首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PECAM-1 (also known as CD31) is a cellular adhesion and signaling receptor comprising six extracellular immunoglobulin (Ig)-like homology domains, a short transmembrane domain and a 118 amino acid cytoplasmic domain that becomes serine and tyrosine phosphorylated upon cellular activation. PECAM-1 expression is restricted to blood and vascular cells. In circulating platelets and leukocytes, PECAM-1 functions largely as an inhibitory receptor that, via regulated sequential phosphorylation of its cytoplasmic domain, limits cellular activation responses. PECAM-1 is also highly expressed at endothelial cell intercellular junctions, where it functions as a mechanosensor, as a regulator of leukocyte trafficking and in the maintenance of endothelial cell junctional integrity. In this review, we will describe (1) the functional domains of PECAM-1 and how they contribute to its barrier-enhancing properties, (2) how the physical properties of PECAM-1 influence its subcellular localization and its ability to influence endothelial cell barrier function, (3) various stimuli that initiate PECAM-1 signaling and/or function at the endothelial junction and (4) cross-talk of PECAM-1 with other junctional molecules, which can influence endothelial cell function.  相似文献   

2.
Platelet endothelial cell adhesion molecule-1 (PECAM-1; CD31) is a 130-kDa transmembrane glycoprotein that is expressed on the surfaces of platelets, endothelial cells, and certain leukocyte subsets. The extracellular region of PECAM-1 contains six immunoglobulin homology domains, two of which (domains 1 and 2) mediate PECAM-1 homophilic interactions. Recent evidence suggests that a major function of the extracellular region of PECAM-1 is to determine its localization within the plane of the plasma membrane. The cytoplasmic domain of PECAM-1 contains an immunoreceptor tyrosine-based inhibitory motif that, upon tyrosine phosphorylation, supports recruitment of the Src homology 2 domain-containing protein tyrosine phosphatase, SHP-2. However, neither the targets of this PECAM-1/SHP-2 complex nor the significance of localizing SHP-2 to the borders of opposing PECAM-1-expressing cells is yet known. As a first step in addressing these issues, we designed a cDNA encoding a chimeric protein composed of the PECAM-1 extracellular domain fused to the phosphatase domain of SHP-2, which we call PECAM-1/PhD2. When immunopurified from stably transfected HEK293 cell lines expressing this recombinant protein, PECAM-1/PhD2 was found to possess constitutive enzymatic activity and appropriate border localization. This constitutively active chimeric protein will be useful in future studies designed to define the components of signal transduction pathways modulated by PECAM-1/SHP-2 signaling complexes.  相似文献   

3.
Fluid shear stress (FSS) induces many forms of responses, including phosphorylation of extracellular signal-regulated kinase (ERK) in endothelial cells (ECs). We have earlier reported rapid tyrosine phosphorylation of platelet endothelial cell adhesion molecule-1 (PECAM-1) in ECs exposed to FSS. Osmotic changes also induced similar PECAM-1 and ERK phosphorylation with nearly identical kinetics. Because both FSS and osmotic changes should mechanically perturb the cell membrane, they might activate the same mechanosignaling cascade. When PECAM-1 is tyrosine phosphorylated by FSS or osmotic changes, SHP-2 binds to it. Here we show that ERK phosphorylation by FSS or osmotic changes depends on PECAM-1 tyrosine phosphorylation, SHP-2 binding to phospho-PECAM-1, and SHP-2 phosphatase activity. In ECs under flow, detectable amounts of SHP-2 and Gab1 translocated from the cytoplasm to the EC junction. When magnetic beads coated with antibodies against the extracellular domain of PECAM-1 were attached to ECs and tugged by magnetic force for 10 min, PECAM-1 associated with the beads was tyrosine phosphorylated. ERK was also phosphorylated in these cells. Binding of the beads by itself or pulling on the cell surface using poly-l-coated beads did not induce phosphorylation of PECAM-1 and ERK. These results suggest that PECAM-1 is a mechanotransduction molecule.  相似文献   

4.
PECAM-1 (CD31) is a member of the Ig superfamily of cell adhesion molecules and is expressed on endothelial cells (EC) as several circulating blood elements including platelets, polymorphonuclear leukocytes, monocytes, and lymphocytes. PECAM-1 tyrosine phosphorylation has been observed following mechanical stimulation of EC but its role in mechanosensing is still incompletely understood. The aim of this study was to investigate the involvement of PECAM-1 in signaling cascades in response to fluid shear stress (SS) in vascular ECs. PECAM-1-deficient (KO) and PECAM-reconstituted murine microvascular ECs, 50 and 100% confluent bovine aortic EC (BAEC), and human umbilical vein EC (HUVEC) transfected with antisense PECAM-1 oligonucleotides were exposed to oscillatory SS (14 dynes/cm2) for 0, 5, 10, 30 or 60 min. The tyrosine phosphorylation level of PECAM-1 immunoprecipitated from SS-stimulated PECAM-reconstituted, but not PECAM-1-KO, murine ECs increased. Although PECAM-1 was phosphorylated in 100% confluent BAEC and HUVEC, its phosphorylation level in 50% confluent BAECs or HUVEC was not detected by SS. Likewise PECAM-1 phosphorylation was robust in the wild type and scrambled-transfected HUVEC but not in the PECAM-1 antisense-HUVEC. ERK(1/2), p38 MAPK, and AKT were activated by SS in all cell types tested, including the PECAM-1-KO murine ECs, 50% confluent BAECs, and HUVEC transfected with antisense PECAM-1. This suggests that PECAM-1 may not function as a major mechanoreceptor for activation of MAPK and AKT in ECs and that there are likely to be other mechanoreceptors in ECs functioning to detect shear stress and trigger intercellular signals.  相似文献   

5.
Platelet endothelial cell adhesion molecule (PECAM-1), a transmembrane glycoprotein, has been implicated in angiogenesis, with recent evidence indicating the involvement of PECAM-1 in endothelial cell motility. The cytoplasmic domain of PECAM-1 contains two tyrosine residues, Y663 and Y686, that each fall within an immunoreceptor tyrosine-based inhibitory motif (ITIM). When phosphorylated, these residues together mediate the binding of the protein tyrosine phosphatase SHP-2. Because SHP-2 has been shown to be involved in the turnover of focal adhesions, a phenomenon required for efficient cell motility, the association of this phosphatase with PECAM-1 via its ITIMs may represent a mechanism by which PECAM-1 might facilitate cell migration. Studies were therefore done with cell transfectants expressing wild-type PECAM or mutant PECAM-1 in which residues Y663 and Y686 were mutated. These mutations eliminated PECAM-1 tyrosine phosphorylation and the association of PECAM-1 with SHP-2 but did not impair the ability of the molecule to localize at intercellular junctions or to bind homophilically. However, in vitro cell motility and tube formation stimulated by the expression of wild-type PECAM-1 were abrogated by the mutation of these tyrosine residues. Importantly, during wound-induced migration, the number of focal adhesions as well as the level of tyrosine phosphorylated paxillin detected in cells expressing wild-type PECAM-1 were markedly reduced compared with control cells or transfectants with mutant PECAM-1. These data suggest that, in vivo, the binding of SHP-2 to PECAM-1, via PECAM-1’s ITIM domains, promotes the turnover of focal adhesions and, hence, endothelial cell motility. platelet endothelial cell adhesion molecule-1; endothelial cells; angiogenesis  相似文献   

6.
Cell migration is an important process in such phenomena as growth, development, and wound healing. The control of cell migration is orchestrated in part by cell surface adhesion molecules. These molecules fall into two major categories: those that bind to extracellular matrix and those that bind to adjacent cells. Here, we report on the role of a cell-cell adhesion molecule, platelet-endothelial cell adhesion molecule-1, (PECAM-1), a member of the lg superfamily, in the modulation of cell migration and cell-cell adhesion. PECAM-1 is a 120-130 kDa integral membrane protein that resides on endothelial cells and localizes at sites of cell-cell contact. Since endothelial cells express PECAM-1 constitutively, we studied the effects of PECAM-1 on cell-cell adhesion and migration in a null-cell population. Specifically, we transfected NIH/3T3 cells with the full length PECAM-1 molecule (two independent clones). Transfected cells containing only the neomycin resistance gene, cells expressing a construct coding for the extracellular domain of the molecule, and cells expressing the neu oncogene were used as controls. The PECAM-1 transfectants appeared smaller and more polygonal and tended to grow in clusters. Indirect immunofluorescence of PECAM-1 transfectants showed peripheral staining at sites of cell-cell contact, while the extracellular domain transfectants and the control cells did not. In two quantitative migration assays, the full-length PECAM-1 transfectants migrated more slowly than control cells. Thus, PECAM-1 transfected into a null cell appears to localize to sites of cell-cell contact, promote cell-cell adhesion, and diminish the rate of migration. These findings suggest a role for this cell-cell adhesion molecule in the process of endothelial cell migration.  相似文献   

7.
Coordinated migration of endothelial cells models the remodeling of existing endothelia as well as angiogenesis and vasculogenesis. Platelet-endothelial cell adhesion molecule-1, PECAM-1, a transmembrane endothelial adhesion protein, binds and activates the tyrosine phosphatase SHP-2 via phosphotyrosines 663 and 686. PECAM-1 phosphorylation and recruitment of SHP-2 are regulated by cell-cell and cell-substrate adhesion. We found that PECAM-1 is dephosphorylated on tyrosine 686 during endothelial migration, resulting in diffuse dispersal of PECAM-1 and SHP-2. Overexpression of native PECAM-1 slowed, and nonphosphorylatable PECAM-1 increased, endothelial migration, implying that the SHP-2-regulatory phosphotyrosines negatively regulate migration. Using differentially phosphorylated recombinant proteins we found that phosphotyrosine 686 preferentially mediates binding and 663 mediates activation of SHP-2 by PECAM-1. In PECAM-1-null endothelial cells, SHP-2 bound and dephosphorylated an alternative set of phosphoproteins and its distribution to the cytoskeletal fraction was significantly decreased. Tyrosine phosphorylation of beta-catenin and focal adhesion kinase was increased in endothelial cells overexpressing nonphosphorylatable PECAM-1. Thus homophilically engaged, tyrosine-phosphorylated PECAM-1 locally activates SHP-2 at cell-cell junctions; with disruption of the endothelial monolayer, selective dephosphorylation of PECAM-1 leads to redistribution of SHP-2 and pro-migratory changes in phosphorylation of cytoskeletal and focal contact components.  相似文献   

8.
VE-cadherin is the essential adhesion molecule in endothelial adherens junctions, and the regulation of protein tyrosine phosphorylation is thought to be important for the control of adherens junction integrity. We show here that VE-PTP (vascular endothelial protein tyrosine phosphatase), an endothelial receptor-type phosphatase, co-precipitates with VE-cadherin, but not with beta-catenin, from cell lysates of transfected COS-7 cells and of endothelial cells. Co-precipitation of VE-cadherin and VE-PTP required the most membrane-proximal extracellular domains of each protein. Expression of VE-PTP in triple-transfected COS-7 cells and in CHO cells reversed the tyrosine phosphorylation of VE-cadherin elicited by vascular endothelial growth factor receptor 2 (VEGFR-2). Expression of VE-PTP under an inducible promotor in CHO cells transfected with VE-cadherin and VEGFR-2 increased the VE-cadherin-mediated barrier integrity of a cellular monolayer. Surprisingly, a catalytically inactive mutant form of VE-PTP had the same effect on VE-cadherin phosphorylation and cell layer permeability. Thus, VE-PTP is a transmembrane binding partner of VE-cadherin that associates through an extracellular domain and reduces the tyrosine phosphorylation of VE-cadherin and cell layer permeability independently of its enzymatic activity.  相似文献   

9.
Endothelial cells are capable of responding to fluid shear stress, but the molecular mechanism for this biological response remains largely unknown. Our studies indicate that the cell-cell adhesion site is a possible site of flow sensing. PECAM-1, a cell adhesion molecule localized to the interendothelial cell adhesion site, is tyrosine-phosphorylated when endothelial cells are exposed to physiological levels of fluid shear stress. This PE-CAM-1 phosphorylation initiates a signaling cascade leading to ERK activation. Here we review what is known about PECAM-1 tyrosine phosphorylation and suggest a possible role of PECAM-1 in mechanosensing by endothelial cells.  相似文献   

10.
Platelet-endothelial cell adhesion molecule-1 (PECAM-1) is a 130-kDa transmembrane glycoprotein expressed by endothelial cells, platelets, monocytes, neutrophils, and certain T cell subsets. The PECAM-1 extracellular domain has six Ig-homology domains that share sequence similarity with cellular adhesion molecules. The PECAM-1 cytoplasmic domain contains an immunoreceptor tyrosine-based inhibitory motif (ITIM) that, when appropriately engaged, becomes phosphorylated on tyrosine residues, creating docking sites for nontransmembrane, Src homology 2 domain-bearing protein tyrosine phosphatase (SHP)-1 and SHP-2. The purpose of the present study was to determine whether PECAM-1 inhibits protein tyrosine kinase (PTK)-dependent signal transduction mediated by the immunoreceptor tyrosine-based activation motif-containing TCR. Jurkat cells, which coexpress PECAM-1 and the TCR/CD3 complex, were INDO-1AM-labeled and then incubated with anti-CD3epsilon mAbs, anti-PECAM-1 mAbs, or both, and goat anti-mouse IgG was used to cross-link surface-bound mAbs. Calcium mobilization induced by CD3 cross-linking was found to be attenuated by coligation of PECAM-1 in a dose-dependent manner. PECAM-1-mediated inhibition of TCR signaling was attributable, at least in part, to inhibition of release of calcium from intracellular stores. These data provide evidence that PECAM-1 can dampen signals transduced by ITAM-containing receptors and support inclusion of PECAM-1 within the family of ITIM-containing inhibitors of PTK-dependent signal transduction.  相似文献   

11.
Platelet-endothelial cell adhesion molecule (PECAM)-1 is a 130-kDa glycoprotein commonly used as an endothelium-specific marker. Evidence to date suggests that PECAM-1 is more than just an endothelial cell marker but is intimately involved in signal transduction pathways. This is mediated in part by phosphorylation of specific tyrosine residues within the ITAM domain of PECAM-1 and by recruitment of adapter and signaling molecules. Recently we demonstrated that PECAM-1/beta-catenin association functions to regulate beta-catenin localization and, moreover, to modulate beta-catenin tyrosine phosphorylation levels. Here we show that: 1) not only beta-catenin, but also gamma-catenin is associated with PECAM-1 in vitro and in vivo; 2) PKC enzyme directly phosphorylates purified PECAM-1; 3) PKC-derived PECAM-1 serine/threonine phosphorylation inversely correlates with gamma-catenin association; 4) PECAM-1 recruits gamma-catenin to cell-cell junctions in transfected SW480 cells; and 5) gamma-catenin may recruit PECAM-1 into an insoluble cytoskeletal fraction. These data further support the concept that PECAM-1 functions as a binder and modulator of catenins and provides a molecular mechanism for previously reported PECAM-1/cytoskeleton interactions.  相似文献   

12.
Huang YT  Chen SU  Chou CH  Lee H 《Cellular signalling》2008,20(8):1521-1527
Sphingosine 1-phosphate (S1P) is a multifunctional phospholipid which acts through a specific family of G protein-coupled receptors. Platelet/endothelial cell adhesion molecule-1 (PECAM-1) form trans-homophilic binding at lateral cell border. Upon stimulation, its cytoplasmic tyrosine residues could be phosphorylated and interact with various downstream signaling molecules. In this study, we demonstrated that S1P induced PECAM-1 tyrosine phosphorylation in human umbilical cord vein cells (HUVECs). By pharmacological inhibitors, it was suggested that G(i) and Src family kinases were involved in PECAM-1 phosphorylation. Moreover, cSrc and Fyn siRNA significantly suppressed S1P-induced PECAM-1 phosphorylation. These results suggested that S1P-induced PECAM-1 phosphorylation through G(i) and subsequent cSrc and Fyn. Our findings provide further understanding of S1P and PECAM-1 signaling as well as their functions in endothelial cells.  相似文献   

13.
Platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) functions to control the activation and survival of the cells on which it is expressed. Many of the regulatory functions of PECAM-1 are dependent on its tyrosine phosphorylation and subsequent recruitment of the Src homology (SH2) domain containing protein tyrosine phosphatase SHP-2. The recent demonstration that PECAM-1 tyrosine phosphorylation occurs in cells exposed to the reactive oxygen species hydrogen peroxide (H2O2) suggested that this form of oxidative stress may also support PECAM-1/SHP-2 complex formation. In the present study, we show that PECAM-1 tyrosine phosphorylation in response to exposure of cells to H2O2 is reversible, involves a shift in the balance between kinase and phosphatase activities, and supports binding of SHP-2 and recruitment of this phosphatase to cell-cell borders. We speculate, however, that the unique ability of H2O2 to reversibly oxidize the reactive site cysteine residues of protein tyrosine phosphatases may result in transient inactivation of the SHP-2 that is bound to PECAM-1 under these conditions. Finally, we provide evidence that PECAM-1 tyrosine phosphorylation and SHP-2 binding in endothelial cells requires exposure to an "oxidative burst" of H2O2, but that exposure of these cells to sufficiently high concentrations of H2O2 for a sufficiently long period of time abrogates binding of SHP-2 to tyrosine-phosphorylated PECAM-1. These findings support a role for PECAM-1 as a sensor of oxidative stress, perhaps most importantly during the process of inflammation.  相似文献   

14.
Platelet/endothelial cell adhesion molecule (PECAM-1) is a cell adhesion molecule of the immunoglobulin superfamily that plays a role in a number of vascular processes including leukocyte transmigration through endothelium. The presence of a specific 19– amino acid exon within the cytoplasmic domain of PECAM-1 regulates the binding specificity of the molecule; specifically, isoforms containing exon 14 mediate heterophilic cell–cell aggregation while those variants missing exon 14 mediate homophilic cell–cell aggregation. To more precisely identify the region of exon 14 responsible for ligand specificity, a series of deletion mutants were created in which smaller regions of exon 14 were removed. After transfection into L cells, they were tested for their ability to mediate aggregation. For heterophilic aggregation to occur, a conserved 5–amino acid region (VYSEI in the murine sequence or VYSEV in the human sequence) in the mid-portion of the exon was required. A final construct, in which this tyrosine was mutated into a phenylalanine, aggregated in a homophilic manner when transfected into L cells. Inhibition of phosphatase activity by exposure of cells expressing wild type or mutant forms of PECAM-1 to sodium orthovanadate resulted in high levels of cytoplasmic tyrosine phosphorylation and led to a switch from heterophilic to homophilic aggregation. Our data thus indicate either loss of this tyrosine from exon 14 or its phosphorylation results in a change in ligand specificity from heterophilic to homophilic binding. Vascular cells could thus determine whether PECAM-1 functions as a heterophilic or homophilic adhesion molecule by processes such as alternative splicing or by regulation of the balance between tyrosine phosphorylation or dephosphorylation. Defining the conditions under which these changes occur will be important in understanding the biology of PECAM-1 in transmigration, angiogenesis, development, and other processes in which this molecule plays a role.  相似文献   

15.
T Ohmori  Y Yatomi  Y Wu  M Osada  K Satoh  Y Ozaki 《Biochemistry》2001,40(43):12992-13001
Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is a 130K transmembrane glycoprotein that belongs to the immunoglobulin gene superfamily and is expressed on the surface of hematological or vascular cells, including platelets and endothelial cells. Although the importance of this adhesion molecule in various cell-cell interactions is established, its function in platelets remains ill-defined. In the process of clarifying the mechanism by which the lectin wheat germ agglutinin (WGA) activates platelets, we unexpectedly discovered that PECAM-1 is involved in signal transduction pathways elicited by this N-acetyl-D-glucosamine (NAGlu)-reactive lectin. WGA, which is a very potent platelet stimulator, elicited a rapid surge in Syk and phospholipase C (PLC)-gamma 2 tyrosine phosphorylation and the resultant intracellular Ca(2+) mobilization; collagen, as reported, induced these responses, but in a much slower and weaker manner. WGA strongly induced tyrosine phosphorylation of a 130-140K protein, which was confirmed to be PECAM-1 by immunoprecipitation and immunodepletion studies. WGA-induced PECAM-1 tyrosine phosphorylation occurred rapidly, strongly and in a manner independent of platelet aggregation or cell-cell contact; these characteristics of PECAM-1 phosphorylation were not mimicked at all by receptor-mediated platelet agonists. In addition, WGA was found to associate with PECAM-1 itself, and anti-PECAM-1 antibody, as well as NAGlu, specifically inhibited WGA-induced platelet aggregation. In PECAM-1 immunoprecipitates, Src family tyrosine kinases existed, and a kinase activity was detected, which increased upon WGA stimulation. Furthermore, the Src family kinase inhibitor PP2 inhibited WGA-induced platelet aggregation, Ca(2+) mobilization, and PLC-gamma 2 tyrosine phosphorylation. Finally, WGA induced PECAM-1 tyrosine phosphorylation and cytoskeletal reorganization in vascular endothelial cells. Our results suggest that (i) PECAM-1 is involved in WGA-induced platelet activation, (ii) PECAM-1 clustering by WGA activates unique and strong platelet signaling pathways, leading to a rapid PLC activation via Src family kinases, and (iii) WGA is a useful tool for elucidating PECAM-1-mediated signaling with wide implications not confined to platelets.  相似文献   

16.
Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is a newly assigned member of the Ig immunoreceptor tyrosine-based inhibitory motif superfamily, and its functional role is suggested to be an inhibitory receptor that modulates immunoreceptor tyrosine-based activation motif-dependent signaling cascades. To test whether PECAM-1 is capable of delivering inhibitory signals in B cells and the functional requirement of protein-tyrosine phosphatases (PTPs) for this inhibitory signaling, we generated chimeric Fc gamma RIIB1-PECAM-1 receptors containing the extracellular and transmembrane portions of murine Fc gamma RIIB1 and the cytoplasmic domain of human PECAM-1. These chimeric receptors were stably expressed in chicken DT40 B cells either as wild-type or mutant cells deficient in SHP-1(-/-), SHP-2(-/-), SHIP(-/-), or SHP-1/2(-/-) and then assessed for their ability to inhibit B cell Ag receptor (BCR) signaling. Coligation of wild-type Fc gamma RIIB1-PECAM-1 with BCR resulted in inhibition of intracellular calcium release, suggesting that the cytoplasmic domain of PECAM-1 is capable of delivering an inhibitory signal that blocks BCR-mediated activation. This PECAM-1-mediated inhibitory signaling correlated with tyrosine phosphorylation of the Fc gamma RIIB1-PECAM-1 chimera, recruitment of SHP-1 and SHP-2 PTPs by the phosphorylated chimera, and attenuation of calcium mobilization responses. Mutational analysis of the two tyrosine residues, 663 and 686, constituting the immunoreceptor tyrosine-based inhibitory motifs in PECAM-1 revealed that both tyrosine residues play a crucial role in the inhibitory signal. Functional analysis of various PTP-deficient DT40 B cell lines stably expressing wild-type chimeric Fc gamma RIIB1-PECAM-1 receptor indicated that cytoplasmic Src homology 2-domain-containing phosphatases, SHP-1 and SHP-2, were both necessary and sufficient to deliver inhibitory negative regulation upon coligation of BCR complex with inhibitory receptor.  相似文献   

17.
PECAM-1/CD31 is a cell adhesion and signaling molecule that is enriched at the endothelial cell junctions. Alternative splicing generates multiple PECAM-1 splice variants, which differ in their cytoplasmic domains. It has been suggested that the extracellular ligand-binding property, homophilic versus heterophilic, of these isoforms is controlled by their cytoplasmic tails. To determine whether the cytoplasmic domains also regulate the cell surface distribution of PECAM-1 splice variants, we examined the distribution of CD31-EGFPs (PECAM-1 isoforms tagged with the enhanced green fluorescent protein) in living Chinese hamster ovary cells and in PECAM-1-deficient endothelial cells. Our results indicate that the extracellular, rather than the cytoplasmic domain, directs PECAM-1 to the cell-cell borders. Furthermore, coculturing PECAM-1 expressing and deficient cells along with transfection of CD31-EGFP cDNAs into PECAM-1 deficient cells reveal that this PECAM-1 localization is mediated by homophilic interactions. Although the integrin alphavbeta3 has been shown to interact with PECAM-1, this trans-heterophilic interaction was not detected at the borders of endothelial cells. However, based on cocapping experiments performed on proT cells, we provide evidence that the integrin alphavbeta3 associates with PECAM-1 on the same cell surface as in a cis manner.  相似文献   

18.
The role of platelet endothelial cell adhesion molecule-1 (PECAM-1) in endothelial cell-cell interactions and its contribution to cadherin-mediated cell adhesion are poorly understood. Such studies have been difficult because all known endothelial cells express PECAM-1. We have used Madin-Darby canine kidney (MDCK) cells as a model system in which to evaluate the role of PECAM-1 isoforms that differ in their cytoplasmic domains in cell-cell interactions. MDCK cells lack endogenous PECAM-1 but form cell-cell junctions similar to those of endothelial cells, in which PECAM-1 is concentrated. MDCK cells were transfected with two isoforms of murine PECAM-1, Delta15 and Delta14&15, the predominant isoforms expressed in vivo. Expression of the Delta15 isoform resulted in apparent dedifferentiation of MDCK cells concomitant with the loss of adherens junctions, down-regulation of E-cadherin, alpha- and beta-catenin expression, and sustained activation of extracellular regulated kinases. The Delta15 isoform was not concentrated at cell-cell contacts. In contrast, the Delta14&15 isoform localized to sites of cell-cell contact and had no effect on MDCK cell morphology, cadherin/catenin expression, or extracellular regulated kinase activity. Thus, the presence of exon 14 in the cytoplasmic domain of PECAM-1 has dramatic effects on the ability of cells to maintain adherens junctions and an epithelial phenotype. Therefore, changes in the expression of exon 14 containing PECAM-1 isoforms, which we have observed during development, may have profound functional consequences.  相似文献   

19.
RAFTK/Pyk2-mediated cellular signalling   总被引:1,自引:0,他引:1  
Intracellular signal transduction following extracellular ligation by a wide variety of surface molecules involves the activation and tyrosine phosphorylation of protein tyrosine kinases (PTKs). Tyrosine phosphorylation, controlled by the coordinated actions of protein tyrosine phosphatases (PTPs) and tyrosine kinases, is a critical regulatory mechanism for various physiological processes, including cell growth, differentiation, metabolism, cell cycle regulation and cytoskeleton function. The focal adhesion PTK family consists of the focal adhesion kinase (FAK) and the RAFTK/Pyk2 kinase (also known as CAK-beta and CADTK). RAFTK/Pyk2 can be activated by a variety of extracellular signals that elevate intracellular calcium concentration, and by stress signals. RAFTK/Pyk2 is expressed mainly in the central nervous system and in cells derived from hematopoietic lineages, while FAK is widely expressed in various tissues and links transmembrane integrin receptors to intracellular pathways. This review describes the role of RAFTK/Pyk2 in various signalling cascades and details the differential signalling by FAK and RAFTK/Pyk2.  相似文献   

20.
Platelet endothelial cell adhesion molecule (PECAM)-1 is a 130-kD transmembrane glycoprotein having six Ig homology domains within its extracellular domain and an immunoreceptor tyrosine-based inhibitory motif within its cytoplasmic domain. Previous studies have shown that addition of bivalent anti-PECAM-1 mAbs to the surface of T cells, natural killer cells, neutrophils, or platelets result in increased cell adhesion to immobilized integrin ligands. However, the mechanism by which this occurs is not clear, and it is possible that anti-PECAM-1 mAbs elicit this effect by simply sequestering PECAM-1, via antibody-induced patching and capping, away from stimulatory receptors that it normally regulates. To determine whether dimerization or oligomerization of PECAM-1 directly initiates signal transduction pathways that affect integrin function in an antibody-independent manner, stable human embryonic kidney-293 cell lines were produced that expressed chimeric PECAM-1 cDNAs containing one or two FK506-binding protein (FKBP) domains at their COOH terminus. Controlled dimerization initiated by addition of the bivalent, membrane-permeable FKBP dimerizer, AP1510, nearly doubled homophilic binding capacity, whereas AP1510-induced oligomers favored cis PECAM-1/PECAM-1 associations within the plane of the plasma membrane at the expense of trans homophilic adhesion. Importantly, AP1510-induced oligomerization resulted in a marked increase in both adherence and spreading of PECAM/FKBP-2-transfected cells on immobilized fibronectin, a reaction that was mediated by the integrin alpha(5)beta(1). These data demonstrate that signals required for integrin activation can be elicited by clustering of PECAM-1 from inside the cell, and suggest that a dynamic equilibrium between PECAM-1 monomers, dimers, and oligomers may control cellular activation signals that influence the adhesive properties of vascular cells that express this novel member of the immunoreceptor tyrosine-based inhibitory motif family of regulatory receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号