首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dopamine (DA) and zinc (Zn++) share common mechanisms in their inhibition of prolactin (PRL) secretion. Both substances are present in the same brain areas, where Zn++ is released together with DA, suggesting a modulatory effect of Zn++ on dopaminergic receptors. The aim of the present study was to evaluate the effect of Zn++ supplementation on basal and PRL secretion stimulated by metoclopramide (MCP), a dopaminergic antagonist. Seven healthy men were evaluated in controlled study, where MCP (5 mg) was given intravenously, before and after 3 months of oral Zn++ (25 mg) administration. Our results indicate that chronic Zn++ administration does not change basal or MCP-stimulated plasma PRL secretion suggesting that, in humans, Zn++ does not interfere on PRL secretion mediated through dopaminergic receptors.  相似文献   

2.
The role of endogenous gonadal secretions in neuroprotection has been assessed in a model of hippocampal degeneration induced by the systemic administration of kainic acid to adult male and female rats. A low dose of kainic acid (7 mg/Kg b.w.) induced a significant loss of hilar dentate neurons in castrated males and did not affect hilar neurons in intact males. The effect of kainic acid on hilar neurons in female rats was different depending on the day of the estrous cycle in which the neurotoxin was administered; while no significant effect of kainic acid was observed when it was injected in the morning of estrus, there was a significant loss of hilar neurons when it was injected in the morning of proestrus as well as when it was injected into ovariectomized rats. Estradiol or estradiol plus progesterone prevented hilar neuronal loss when injected simultaneously with kainic acid in ovariectomized rat. Progesterone by itself did not prevent neuronal loss induced by kainic acid and estogen was only effective when it was injected either 24 h before or simultaneously with kainic acid and not when it was injected 24 h after the administration of the toxin. These findings indicate that endogenous gonadal hormones protect hippocampal hilar neurons from excitotoxic degeneration. In addition, the timing of exposure to ovarian hormones and the natural fluctuation of ovarian hormones during the estrous cycle may influence the vulnerability of hilar neurons to excitotoxicity. These findings are relevant to possible modifications in neurodegenerative risk in humans as endogenous levels of gonadal hormones change during the menstrual cycle and during aging.  相似文献   

3.
The acidic linear lipopeptide amphomycin is a calcium dependent antibiotic which is thought to bind to carrier lipids such as dolichol monophosphate. The actual role of Ca++ is not definitely established and in this article we have examined the peptides interactions with a range of divalent cations. By CD we have shown that a conformational change is induced by Ca++, Sr++ and Ba++ but not by Mg++, Zn++, Cd++ or Gd+++. Monolayer studies show a decrease in molecular area and an increase in film stability when the subphase contains Ca++. The ensemble of results provides preliminary evidence for the formation of a beta hairpin structure on ion binding (Ka (Ca++) = 2.4 x 10(3)M-1) which could enhance amphomycin's bilayer solubility.  相似文献   

4.
The present study investigated the effects of a striatal lesion induced by kainic acid on the striatal modulation of dopamine (DA) release by mu- and delta-opioid peptides. The effects of [D-Pen2,D-Pen5]-enkephalin (DPDPE) and [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAGO), two highly selective delta- and mu-opioid agonists, respectively, were studied by microdialysis in anesthetized rats. In control animals both opioid peptides, administered locally, significantly increased extracellular DA levels. The effects of DPDPE were also observed in animals whose striatum had been previously lesioned with kainic acid. In contrast to the effects of the delta agonist, the significant increase induced by DAGO was no longer observed in lesioned animals. These results suggest that delta-opioid receptors modulating the striatal DA release, in contrast to mu receptors, are not located on neurons that may be lesioned by kainic acid.  相似文献   

5.
The effect of kainic acid on extracellular [K+], [Ca2+], and [Na+] in the rat piriform cortex and hippocampus was studied by means of intracranial microdialysis. Either a dialysis fiber loop or horizontal Vita fiber were stereotaxically implanted within the piriform cortex or hippocampus, respectively. About 24 h later, fibers were perfused (1 ml/min) with Krebs-Ringer bicarbonate solution. Effluent samples were collected before (four at 30 min intervals), and after (six at 30 min intervals) administration of kainic acid (16 mg/kg, i.p.) or kainic acid vehicle. Kainic acid induced sequential signs of lethargy, staring, "wet-dog shakes," forepaw clonus, and tonic-clonic convulsions. In these awake free-moving rats, kainic acid induced a rapid and prolonged increase in extracellular [K+] and an apparent, but not statistically significant, decrease in extracellular [Ca2+] within the hippocampus. In the piriform cortex, kainic acid induced increases in extracellular [K+] and [Na+], which were associated with early pre-convulsive signs. In contrast to the pronounced ion changes commonly seen when the brain is activated by factors such as local application of excitatory substances or when the brain is made ischemic or hypoxic, extracellular ion concentrations are relatively well maintained during parenteral kainic acid-induced seizures.  相似文献   

6.
Convulsants induce interleukin-1 beta messenger RNA in rat brain.   总被引:6,自引:0,他引:6  
The effects of systemic administration of kainic acid and pentylenetetrazol on interleukin-1 beta gene expression in the rat brain was studied. After the administration of kainic acid in a convulsive dose (10 mg/kg i.p.), Interleukin-1 beta mRNA was induced intensely in the cerebral cortex, thalamus and hypothalamus, moderately in the hippocampus and weakly in the striatum, but not in the midbrain, pons-medulla and cerebellum. Pentylenetetrazol induced Interleukin-1 beta mRNA in the cerebral cortex, hypothalamus, and hippocampus with a faster time-course than kainic acid. Diazepam suppressed both the convulsion and the induction of Interleukin-1 beta mRNA produced by kainic acid. Dexamethasone suppressed the induction of Interleukin-1 beta mRNA, but did neither the convulsion nor the induction of c-fos mRNA following the injection of kainic acid. These results provide the first evidence that intensive neuronal excitation induces Interleukin-1 beta mRNA in particular regions of the brain.  相似文献   

7.
1.Sugar beet, tomato, potato, oat, and kale were grown in sandcultures with additions of several ‘heavy’ metalsincluding Cr, Mn, Co, Ni, Cu, Zn, Pb, Cd, V, Mo in equivalentconcentrations. 2.In sugar beet Cu++, Co++, Cd++ were usually highly activein causing chlorosis mainly suggestive of iron deficiency. Theeffect of Cr depended on valency and was greater as CrO4––.Zn++, VO3––, Cr+++, Mn++, and Pb++ were less activein order. 3.The visual responses to Co++ and Ni++ varied greatly withthe crop tested. Cu++, however, always induced typical irondeficiency. Crop susceptibility also varied greatly. For example,Cu++ readily caused chlorosis in beet and also in tomato, andpotato, but not in oat and kale. 4. Ni++ induced symptoms resembling manganese deficiency inpotato and tomato and unusual oblique white and green bandingleaves of oat. Zn++ induced apparent manganese deficiency insugar beet and Co++ toxicity in tomato initially resembled manganesedeficiency. Ni++ and Co++ were the most toxic of the metalstested.  相似文献   

8.
The anticonvulsant effect of ethanol against N-methyl-D-aspartic acid-(NMDA), kainic acid-, and picrotoxin-induced convulsions was studied in rats. Ethanol (2 g/kg, ip) offered protection against these agents, and it was most effective against picrotoxin and least effective against kainic acid. MK801, NMDA receptor antagonist, also provided protection against these agents. However, it was most effective against NMDA and least effective against kainic acid. Ineffective doses of MK801 (0.1 mg/kg, ip) and ethanol (0.5 g/kg, ip), when administered concurrently, had a facilitatory anticonvulsant effect, thereby providing protection against mortality following severe convulsions induced by NMDA or picrotoxin, but not against kainic acid. The protective effect of ethanol against NMDA- and kainic acid-induced neurotoxicity, in contrast to picrotoxin-induced toxicity, was not reversed by imidazodiazepine, Ro 15-4513, an ethanol antagonist. Furthermore, Ro 15-4513 did not produce any proconvulsant effect with NMDA or kainic acid. These findings suggested that the anticonvulsant actions of ethanol may be attributed to its ability to antagonize NMDA-mediated excitatory responses and facilitate the GABAergic transmission.  相似文献   

9.
Extracellular amino acid levels in the rat piriform cortex, an area highly susceptible to seizure-induced neuropathology, were determined by means of intracranial microdialysis. Seizures were induced by systemic administration of either soman (O-1,2,2-trimethylpropyl methylphosphonofluoridate), a potent inhibitor of acetylcholinesterase, or the excitotoxin kainic acid. Extracellular glutamate levels increased in animals with seizures shortly after administration of either convulsant, but this change was statistically significant only in the case of soman-treated animals. Extracellular taurine levels increased markedly, reaching two- and fourfold baseline levels during the second hour of soman- and kainic acid-induced seizures, respectively. Taurine levels did not increase in the subpopulation of soman-treated animals without seizures, a finding indicating that elevation of extracellular taurine level is seizure related. Thus, we propose that taurine efflux may be a physiological cellular response to neuronal changes produced by excitotoxic chemicals, either directly or as a consequence of seizures.  相似文献   

10.
Stansin 6 a tetrasaccharide resin glycoside isolated from the root of Ipomoea stans was evaluated as anticonvulsant and neuroprotective in kainic acid-induced seizures of rats. Intraperitoneal injection of kainic acid (10 mg/kg) induced typical behavioral seizures such as wet dog shakes and limbic seizures, and histopathological changes in the hippocampus (degeneration and loss of pyramidal cells in CA1 to CA4 areas). Stansin 6 (10–80 mg/kg) had no effect on the behavior of rats and did not induce hippocampal damage. Pretreatment with stansin 6 inhibited convulsions in rats from kainic acid-induced seizures, reduced the degeneration pattern in the CA3 region, decreased astrocytic reactivity, and reduced the expression of IL-1β and TNF-α induced by kainic acid. These results suggest that stansin 6 possesses neuroprotective and anticonvulsant activities.  相似文献   

11.
The nature of progesterone (P4)'s neuroprotective effects is of interest. We investigated effects of P4 when administered before, or after, kainic acid, which produces ictal activity and damage to the hippocampus, to mediate effects on spatial performance. The hypothesis was that P4, compared with vehicle, would reduce decrements in Morris Water Maze performance induced by kainic acid. Experiment 1: We examined the effects of kainic acid on plasma stress hormone, corticosterone, and progestogen (P4 and its metabolites) levels in plasma and the hippocampus after subcutaneous (s.c.) P4 administration to ovariectomized rats. Rats administered kainic acid had the highest corticosterone levels immediately following injection. P4 is 5α‐reduced to dihydroprogesterone (DHP) and subsequently metabolized to 5α‐pregnan‐3α‐ol‐20‐one (3α,5α‐THP) by 3α‐hydroxysteroid dehydrogenase. The regimen of P4 used produced circulating and hippocampal levels of P4, DHP, and 3α,5α‐THP within a physiological range, which declined at 14 hours postinjection and were not altered by kainic acid. Experiment 2: The physiological P4 regimen was administered to rats before, or after, kainic acid‐induced seizures, and later effects on water maze performance were compared with that of rats administered vehicle. Rats administered kainic acid had significantly poorer performance in the water maze (i.e., increased latencies and distances to the hidden platform) than did rats administered vehicle. Administration of P4 before, but not after, kainic acid prevented these performance deficits. Thus, these data suggest that a physiological regimen of P4 can prevent some of the deficits in water maze performance produced by kainic acid. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 71: 142‐152, 2011  相似文献   

12.
Abstract: Glucocorticoids have been shown to exacerbate the damaging effects of a variety of neurotoxic insults in the hippocampus and other brain areas. Evidence suggests that the endangering effects of glucocorticoids may be due to augmenting the cascade of events, such as elevations in intracellular calcium levels, because of excitatory amino acid (EAA) receptor stimulation. A potential mechanism responsible for EAA-induced neuronal damage is activation of calcium-sensitive proteases, such as calpain, which then proteolytically degrade cytoskeleton structural proteins, such as spectrin. The present study was designed to determine if glucocorticoids can regulate the spectrin proteolysis produced by the EAA agonist, kainic acid. Rats were adrenalectomized (ADX) or sham operated and 7 days later injected with kainic acid (10 mg/kg). Twenty-four hours later rats were killed and tissues obtained for western blot analyses of the intact spectrin molecule and the proteolytically derived breakdown products. Kainic acid produced an approximate sevenfold increase in the 145–155-kDa spectrin breakdown products in the hippocampus relative to ADX or sham rats injected with vehicle. ADX attenuated the kainic acid-induced increase in breakdown products by 43%. In a similar way, kainic acid produced a large 10-fold increase in spectrin breakdown products in the frontal cortex, which was also significantly attenuated (?80%) by ADX. Induction of heat shock protein 70 (hsp70) by neurotoxic insults has been suggested to be a sensitive indicator of cellular stress in neurons. Kainic acid induced large amounts of hsp70 in both hippocampus and frontal cortex of sham-operated rats that was markedly attenuated (85–95%) by ADX. There was a strong positive correlation between the amount of spectrin proteolysis and the degree of hsp70 induction in both the hippocampus and frontal cortex. In contrast, kainic acid did not significantly produce spectrin proteolysis and induced only a very modest and inconsistent increase of hsp70 in the hypothalamus. This is consistent with the observation that the hypothalamus is relatively insensitive to the neurotoxic effects of systemically administered kainic acid. The dose of kainic acid (10 mg/kg) used in this experiment produces a 10-fold elevation in circulating corticosterone levels at both 1 and 3 h after administration. These results suggest that part of the endangering effects of glucocorticoids on hippocampal and cortical neurons may be due to augmentation of calpain-induced spectrin proteolysis. The attenuation of kainic acid-induced synthesis of hsp70 by ADX indicates that the cellular stress produced by EAAs is regulated in part by glucocorticoids. In addition, the elevation in endogenous corticosterone levels produced by kainic acid appears to be a significant factor contributing to the neuronal damage produced by this agent.  相似文献   

13.
The effect of local administration of kainic acid in the rabbit hippocampus was studied; the hippocampus was perfused continuously in the freely moving animal with an implanted 0.3-mm dialysis fiber. The pattern of endogenous amino acids in the perfusate, reflecting extracellular amino acids, was monitored with liquid chromatography separation and fluorimetric detection of amino acid derivatives. Kainic acid was included in the perfusion medium for up to 70 min at 0.1-1.0 mM and, with time, induced epileptiform activity. Endogenous glutamic acid, taurine, and phosphoethanolamine levels were increased selectively at the lower perfusion concentrations of kainic acid. Long perfusion periods with higher concentrations increased the levels of virtually all amino acids. Perfusion of the hippocampus with depolarizing concentrations of potassium gave an amino acid response partly similar to that seen with kainic acid treatment. However, one notable difference between the two responses was that the extracellular concentration of glutamine, although not influenced by kainic acid, was significantly decreased after high potassium concentrations. These results confirm previous notions that kainic acid has a primarily excitatory effect, one manifestation of this effect being the release of glutamic acid.  相似文献   

14.
We used a Ca++-sensitive electrode to measure changes in extracellular Ca++ concentration in cell suspensions of Dictyostelium discoideum during differentiation and attractant stimulation. The cells maintained an external level of 3-8 microM Ca++ until the beginning of aggregation and then started to take up Ca++. The attractants, folic acid, cyclic AMP, and cyclic GMP, induced a transient uptake of Ca++ by the cells. The response was detectable within 6 s and peaked at 30 s. Half-maximal uptake occurred at 5 nM cyclic AMP or 0.2 microM folic acid, respectively. The apparent rate of uptake amounted to 2 X 10(7) Ca++ per cell per min. Following uptake, Ca++ was released by the cells with a rate of 5 X 10(6) ions per cell per min. Specificity studies indicated that the induced uptake of Ca++ was mediated by cell surface receptors. The amount of accumulated Ca++ remained constant as long as a constant stimulus was provided. No apparent adaptation occurred. The cyclic AMP-induced uptake of Ca++ increased during differentiation and was dependent on the external Ca++ concentration. Saturation was found above 10 microM external Ca++. The time course and magnitude of the attractant-induced uptake of external Ca++ agree with a role of Ca++ during contraction. During development the extracellular Ca++ level oscillated with a period of 6-11 min. The change of the extracellular Ca++ concentration during one cycle would correspond to a 30-fold change of the cellular free Ca++ concentration.  相似文献   

15.
The expression of aromatase, the enzyme that catalyzes the biosynthesis of estrogens from precursor androgens, is increased in the brain after injury, suggesting that aromatase may be involved in neuroprotection. In the present study, the effect of inactivating aromatase has been assessed in a model of neurodegeneration induced by the systemic administration of neurotoxins. Domoic acid, at a dose that is not neurotoxic in intact male mice, induced significant neuronal loss in the hilus of the hippocampal formation of mice with reduced levels of aromatase substrates as a result of gonadectomy. Furthermore, the aromatase substrate testosterone, as well as its metabolite estradiol, the product of aromatase, were able to protect hilar neurons from domoic acid. In contrast, dihydrotestosterone, the 5 alpha-reduced metabolite of testosterone and a nonaromatizable androgen, was not. These findings suggest that aromatization of testosterone to estradiol may be involved in the neuroprotective action of testosterone in this experimental model. In addition, aromatase knock-out mice showed significant neuronal loss after injection of a low dose of domoic acid, while control littermates did not, indicating that aromatase deficiency increases the vulnerability of hilar neurons to neurotoxic degeneration. The effect of aromatase on neuroprotection was also tested in male rats treated systemically with the specific aromatase inhibitor fadrozole and injected with kainic acid, a well characterized neurotoxin for hilar neurons in the rat. Fadrozole enhanced the neurodegenerative effect of kainic acid in intact male rats and this effect was counterbalanced by the administration of estradiol. Furthermore, the neuroprotective effect of testosterone against kainic acid in castrated male rats was blocked by fadrozole. These findings suggest that neuroprotection by aromatase is due to the formation of estradiol from its precursor testosterone. Finally, a role for local cerebral aromatase in neuroprotection is indicated by the fact that intracerebral administration of fadrozole enhanced kainic acid induced neurodegeneration in the hippocampus of intact male rats. These findings indicate that aromatase deficiency decreases the threshold for neurodegeneration and that local cerebral aromatase is neuroprotective. Brain aromatase may therefore represent a new target for therapeutic approaches to neurodegenerative diseases.  相似文献   

16.
This study examined the protective effect of phenobarbital on kainic acid-induced deficits in acquisition learning. A single kainic acid injection (9 mg/kg i.p.) was administered five days prior to testing using the Morris water maze test. Kainic acid produced deficits in the acquisition of spatial information observed as an increase in latency to a hidden escape platform. Daily phenobarbital treatment (20 mg/kg i.p.) initiated 45 minutes prior to the kainic acid injection blocked the kainic acid-induced deficits in acquisition learning. When daily phenobarbital treatment was initiated 2-3 hours after kainic acid seizure development it did not block the kainic acid induced-deficits in water maze performance. Daily administration of phenobarbital alone at the moderate concentration used in this study did not cause alterations in behavioral performance in the Morris water maze. These studies indicate that phenobarbital pre-treatment results in a behavioral neuroprotection against kainic acid-induced neurotoxicity.  相似文献   

17.
Effects of Kainic Acid on Brain Calcium Fluxes Studied In Vivo and In Vitro   总被引:7,自引:6,他引:1  
The effect of in vivo administration of kainic acid into the rabbit hippocampus was studied with brain dialysis and subsequent determination of the Ca2+ concentration in the dialysate. When included in the perfusing medium, kainic acid as well as veratridine induced a decrease in extracellular Ca2+. The effect of kainic acid (but not of veratridine) was insensitive to tetrodotoxin. In vitro studies revealed no effect of kainic acid on 45Ca2+ uptake by isolated astrocytes, but showed an enhancement of synaptosomal 45Ca2+ accumulation. This was, however, only 25% of the stimulatory effect of high K+ depolarization. Glutamate activated synaptosomal Ca2+ uptake, whereas dihydrokainate had no effect. The uptake evoked by kainate and glutamate was independent of the K+ level in the medium which indicates the involvement of other than voltage-sensitive Ca2+ channels. The results confirm previous finding that kainic acid promotes the uptake of Ca2+ in brain cells. Kainate affects Ca2+ fluxes pre- and postsynaptically. Presynaptic Ca2+ influx may be mediated by chemically gated mechanisms.  相似文献   

18.
We used northern and western blotting to measure the quantity of glutamate and GABA transporters mRNA and their proteins within the hippocampal tissue of rats with epileptogenesis. Chronic seizures were induced by amygdalar injection of kainic acid 60 days before death. We found that expression of the mRNA and protein of the glial glutamate transporters GLAST and GLT-1 were down-regulated in the kainic acid-administered group. In contrast, EAAC-1 and GAT-3 mRNA and their proteins were increased, while GAT-1 mRNA and protein were not changed. We performed in vivo microdialysis in the freely moving state. During the interictal state, the extracellular glutamate concentration was increased, whereas the GABA level was decreased in the kainic acid group. Following potassium-induced depolarization, glutamate overflow was higher and the recovery time to the basal release was prolonged in the kainic acid group relative to controls. Our data suggest that epileptogenesis in rats with kainic acid-induced chronic seizures is associated with the collapse of extracellular glutamate regulation caused by both molecular down-regulation and functional failure of glutamate transport.  相似文献   

19.
The potential role of excitatory amino acids in the regulation of brain corticosteroid receptors was examined using systemic administration of kainic acid. Administration of kainic acid (5, 10, and 15 mg/kg) to 24-h adrenalectomized rats that were killed 3 h later produced large, dose-related decreases in glucocorticoid receptors (GR) in hippocampus (23-63%), frontal cortex (22-76%), and striatum (41-49%). Kainic acid did not decrease hypothalamic GR. Hippocampal mineralocorticoid receptors (MR) were also markedly decreased (50-71%) by kainic acid. Significant decreases in corticosteroid receptors could be detected as soon as 1 h after kainic acid (10 mg/kg) administration. Decreases in hippocampal, cortical, and hypothalamic GR as well as hippocampal MR were observed 24 h after administration of kainic acid (10 mg/kg) to adrenalectomized rats. Kainic acid (10 mg/kg) also significantly decreased hippocampal GR and MR as well as GR in the other three brain regions when administered to adrenal-intact rats that were subsequently adrenalectomized and killed 48 h after drug administration. The kainic acid-induced decreases in hippocampal GR and MR binding were due to decreases in the maximum number of binding sites (Bmax) with no change in the apparent affinity (KD). Kainic acid when added in vitro did not displace the GR and MR radioligands from their respective receptors. These studies demonstrate that excitatory amino acids play a prominent role in the regulation of hippocampal corticosteroid receptors. In addition, the data indicate that noncorticosterone factors are involved in corticosteroid receptor plasticity.  相似文献   

20.
Divalent cations and group-specific chemical modifiers were used to modify sodium efflux in order to probe the molecular structure of sodium channels in dog red blood cells. Hg++, Ni++, Co++, and PCMBS (parachloromercuribenzene sulfonic acid), a sulfhydryl reactive reagent, induce large increases in Na+ permeability and their effects can be described by a curve which assumes 2:1 binding with the sodium channel. The sequence of affinities, as measured by the dissociation constants, reflects the reactivity of these divalent cations with sulfhydryl groups. In addition, the effects of Hg++ and PCMBS can be reversed by the addition of dithiothreitol, an SH-containing compound, to the medium. Much smaller increases in Na+ permeability are produced by Zn++ and the amino-specific reagents, TNBS (2,4,6-trinitrobenzene sulfonic acid) and SITS (4-acetamido-4'-isothiocyano-stilbene-2-2'-disulfonic acid). The Zn++ effect can be described by a curve which assumes bimolecular binding with the channel, and its effect on Na+ permeability can be reversed by the addition of glycine to the medium. The effects of Ni++ and SITS can be completely reversed by washing the cells in 0.16 M NaCl while TNBS binding is partially irreversible. Measurements of mean cell volumes (MCV) indicate that the modifier-induced increases in Na+ permeability are not caused by shrinkage of the cells. It is concluded that the movement of sodium ions through ionic channels in dog red blood cells can be enhanced by modification of amino and sulfhydryl groups. Zn++, TNBS, and SITS increase Na+ permeability by modifying amino groups in the channel while Hg++, Ni++, Co++, and PCMBS act on sulfhydryl groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号