measured at 50% amplitude level) and increases synaptic delay. The results of this study confirm the concept formed from in vitro experiments of votage-dependent calcium channels as one of the likely Cd2+ action sites at central synapses. It is concluded that cadmium-induced industrial pollution may also pose a threat in the form of damaging action on the central nervous system.Medical Institute, Ministry of Public Health of the Lithuanian SSR, Kaunas. Translated from Neirofiziologiya, Vol. 21, No. 6, pp. 756–765, November–December, 1989.  相似文献   

16.
Inhibitory patterns in monosynaptic components of field potentials and potentials in the dorsal spinal cord surface were investigated during acute experiments on cats involving low-frequency stimulation of cutaneous peripheral nerves. Approximation of experimental data obtained from a theoretical plot was performed adopting a standard model of transmitter storage and release. Parameters of fractional release and replenishment of transmitter depleted from synaptic junctions were determined. Processes of replenishing supplies of transmitter for release were seen to intensify under rhythmic stimulation. A comparison between these experimental findings on the character of synapses of the monosynaptic reflex arc and others found in the literature indicated a similarity between the parameters of the mechanism underlying transmitter mobilization and release at different synaptic junctions formed by primary afferent fibers.Dnepropetrovsk State University Commemorating the 300th Aniversary of Ukraine-Russian Reunion, Dnepropetrovsk. Translated from Neirofiziologiya, Vol. 19, No. 4, pp. 491–497, July–August, 1987.  相似文献   

17.
The application of fluctuation analysis to studies of synaptic function in the neocortex is discussed. Analysis of failures of transmission has been valuable in indicating whether a presynaptic or a postsynaptic site is responsible for a change in synaptic efficacy. When combined with detailed ultrastructural verification of all synapses involved in an individual cell to cell connection, a reasonable estimate of quantal size and release probability under conditions of low frequency activity can be obtained. However, both the number of available release sites in functional terms and the probability that an action potential (AP) will release transmitter from any given site can vary from AP to AP at higher frequencies. A variety of presynaptic mechanisms that modulate release are now apparent. For example, one mechanism dominates release patterns at one class of connection which is insensitive to absolute firing frequency, but responsive to changes in frequency. At another class of connection, a different mechanism dominates, resulting in high sensitivity to frequency.  相似文献   

18.
19.
Liu G  Choi S  Tsien RW 《Neuron》1999,22(2):395-409
To understand the elementary unit of synaptic communication between CNS neurons, one must know what causes the variability of quantal postsynaptic currents and whether unitary packets of transmitter saturate postsynaptic receptors. We studied single excitatory synapses between hippocampal neurons in culture. Focal glutamate application at individual postsynaptic sites evoked currents (I(glu)) with little variability compared with quantal excitatory postsynaptic currents (EPSCs). The maximal I(glu) was >2-fold larger than the median EPSC. Thus, variations in [glu]cleft are the main source of variability in EPSC size, and glutamate receptors are generally far from saturation during quantal transmission. This conclusion was verified by molecular antagonism experiments in hippocampal cultures and slices. The general lack of glutamate receptor saturation leaves room for increases in [glu]cleft as a mechanism for synaptic plasticity.  相似文献   

20.
Experiments on isolated frog nerve-muscle preparations showed that manganese ions (0.4–5.0 mM) inhibit evoked transmitter release by reducing the quantum composition of the end-plate potentials, and they intensify spontaneous transmitter release to a certain extent by increasing the frequency of miniature potentials. Verapamil (1 · 10–6–5·10–5 g/ml) and D-600 (2.5·10–5 g/ml), by contrast with manganese ions, do not inhibit evoked release, but also intensify spontaneous release of the transmitter. All the agents tested prevent the potentiating effect of imidazole (3 mM). During repetitive stimulation, verapamil disturbs action potential generation in the motor nerve. Manganese ions had no such action. It is concluded that between the calcium channels of motor nerve endings and the calcium channels of heart muscle or the neuron soma there are molecular differences, expressed as sensitivity to the blocking action of verapamil and D-600.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 9, No. 4, pp. 415–422, July–August, 1977.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号