首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To search for submolecular foldon units, the spontaneous reversible unfolding and refolding of staphylococcal nuclease under native conditions was studied by a kinetic native-state hydrogen exchange (HX) method. As for other proteins, it appears that staphylococcal nuclease is designed as an assembly of well-integrated foldon units that may define steps in its folding pathway and may regulate some other functional properties. The HX results identify 34 amide hydrogens that exchange with solvent hydrogens under native conditions by way of large transient unfolding reactions. The HX data for each hydrogen measure the equilibrium stability (ΔGHX) and the kinetic unfolding and refolding rates (kop and kcl) of the unfolding reaction that exposes it to exchange. These parameters separate the 34 identified residues into three distinct HX groupings. Two correspond to clearly defined structural units in the native protein, termed the blue and red foldons. The remaining HX grouping contains residues, not well separated by their HX parameters alone, that represent two other distinct structural units in the native protein, termed the green and yellow foldons. Among these four sets, a last unfolding foldon (blue) unfolds with a rate constant of 6 × 10− 6 s− 1 and free energy equal to the protein's global stability (10.0 kcal/mol). It represents part of the β-barrel, including mutually H-bonding residues in the β4 and β5 strands, a part of the β3 strand that H-bonds to β5, and residues at the N-terminus of the α2 helix that is capped by β5. A second foldon (green), which unfolds and refolds more rapidly and at slightly lower free energy, includes residues that define the rest of the native α2 helix and its C-terminal cap. A third foldon (yellow) defines the mutually H-bonded β1-β2-β3 meander, completing the native β-barrel, plus an adjacent part of the α1 helix. A final foldon (red) includes residues on remaining segments that are distant in sequence but nearly adjacent in the native protein. Although the structure of the partially unfolded forms closely mimics the native organization, four residues indicate the presence of some nonnative misfolding interactions. Because the unfolding parameters of many other residues are not determined, it seems likely that the concerted foldon units are more extensive than is shown by the 34 residues actually observed.  相似文献   

2.
Previous results indicate that the folding pathways of cytochrome c and other proteins progressively build the target native protein in a predetermined stepwise manner by the sequential formation and association of native-like foldon units. The present work used native state hydrogen exchange methods to investigate a structural anomaly in cytochrome c results that suggested the concerted folding of two segments that have little structural relationship in the native protein. The results show that the two segments, an 18-residue omega loop and a 10-residue helix, are able to unfold and refold independently, which allows a branch point in the folding pathway. The pathway that emerges assembles native-like foldon units in a linear sequential manner when prior native-like structure can template a single subsequent foldon, and optional pathway branching is seen when prior structure is able to support the folding of two different foldons.  相似文献   

3.
In vitro selections of stabilized proteins lead to more robust enzymes and, at the same time, yield novel insights into the principles of protein stability. We employed Proside, a method of in vitro selection, to find stabilized variants of TEM-1 β-lactamase from Escherichia coli. Proside links the increased protease resistance of stabilized proteins to the infectivity of a filamentous phage. Several libraries of TEM-1 β-lactamase variants were generated by error-prone PCR, and variants with increased protease resistance were obtained by raising temperature or guanidinium chloride concentration during proteolytic selections. Despite the small size of phage libraries, several strongly stabilizing mutations could be obtained, and a manual combination of the best shifted the profiles for thermal unfolding and temperature-dependent inactivation of β-lactamase by almost 20 °C to a higher temperature. The wild-type protein unfolds in two stages: from the native state via an intermediate of the molten-globule type to the unfolded form. In the course of the selections, the native protein was stabilized by 27 kJ mol− 1 relative to the intermediate and the cooperativity of unfolding was strongly increased. Three of our stabilizing replacements (M182T, A224V, and R275L) had been identified independently in naturally occurring β-lactamase variants with extended substrate spectrum. In these variants, they acted as global suppressors of destabilizations caused by the mutations in the active site. The comparison between the crystal structure of our best variant and the crystal structure of the wild-type protein indicates that most of the selected mutations optimize helices and their packing. The stabilization by the E147G substitution is remarkable. It removes steric strain that originates from an overly tight packing of two helices in the wild-type protein. Such unfavorable van der Waals repulsions are not easily identified in crystal structures or by computational approaches, but they strongly reduce the conformational stability of a protein.  相似文献   

4.
We examined the co-operativity of ultra-fast folding of a protein and whether the Phi-value analysis of its transition state depended on the location of the optical probe. We incorporated in turn a tryptophan residue into each of the three helices of the B domain of Protein A. Each Trp mutant of the three-helix bundle protein was used as a pseudo-wild-type parent for Phi-analysis in which the intrinsic Trp fluorescence probed the formation of each helix during the transition state. Apart from local effects in the immediate vicinity of the probe, the three separate sets of Phi-values were in excellent agreement, demonstrating the overall co-operativity of folding and the robustness of the Phi-analysis. The transition state of folding of Protein A contains the second helix being well formed with many stabilizing tertiary hydrophobic interactions. In contrast, the first and the third helices are more poorly structured in the transition state. The mechanism of folding thus involves the concurrent formation of secondary and tertiary interactions, and is towards the nucleation-condensation extreme in the nucleation-condensation-framework continuum of mechanism, with helix 2 being the nucleus. We provide an error analysis of Phi-values derived purely from the kinetics of two-state chevron plots.  相似文献   

5.
Native-state structures and conformations of ferrocytochrome c, nitrosylcytochrome c, and carbonmonoxycytochrome c are very similar. They are, however, immensely different from each other in terms of thermodynamic stability. The dramatic destabilization of ferrocytochrome c to the extent of 12 kcal mol(-1) produces no effect on the folding rate, and this is so in spite of the fact that all three test-tube variants fold in an apparent two-state manner. For all three proteins the folding barrier is early in time, sizable in energy, and is of the same magnitude (approximately 6.5 kcal mol(-1)). These results raise some challenges to the "new view" of protein folding. An early transition state, the search for which consumes most of the observed folding time, is suggested.  相似文献   

6.
The B domain of protein A (BdpA) is a popular paradigm for simulating protein folding pathways. The discrepancies between so many simulations and subsequent experimental testing may be attributable to the protein being highly symmetrical: changing experimental conditions could perturb the subtle interplay between the effects of symmetry in the native structure and the effects of asymmetry from specific interactions in a given sequence. If the protein folds via multiple pathways, perturbations, such as temperature, denaturant concentration, and mutation, should change the flux of micro pathways, leading to changes in the bulk properties of the transition state. We tested this hypothesis by conducting a Phi-analysis of BdpA as a function of temperature from 25.0 degrees C to 60.0 degrees C. The Phi-values had no significant dependence on temperature and the values at 55.0 degrees C (denaturing conditions) are very similar to those at 25.0 degrees C (folding conditions), indicating the structure of the transition state does not significantly change although the experimental conditions are considerably altered. The results suggest that BdpA folds via a single dominant folding pathway.  相似文献   

7.
The cold shock protein CspB shows a five-stranded beta-sheet structure, and it folds rapidly via a native-like transition state. A previous Phi value analysis showed that most of the residues with Phi values close to one reside in strand beta1, and two of them, Lys5 and Lys7 are partially exposed charged residues. To elucidate how coulombic interactions of these two residues contribute to the energetic organisation of the folding transition state we performed comparative folding experiments in the presence of an ionic denaturant (guanidinium chloride) and a non-ionic denaturant (urea) and a double-mutant analysis. Lys5 contributes 6.6 kJ mol(-1) to the stability of the transition state, and half of it originates from screenable coulombic interactions. Lys7 contributes 5.3 kJ mol(-1), and 3.4 kJ mol(-1) of it are screened by salt. In the folded protein Lys7 interacts with Asp25, and the screenable coulombic interaction between these two residues is fully formed in the transition state. This suggests that long-range coulombic interactions such as those originating from Lys5 and Lys7 of CspB can be important for organizing and stabilizing native-like structure early in protein folding.  相似文献   

8.
An in-vitro selection strategy was used to obtain strongly stabilized variants of the beta1 domain of protein G (Gbeta1). In a two-step approach, first candidate positions with a high potential for stabilization were identified in Gbeta1 libraries that were created by error-prone PCR, and then, after randomization of these positions by saturation mutagenesis, strongly stabilized variants were selected. For both steps the in-vitro selection method Proside was employed. Proside links the stability of a protein with the infectivity of a filamentous phage. Ultimately, residues from the two best selected variants were combined in a single Gbeta1 molecule. This variant with the four mutations E15V, T16L, T18I, and N37L showed an increase of 35.1 degrees C in the transition midpoint and of 28.5 kJ mol(-1) (at 70 degrees C) in the Gibbs free energy of stabilization. It was considerably more stable than the best variant from a previous Proside selection, in which positions were randomized that had originally been identified by computational design. Only a single substitution (T18I) was found in both selections. The best variants from the present selection showed a higher cooperativity of thermal unfolding, as indicated by an increase in the enthalpy of unfolding by about 60 kJ mol(-1). This increase is apparently correlated with the presence of Leu residues that were selected at the positions 16 and 37.  相似文献   

9.
Our present understanding of the nature of the transition state for protein folding depends predominantly on studies where individual side-chain contributions are mapped out by mutational analysis (phi value analysis). This approach, although extremely powerful, does not in general provide direct information about the formation of backbone hydrogen bonds. Here, we report the results of amide H/D isotope effect studies that probe the development of hydrogen bonded interactions in the transition state for the folding of a small alpha-beta protein, the N-terminal domain of L9. Replacement of amide protons by deuterons in a solvent of constant isotopic composition destabilized the domain, decreasing both its T(m) and Delta G(0) of unfolding. The folding rate also decreased. The parameter Phi(H/D), defined as the ratio of the effect of isotopic substitution upon the activation free energy to the equilibrium free energy was determined to be 0.6 in a D(2)O background and 0.75 in a H(2)O background, indicating that significant intraprotein hydrogen bond interactions are developed in the transition state for the folding of NTL9. The value is in remarkably good agreement with more traditional measures of the position of the transition state, which report on the relative burial of surface area. The results provide a picture of a compact folding transition state containing significant secondary structure. Indirect analysis argues that the bulk of the kinetic isotope effect arises from the beta-sheet-rich region of the protein, and suggests that the development of intraprotein hydrogen bonds in this region plays a critical role in the folding of NTL9.  相似文献   

10.
Sulphate-reducing bacteria have a wide variety of periplasmic cytochromes involved in electron transfer from the periplasm to the cytoplasm. HmcA is a high molecular mass cytochrome of 550 amino acid residues that harbours 16 c-type heme groups. We report the crystal structure of HmcA isolated from the periplasm of Desulfovibrio gigas. Crystals were grown using polyethylene glycol 8K and zinc acetate, and diffracted beyond 2.1 A resolution. A multiple-wavelength anomalous dispersion experiment at the iron absorption edge enabled us to obtain good-quality phases for structure solution and model building. DgHmcA has a V-shape architecture, already observed in HmcA isolated from Desulfovibrio vulgaris Hildenborough. The presence of an oligosaccharide molecule covalently bound to an Asn residue was observed in the electron density maps of DgHmcA and confirmed by mass spectrometry. Three modified monosaccharides appear at the highly hydrophobic vertex, possibly acting as an anchor of the protein to the cytoplasmic membrane.  相似文献   

11.
Xavier AV 《FEBS letters》2002,532(3):261-266
Cytochrome c3 has a central role in the energetics of Desulfovibrio sp., where it performs an electroprotonic energy transduction step. This process uses a network of cooperativities, largely based on anti-Coulomb components, resulting from a mechano-chemical energy coupling mechanism. This mechanism provides a model coherent with the data available for the redox chemistry of haem a of cytochrome c oxidase and its link to the activation of protons. A crucial feature of the model is an anti-Coulomb effect that sets the stage for a molecular ratchet, ensuring vectoriality for the redox-driven localised movement of protons across the membrane, against an electrochemical gradient.  相似文献   

12.
Alpha-1 antitrypsin (alpha(1)-AT) is a member of the serpin class of protease inhibitors, and folds to a metastable state rather than its thermodynamically most stable native state. Upon cleavage by a target protease, alpha(1)-AT undergoes a dramatic conformational change to a stable form, translocating the bound protease more than 70 A to form an inhibitory protease-serpin complex. Numerous mutagenesis studies on serpins have demonstrated the trade-off between the stability of the metastable state on the one hand and the inhibitory efficiency on the other. Studies of the equilibrium unfolding of serpins provide insight into this connection between structural plasticity and metastability. We studied equilibrium unfolding of wild-type alpha(1)-AT using hydrogen-deuterium/exchange mass spectrometry to characterize the structure and the stability of an equilibrium intermediate that was observed in low concentrations of denaturant in earlier studies. Our results show that the intermediate observed at low concentrations of denaturant has no protection from hydrogen-deuterium exchange, indicating a lack of stable structure. Further, differential scanning calorimetry of alpha(1)-AT at low concentrations of denaturant shows no heat capacity peak during thermal denaturation, indicating that the transition from the intermediate to the unfolded state is not a cooperative first-order-like phase transition.. Our results show that the unfolding of alpha(1)-AT involves a cooperative transition to a molten globule form, followed by a non-cooperative transition to a random-coil form as more guanidine is added. Thus, the entire alpha(1)-AT molecule consists of one cooperative structural unit rather than multiple structural domains with different stabilities. Furthermore, our results together with previous mutagenesis studies suggest a possible link between an equilibrium molten globule and a functional intermediate that may be populated during the protease inhibition.  相似文献   

13.
Structural insights into the equilibrium folding mechanism of the alpha subunit of tryptophan synthase (αTS) from Escherichia coli, a (βα)8 TIM barrel protein, were obtained with a pair of complementary nuclear magnetic resonance (NMR) spectroscopic techniques. The secondary structures of rare high-energy partially folded states were probed by native-state hydrogen-exchange NMR analysis of main-chain amide hydrogens. 2D heteronuclear single quantum coherence NMR analysis of several 15N-labeled nonpolar amino acids was used to probe the side chains involved in stabilizing a highly denatured intermediate that is devoid of secondary structure. The dynamic broadening of a subset of isoleucine and leucine side chains and the absence of protection against exchange showed that the highest energy folded state on the free-energy landscape is stabilized by a hydrophobic cluster lacking stable secondary structure. The core of this cluster, centered near the N-terminus of αTS, serves as a nucleus for the stabilization of what appears to be nonnative secondary structure in a marginally stable intermediate. The progressive decrease in protection against exchange from this nucleus toward both termini and from the N-termini to the C-termini of several β-strands is best described by an ensemble of weakly coupled conformers. Comparison with previous data strongly suggests that this ensemble corresponds to a marginally stable off-pathway intermediate that arises in the first few milliseconds of folding and persists under equilibrium conditions. A second, more stable intermediate, which has an intact β-barrel and a frayed α-helical shell, coexists with this marginally stable species. The conversion of the more stable intermediate to the native state of αTS entails the formation of a stable helical shell and completes the acquisition of the tertiary structure.  相似文献   

14.
The two-state folding reaction of the cold shock protein from Bacillus caldolyticus (Bc-Csp) is preceded by a rapid chain collapse. A fast shortening of intra-protein distances was revealed by F?rster resonance energy transfer (FRET) measurements with protein variants that carried individual pairs of donor and acceptor chromophores at various positions along the polypeptide chain. Here we investigated the specificity of this rapid compaction. Energy transfer experiments that probed the stretching of strand beta2 and the close approach between the strands beta1 and beta2 revealed that the beta1-beta2 hairpin is barely formed in the collapsed form, although it is native-like in the folding transition state of Bc-Csp. The time course of the collapse could not be resolved by pressure or temperature jump experiments, indicating that the collapsed and extended forms are not separated by an energy barrier. The co-solute (NH4)2SO4 stabilizes both native Bc-Csp and the collapsed form, which suggests that the large hydrated SO4(2-) ions are excluded from the surface of the collapsed form in a similar fashion as they are excluded from folded Bc-Csp. Ethylene glycol increases the stability of proteins because it is excluded preferentially from the backbone, which is accessible in the unfolded state. The collapsed form of Bc-Csp resembles the unfolded form in its interaction with ethylene glycol, suggesting that in the collapsed form the backbone is still accessible to water and small molecules. Our results thus rule out that the collapsed form is a folding intermediate with native-like chain topology. It is better described as a mixture of compact conformations that belong to the unfolded state ensemble. However, some of its structural elements are reminiscent of the native protein.  相似文献   

15.
Energetics of protein folding   总被引:5,自引:0,他引:5  
The energetics of protein folding determine the 3D structure of a folded protein. Knowledge of the energetics is needed to predict the 3D structure from the amino acid sequence or to modify the structure by protein engineering. Recent developments are discussed: major factors are reviewed and auxiliary factors are discussed briefly. Major factors include the hydrophobic factor (burial of non-polar surface area) and van der Waals interactions together with peptide hydrogen bonds and peptide solvation. The long-standing model for the hydrophobic factor (free energy change proportional to buried non-polar surface area) is contrasted with the packing-desolvation model and the approximate nature of the proportionality between free energy and apolar surface area is discussed. Recent energetic studies of forming peptide hydrogen bonds (gas phase) are reviewed together with studies of peptide solvation in solution. Closer agreement is achieved between the 1995 values for protein unfolding enthalpies in vacuum given by Lazaridis-Archontis-Karplus and Makhatadze-Privalov when the solvation enthalpy of the peptide group is taken from electrostatic calculations. Auxiliary factors in folding energetics include salt bridges and side-chain hydrogen bonds, disulfide bridges, and propensities to form alpha-helices and beta-structure. Backbone conformational entropy is a major energetic factor which is discussed only briefly for lack of knowledge.  相似文献   

16.
Computational design and in vitro evolution are major strategies for stabilizing proteins. For the four critical positions 16, 18, 25, and 29 of the B domain of the streptococcal protein G (Gbeta1), they identified the same optimal residues at positions 16 and 25, but not at 18 and 29. Here we analyzed the energetic contributions of the residues from these two approaches by single and double mutant analyses and determined crystal structures for a variant from the calculation (I16/L18/E25/K29) and from the selection (I16/I18/E25/F29). The structural analysis explains the observed differences in stabilization. Residues 16, 18, and 29 line an invagination, which results from a packing defect between the helix and the beta-sheet of Gbeta1. In all stabilized variants, residues with larger side-chains occur at these positions and packing is improved. In the selected variant, packing is better optimized than in the computed variant. Such differences in side-chain packing strongly affect stability but are difficult to evaluate by computation.  相似文献   

17.
The development of electrostatic interactions during the folding of the N-terminal domain of the ribosomal protein L9 (NTL9) is investigated by pH-dependent rate equilibrium free energy relationships. We show that Asp8, among six acidic residues, is involved in non-native, electrostatic interactions with K12 in the transition state for folding as well as in the denatured state. The perturbed native state pK(a) of D8 (pK(a) = 3.0) appears to be maintained through non-native interactions in both the transition state and the denatured state. Mutational effects on the stability of the transition state for protein (un)folding are often analyzed in respect to change in ground states. Thus, the interpretation of transition state analysis critically depends on an understanding of mutational effects on both the native and denatured state. Increasing evidence for structurally biased denatured states under physiological conditions raises concerns about possible denatured state effects on folding studies. We show that the structural interpretation of transition state analysis can be altered dramatically by denatured state effects.  相似文献   

18.
The crystal structures of copper-containing nitrite reductase (CuNiR) from the thermophilic Gram-positive bacterium Geobacillus kaustophilus HTA426 and the amino (N)-terminal 68 residue-deleted mutant were determined at resolutions of 1.3 Å and 1.8 Å, respectively. Both structures show a striking resemblance with the overall structure of the well-known CuNiRs composed of two Greek key β-barrel domains; however, a remarkable structural difference was found in the N-terminal region. The unique region has one β-strand and one α-helix extended to the northern surface of the type-1 copper site. The superposition of the Geobacillus CuNiR model on the electron-transfer complex structure of CuNiR with the redox partner cytochrome c551 in other denitrifier system led us to infer that this region contributes to the transient binding with the partner protein during the interprotein electron transfer reaction in the Geobacillus system. Furthermore, electron-transfer kinetics experiments using N-terminal residue-deleted mutant and the redox partner, Geobacillus cytochrome c551, were carried out. These structural and kinetics studies demonstrate that the region is directly involved in the specific partner recognition.  相似文献   

19.
Cytochrome c6A is a unique dithio-cytochrome present in land plants and some green algae. Its sequence and occurrence in the thylakoid lumen suggest that it is derived from cytochrome c6, which functions in photosynthetic electron transfer between the cytochrome b6f complex and photosystem I. Its known properties, however, and a strong indication that the disulfide group is not purely structural, indicate that it has a different, unidentified function. To help in the elucidation of this function the crystal structure of cytochrome c6A from Arabidopsis thaliana has been determined in the two redox states of the heme group, at resolutions of 1.2 A (ferric) and 1.4 A (ferrous). These two structures were virtually identical, leading to the functionally important conclusion that the heme and disulfide groups do not communicate by conformational change. They also show, however, that electron transfer between the reduced disulfide and the heme is feasible. We therefore suggest that the role of cytochrome c6A is to use its disulfide group to oxidize dithiol/disulfide groups of other proteins of the thylakoid lumen, followed by internal electron transfer from the dithiol to the heme, and re-oxidation of the heme by another thylakoid oxidant. Consistent with this model, we found a rapid electron transfer between ferro-cytochrome c6A and plastocyanin, with a second-order rate constant, k2=1.2 x 10(7) M(-1) s(-1).  相似文献   

20.
The relative contributions of chain topology and amino acid sequence in directing the folding of a (betaalpha)(8) TIM barrel protein of unknown function encoded by the Bacillus subtilis iolI gene (IOLI) were assessed by reversible urea denaturation and a combination of circular dichroism, fluorescence and time-resolved fluorescence anisotropy spectroscopy. The equilibrium reaction for IOLI involves, in addition to the native and unfolded species, a stable intermediate with significant secondary structure and stability and self-associated forms of both the native and intermediate states. Global kinetic analysis revealed that the unfolded state partitions between an off-pathway refolding intermediate and the on-pathway equilibrium intermediate early in folding. Comparisons with the folding mechanisms of two other TIM barrel proteins, indole-3-glycerol phosphate synthase from the thermophile Sulfolobus solfataricus (sIGPS) and the alpha subunit of Escherichia coli tryptophan synthase (alphaTS), reveal striking similarities that argue for a dominant role of the topology in both early and late events in folding. Sequence-specific effects are apparent in the magnitudes of the relaxation times and relative stabilities, in the presence of additional monomeric folding intermediates for alphaTS and sIGPS and in rate-limiting proline isomerization reactions for alphaTS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号