首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
O Hino  K Ohtake    C E Rogler 《Journal of virology》1989,63(6):2638-2643
Two integrated hepatitis B virus (HBV) DNA molecules were cloned from two primary hepatocellular carcinomas each containing only a single integration. One integration (C3) contained a single linear segment of HBV DNA, and the other integration (C4) contained a large inverted duplication of viral DNA at the site of a chromosome translocation (O. Hino, T.B. Shows, and C.E. Rogler, Proc. Natl. Acad. Sci. USA 83:8338-8342, 1986). Sequence analysis of the virus-cell junctions of C3 placed the left virus-cell junction at nucleotide 1824, which is at the 5' end of the directly repeated DR1 sequence and is 6 base pairs from the 3' end of the long (L) negative strand. The right virus-cell junction was at nucleotide 1762 in a region of viral DNA (within the cohesive overlap) which shared 5-base-pair homology with cellular DNA. Sequence analysis of the normal cellular DNA across the integration site showed that 11 base pairs of cellular DNA were deleted at the site of integration. On the basis of this analysis, we suggest a mechanism for integration of the viral DNA molecule which involves strand invasion of the 3' end of the L negative strand of an open circular or linear HBV DNA molecule (at the DR1 sequence) and base pairing of the opposite end of the molecule with cellular DNA, accompanied by the deletion of 11 base pairs of cellular DNA during the double recombination event. Sequencing across the inverted duplication of HBV DNA in clone C4 located one side of the inversion at nucleotide 1820, which is 2 base pairs from the 3' end of the L negative strand. Both this sequence and the left virus-cell junction of C3 are within the 9-nucleotide terminally redundant region of the HBV L negative strand DNA. We suggest that the terminal redundancy is a preferred topoisomerase I nicking region because of both its base sequence and forked structure. Such nicking would lead to integration and rearrangement of HBV molecules within the terminal redundancy, as we have observed in both our clones.  相似文献   

2.
Hepatitis B virus (HBV) DNA is often found integrated in the genome of infected human liver cells and is supposed to be related to the development of primary liver carcinoma (PLC). Four clones of HBV DNA-containing sequences derived from DNA of the human PLC-derived cell line PLC/PRF/5 are discussed. The viral sequences show no intricate rearrangements excepting for a duplication and an inversion in one case, and a deletion in another. In all cases integration of the viral DNA was seen to be in a region which is single-stranded in the unintegrated HBV DNA. Sequence homologies between human and viral DNA flanking the integration sites have been detected. That may have a functional role in integration. Nucleotide sequence analyses of regions encompassing the viral-human junctions reveal open reading frames which consist of viral and/or human information. The possible expression of chimeric or cellular proteins may play a role in tumour development, and offers directions for further investigations.  相似文献   

3.
Yang W  Summers J 《Journal of virology》1999,73(12):9710-9717
DNA of the avian hepadnavirus, duck hepatitis B virus, was found to be integrated at low abundance into the cellular DNA extracted from the livers of infected ducklings. The frequency of integration was estimated to be at least one viral genome per 10(3) to 10(4) cells by 6 days postinfection. The structures of virus-cell junctions determined by sequencing were compared with those of virus-virus junctions formed by nonhomologous recombination between the ends of linear viral DNA forms. This comparison allowed us to conclude that linear viral DNA was the preferential form used as an integration substrate. Potential factors promoting viral DNA integration during chronic infection are discussed.  相似文献   

4.
Integrated hepatitis B virus (HBV) DNA is found in hepatocellular carcinomas which develop in HBV carriers. Presented here are the results of analyses of four integrants that show chromosomal rearrangements associated with the integrated HBV DNA. Two clones (p4 and C15) were found to have large inverted repeating structures, each consisting of HBV genome along with flanking cellular sequences. The structure must have arisen by duplication of the primary integrant, including the flanking cellular DNA, followed by recombination within the viral DNA. One of the two viral arms in each clone joins to the other viral arm at the "cohesive end region." Two clones (DA2-2 and DA2-6) were found to have integrated HBV sequences, each flanked by cellular DNAs from different chromosomes (chromosome X joined to 17 and chromosome 5 joined to 9). They must be the products of cellular DNA translocations using the integrated HBV DNA as the switch point. The viral DNA in each clone is a continuous stretch of a single virus genome with one end in the cohesive end region. These complex structures seem to have been produced by activation of the cohesive end of an integrant viral genome, followed by its recombination with another chromosomal DNA.  相似文献   

5.
Hepatitis B virus (HBV) is clearly a factor in the development of hepatocellular carcinoma, but its mechanism of action remains obscure. One possibility is that the HBV integration event alters the expression of a nearby growth-regulatory cellular gene. A 9-kilobase (kb) DNA fragment containing an HBV insert plus flanking cellular sequences was cloned from a hepatoma specimen from Shanghai, People's Republic of China. Restriction mapping of the insert revealed a large inverted repeat structure consisting of both viral sequences (encompassing all of the core and pre-S regions and portions of the X and S genes) and at least 3 kb of unique cellular sequences. The virus-cell junction mapped 11 nucleotides from the DR1 region, in a position within the HBV X gene and included in the cohesive overlap region. A probe generated from 1.0 kb of the flanking cellular DNA mapped the viral insert to chromosome 17 in the region designated 17p11.2-17p12, which is near the human proto-oncogene p53. Sequence data from a portion of the flanking cellular DNA revealed a stretch of approximately 70 base pairs that showed highly significant homology with a conserved region of a number of functional mammalian DNAs, including the human autonomously replicating sequence 1 (ARS1).  相似文献   

6.
Hepatitis B virus (HBV) DNA is often found in integrated form in hepatocellular carcinomas (HCC) and in non-cancerous liver cells of chronic carriers of HBV. However, the process of integration has not been well understood. Analyses of integrant DNA was expected to give clues. However, the majority of the integrants are products of multistep rearrangements following integrations, and analysis of randomly selected samples do not give clues for understanding the process of primary integrant formation. Therefore, one must select an appropriate integrant(s) that has a simple structure. We surveyed a collection of integrants prepared from many HCC's, and found one integrant that has the simplest structure so far studied: The viral genome is almost complete, is joined to cellular DNA using the cohesive end of the viral DNA, and furthermore, the "left" and "right" flanking cellular DNA's are almost contiguous. Analysis of the unoccupied sites in cellular DNA showed that, although almost contiguous, it has generated a microdeletion (15 base pairs) in the target sequence. This target sequence has a short region of homology to the sequence in the viral genome located close to the junction. One integrant with strikingly similar features has been reported independently. Two similar, but not identical cases from literatures could be added to this category. Therefore, the integrants with these properties may represent a unique category among those prepared from hepatocellular carcinomas. Based on these findings, we propose that this integrant represents the primary product of integration, and discuss the intermediate acting in the process of integration.  相似文献   

7.
Approximately 6000 specific DNA deletion events occur during development of the somatic macronucleus of the ciliate Tetrahymena. The eliminated Tlr1 element is 13 kb or more in length and has an 825 bp inverted repeat near the rearrangement junctions. A functional analysis of the cis-acting sequences required for Tlr1 rearrangement was performed. A construct consisting of the entire inverted repeat and several hundred base pairs of flanking DNA on each side was rearranged accurately in vivo and displayed junctional variability similar to the chromosomal Tlr1 rearrangement. Thus, 11 kb or more of internal element DNA is not required in cis for DNA rearrangement. A second construct with only 51 bp of Tetrahymena DNA flanking the right junction underwent aberrant rearrangement. Thus, a signal for determination of the Tlr1 junction is located in the flanking DNA, 51 bp or more from the right junction. Within the Tlr1 inverted repeat are 19 bp tandem repeats. A construct with the 19mer repeat region deleted from the right half of the inverted repeat utilized normal rearrangement junctions. Thus, despite its transposon-like structure, Tlr1 is similar to other DNA rearrangements in Tetrahymena in possessing cis-acting sequences outside the deleted DNA.  相似文献   

8.
Integration and excision of SV40 DNA from the chromosome of a transformed cell   总被引:55,自引:0,他引:55  
The single insertion of SV40 DNA present in the genome of the 14B line of transformed rat cells has been cloned in procaryotic vectors. Analysis of the clones reveals a complex arrangement of viral sequences in which a small tract of DNA is inverted with respect to the major insertion. The nucleotide sequences at the two junctions show sharp transitions between cellular and viral sequences. The sequences which flank the viral insertion have been used as probes to clone the corresponding genomic sequences from the DNA of untransformed rat cells. Analysis of the structure of these clones shows that a rearrangement of cellular sequences has occurred, presumably as a consequence of integration. When 14B cells are fused with uninfected simian cells a heterogeneous set of low molecular weight superhelical DNAs containing viral sequences is generated. These have been cloned in procaryotic vectors and their structures have been analyzed. All of them span the origin of SV40 DNA replication and are colinear with various segments of the integrated viral DNA and its flanking sequences. The shorter molecules contain part of the integrated viral genome and cellular sequences from one side of the insertion. They were therefore generated by recombination between the viral DNA and its flanking cellular sequences. The longer molecules contain cellular sequences from both sides of the insertion as well as an entire copy of the integrated viral DNA. They were therefore generated by recombination between the flanking cellular sequences. These results argue strongly against the involvement of specific excision enzymes, and rather are discussed in terms of a model involving replication of the integrated viral DNA followed by recombination for release of integrated viral sequences.  相似文献   

9.
10.
The structure of integrated viral DNA in a hepatocellular carcinoma of a duck from Chi-tung county in China was analyzed. Three different clones of integrated viral DNA, lambda DHS 6-1, lambda DHS 6-2, and lambda DHE 6-2, were obtained from the neoplastic portion of the liver by molecular cloning. One of the three clones, lambda DHS 6-1, showed inverted repetition of integrated viral DNA with chromosomal flanking sequences. Another clone, lambda DHS 6-2, showed a head-to-head configuration of the core and surface gene regions of duck hepatitis B virus (DHBV) DNA. The virus-chromosome junctions were often located near direct repeat 1 or 2 of DHBV DNA in three independent clones. Nucleotide sequences at the virus-virus junctions in two clones, lambda DHS 6-1 and 6-2, indicated the possible rearrangement of chromosomal DNA and recombination of viral DNA. DHBV DNA appears to be integrated into the genome of hepatocytes in a manner similar to that of human and woodchuck hepatitis viruses. Thus, the duck system may serve as a useful animal model for the study of human hepatocarcinogenesis.  相似文献   

11.
12.
Integrated human papillomavirus type 16 (HPV16) sequences were cloned from a cervical carcinoma and analyzed by restriction mapping and nucleotide sequencing. The viral integration sites were mapped within the E1 and E2 open reading frames (ORFs). The E4 and E5 ORFs were entirely deleted. An internal deletion of 376 base pairs (bp) was found disrupting the L1 and L2 ORFs. Sequencing analysis showed that an AGATGT/ACATCT inverted repeat marked the deletion junction with two flanking direct repeats 14 and 8 bp in length. A 1,330-bp sequence duplication containing the long control region (LCR) and the E6 and E7 ORFs was also found. The duplication junction was formed by two 24-bp direct repeats with 79% (19 of 24) homology located within the LCR and the E2 ORF of the prototype viral genome, respectively. This observation leads us to propose that the initial viral integration involved an HPV16 dimer in which the direct repeats in tandem units recombined, resulting in reiteration of only a portion of the original duplication. A guanosine insertion between nucleotides 1137 and 1138 created a continuous E1 ORF which was previously shown to be disrupted. Results from this study indicate that sequence reiteration and internal deletion in the integrated, and possibly in the episomal, HPV16 genome are influenced by specific nucleotide sequences in the viral genome. Moreover, reiteration of the LCR/E6/E7 sequences further supports the hypothesis that the E6/E7 ORFs may code for oncogenic proteins and that regulatory signals in the LCR may play a role in cellular transformation.  相似文献   

13.
The human parvovirus adeno-associated virus (AAV) is unique in its ability to target viral integration to a specific site on chromosome 19 (ch-19). Recombinant AAV (rAAV) vectors retain the ability to integrate but have apparently lost this ability to target. In this report, we characterize the terminal-repeat-mediated integration for wild-type (wt), rAAV, and in vitro systems to gain a better understanding of these differences. Cell lines latent for either wt or rAAV were characterized by a variety of techniques, including PCR, Southern hybridization, and fluorescence in situ hybridization analysis. More than 40 AAV-rAAV integration junctions were cloned, sequenced, and then subjected to comparison and analysis. In both immortalized and normal diploid human cells, wt AAV targeted integration to ch-19. Integrated provirus structures consisted of head-to-tail tandem arrays with the majority of the junction sequences involving the AAV inverted terminal repeats (ITRs). No complete viral ITRs were directly observed. In some examples, the AAV p5 promoter sequence was found to be fused at the virus-cell junction. Data from dot blot analysis of PCR products were consistent with the occurrence of inversions of genomic and/or viral DNA sequences at the wt integration site. Unlike wt provirus junctions, rAAV provirus junctions mapped to a subset of non-ch-19 sequences. Southern analysis supported the integration of proviruses from two independent cell lines at the same locus on ch-2. In addition, provirus terminal repeat sequences existed in both the flip and flop orientations, with microhomology evident at the junctions. In all cases with the exception of the ITRs, the vector integrated intact. rAAV junction sequence data were consistent with the occurrence of genomic rearrangement by deletion and/or rearrangement-translocation at the integration locus. Finally, junctions formed in an in vitro system between several AAV substrates and the ch-19 target site were isolated and characterized. Linear AAV substrates typically utilized the end of the virus DNA substrate as the point of integration, whereas products derived from AAV terminal repeat hairpin structures in the presence or absence of Rep protein resembled AAV-ch-19 junctions generated in vivo. These results describing wt AAV, rAAV, and in vitro integration junctions suggest that the viral integration event itself is mediated by terminal repeat hairpin structures via nonviral cellular recombination pathways, with specificity for ch-19 in vivo requiring additional viral components. These studies should have an important impact on the use of rAAV vectors in human gene therapy.  相似文献   

14.
The discovery that hepatitis B virus (HBV) integrates into host chromosomes raises the question of whether such viral DNA integration correlates directly with the activation of specific oncogenes or the inactivation of anti-oncogenes. To obtain insight into this problem, we randomly collected HBV integrant samples from different human hepatocellular carcinomas and identified the site of chromosomal integration by using in situ hybridization and/or linkage analysis with the flanking cellular DNAs as probes. Our findings did not specifically identify particular HBV DNA integration sites in chromosomes, although chromosomes 11 and 17 seemed to have more than the average number of integrants.  相似文献   

15.
The structures of integration sites in transgenic rice   总被引:22,自引:7,他引:15  
Extensive genomic sequencing and sequence motif analysis have been conducted over the integration sites of two transgenic rice plants, #478 and #559, carrying the luciferase gene and/or hygromycin phosphotransferase gene. The transgenes reside in a region with inverted structure and a large duplication of rice genome over 2 kb. Integration was found at the AT-rich region and/or at the repetitive sequence region, including a SAR-like structure, retrotransposon and telomere repeats. The presence of a patch of sequence homology between plasmid and target DNA, and a small region of duplication involving the target DNA around the recombination site, implicated illegitimate recombination in the process of gene integration. Massive rearrangement of genomic DNA including deletion or translocation was also observed at the integration site and the flanking region of the transgene. The recognition sites of DNA topoisomerases I or II were observed in the rearranged sequences. Since only three junctions of transgenic rice were implicated in the illegitimate recombination and extensive rearrangement of the rice genome, rice protoplasts may be active in this process.  相似文献   

16.
The Streptomyces glaucescens genome frequently undergoes gross genomic rearrangement events which result in the deletion of extremely large segments of chromosomal DNA. The structure and origin of the DNA forming the novel junctions arising from five of these deletion events are described. Only one junction proved to be the result of a relatively simple event; the remainder were more complex, with one involving DNA which originated from at least five distinct loci. In three of the investigated cases, DNA sequences present in the junctions appeared to have resulted from the duplication of previously unique sequences, suggesting that duplication of chromosomal segments may be an important factor in genetic instability. The nucleotide sequences surrounding these junctions and their respective wild-type termini were determined.  相似文献   

17.
We have determined the nucleotide sequences of 10 intragenic human HPRT gene deletion junctions isolated from thioguanine-resistant PSV811 Werner syndrome fibroblasts or from HL60 myeloid leukemia cells. Deletion junctions were located by fine structure blot hybridization mapping and then amplified with flanking oligonucleotide primer pairs for DNA sequence analysis. The junction region sequences from these 10 HPRT mutants contained 13 deletions ranging in size from 57 bp to 19.3 kb. Three DNA inversions of 711, 368, and 20 bp were associated with tandem deletions in two mutants. Each mutant contained the deletion of one or more HPRT exon, thus explaining the thioguanine-resistant cellular phenotype. Deletion junction and donor nucleotide sequence alignments suggest that all of these HPRT gene rearrangements were generated by the nonhomologous recombination of donor DNA duplexes that share little nucleotide sequence identity. This result is surprising, given the potential for homologous recombination between copies of repeated DNA sequences that constitute approximately a third of the human HPRT locus. No difference in deletion structure or complexity was observed between deletions isolated from Werner syndrome or from HL60 mutants. This suggests that the Werner syndrome deletion mutator uses deletion mutagenesis pathway(s) that are similar or identical to those used in other human somatic cells.  相似文献   

18.
The nucleotide sequence of the long terminal repeat (LTR) of three murine retroviral DNAs has been determined. The data indicate that the U5 region (sequences originating from the 5' end of the genome) of various LTRs is more conserved than the U3 region (sequences from the 3' end of the genome). The location and sequence of the control elements such as the 5' cap, "TATA-like" sequences, "CCAAT-box," and presumptive polyadenylic acid addition signal AATAAA in the various LTRs are nearly identical. Some murine retroviral DNAs contain a duplication of sequences within the LTR ranging in size from 58 to 100 base pairs. A variant of molecularly cloned Moloney murine sarcoma virus DNA in which one of the two LTRs integrated into the viral DNA was also analyzed. A 4-base-pair duplication was generated at the site of integration of LTR in the viral DNA. The host-viral junction of two molecularly cloned AKR-murine leukemia virus DNAs (clones 623 and 614) was determined. In the case of AKR-623 DNA, a 3- or 4-base-pair direct repeat of cellular sequences flanking the viral DNA was observed. However, AKR-614 DNA contained a 5-base-pair repeat of cellular sequences. The nucleotide sequence of the preintegration site of AKR-623 DNA revealed that the cellular sequences duplicated during integration are present only once. Finally, a striking homology between the sequences flanking the preintegration site and viral LTRs was observed.  相似文献   

19.
Bok J  Kim KJ  Park MH  Cho SH  Lee HJ  Lee EJ  Park C  Lee JY 《BMB reports》2012,45(6):365-370
Hepatitis B virus (HBV) DNA is often integrated into hepatocellular carcinoma (HCC). Although the relationship between HBV integration and HCC development has been widely studied, the role of HBV integration in HCC development is still not completely understood. In the present study, we constructed a pooled BAC library of 9 established cell lines derived from HCC patients with HBV infections. By amplifying viral genes and superpooling of BAC clones, we identified 2 clones harboring integrated HBV DNA. Screening of host-virus junctions by repeated sequencing revealed an HBV DNA integration site on chromosome 11q13 in the SNU-886 cell line. The structure and rearrangement of integrated HBV DNA were extensively analyzed. An inverted duplicated structure, with fusion of at least 2 HBV DNA molecules in opposite orientations, was identified in the region. The gene expression of cancer-related genes increased near the viral integration site in HCC cell line SNU-886.  相似文献   

20.
EcoRI fragments containing integrated viral and adjacent host sequences were cloned from two polyoma virus-transformed cell lines (7axT and 7axB) which each contain a single insert of polyoma virus DNA. Cloned DNA fragments which contained a complete coding capacity for the polyoma virus middle and small T-antigens were capable of transforming rat cells in vitro. Analysis of the flanking sequences indicated that rat DNA had been reorganized or deleted at the sites of polyoma virus integration, but none of the hallmarks of retroviral integration, such as the duplication of host DNA, were apparent. There was no obvious similarity of DNA sequences in the four virus-host joins. In one case the virus-host junction sequence predicted the virus-host fusion protein which was detected in the transformed cell line. DNA homologous to the flanking sequences of three out of four of the joins was present in single copy in untransformed cells. One copy of the flanking host sequences existed in an unaltered form in the two transformed cell lines, indicating that a haploid copy of the viral transforming sequences is sufficient to maintain transformation. The flanking sequences from one cell line were further used as a probe to isolate a target site (unoccupied site) for polyoma virus integration from uninfected cellular DNA. The restriction map of this DNA was in agreement with that of the flanking sequences, but the sequence of the unoccupied site indicated that viral integration did not involve a simple recombination event between viral and cellular sequences. Instead, sequence rearrangements or alterations occurred immediately adjacent to the viral insert, possibly as a consequence of the integration of viral DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号