首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reduction of vinculin occurs in the renal medulla under the long-lasting dehydration. The protein content measured in inner medulla of rats of the WAG line under hydration was 92.1 +/- 6.3 in relative units, but it was only 77.6 +/- 2.3 after a 3-day water deprivation. The vinculin content in the inner medullar layer from mutant rats of Brattleboro line incapable of synthesizing vasopressin is essentially higher: it is 188.9 +/- 8.5 in hydrated conditions and drops to 148.4 +/- 7.3 under a 3-day dehydration. The same high level of vinculin is in outer medulla from rats of Brattleboro line: 222.1 +/- 11.8 in hydrated animals and 174.9 +/- 11 after a 3-day dehydration. No differences were revealed in response of vinculin to alternative osmoregulating stimulation in cortex in both rat lines.  相似文献   

2.
The intrarenal distribution of actinin and tropomyosin was studied by western blot analysis in various functional conditions. It was found that actinin content is always higher in cortex than in medulla. The highest tropomyosin content was revealed in outer medulla, but it is more than twice higher in rats of mutant Brattleboro line versus hydrated normal WAG rats. This ratio rises up to 46.12 +/- 2.14 versus 13.83 +/- 0.66 (in relative units) for rats being under dehydration that maximally activated vasopressin secretion in normal WAG rats.  相似文献   

3.
4.
BACKGROUND: Gene therapy applications require safe and efficient methods for gene transfer. Present methods are restricted by low efficiency and short duration of transgene expression. In vivo electroporation, a physical method of gene transfer, has evolved as an efficient method in recent years. We present a protocol involving electroporation combined with a long-acting promoter system for gene transfer to the lung. METHODS: The study was designed to evaluate electroporation-mediated gene transfer to the lung and to analyze a promoter system that allows prolonged transgene expression. A volume of 250 microl of purified plasmid DNA suspended in water was instilled into the left lung of anesthetized rats, followed by left thoracotomy and electroporation of the exposed left lung. Plasmids pCiKlux and pUblux expressing luciferase under the control of the cytomegalovirus immediate-early promoter/enhancer (CMV-IEPE) or human polyubiquitin c (Ubc) promoter were used. Electroporation conditions were optimized with four pulses (200 V/cm, 20 ms at 1 Hz) using flat plate electrodes. The animals were sacrificed at different time points up to day 40, after gene transfer. Gene expression was detected and quantified by bioluminescent reporter imaging (BLI) and relative light units per milligram of protein (RLU/mg) was measured by luminometer for p.Pyralis luciferase and immunohistochemistry, using an anti-luciferase antibody. RESULTS: Gene expression with the CMV-IEPE promoter was highest 24 h after gene transfer (2932+/-249.4 relative light units (RLU)/mg of total lung protein) and returned to baseline by day 3 (382+/-318 RLU/mg of total lung protein); at day 5 no expression was detected, whereas gene expression under the Ubc promoter was detected up to day 40 (1989+/-710 RLU/mg of total lung protein) with a peak at day 20 (2821+/-2092 RLU/mg of total lung protein). Arterial blood gas (PaO2), histological assessment and cytokine measurements showed no significant toxicity neither at day 1 nor at day 40. CONCLUSIONS: These results provide evidence that in vivo electroporation is a safe and effective tool for non-viral gene delivery to the lungs. If this method is used in combination with a long-acting promoter system, sustained transgene expression can be achieved.  相似文献   

5.
In the heart, elevated thyroid hormone leads to upregulation of metabolic pathways associated with energy production and development of hypertrophy. The malate/aspartate shuttle, which transfers cytosolic-reducing equivalents into the cardiac mitochondria, is increased 33% in hyperthyroid rats. Within the shuttle, the aspartate-glutamate carrier is rate limiting. The excitatory amino acid transporter type 1 (EAAT1) functions as a glutamate carrier in the malate/aspartate shuttle. In this study, we hypothesize that EAAT1 is regulated by thyroid hormone. Adult rats were injected with triiodothyronine (T3) or saline over a period of 8-9 days or provided with propylthiouracil (PTU) in their drinking water for 2 mo. Steady-state mRNA levels of EAAT1 and aralar1 and citrin (both cardiac mitochondrial aspartate-glutamate transporters) were determined by Northern blot analysis and normalized to 18S rRNA. A spectrophotometric assay of maximal malate/aspartate shuttle activity was performed on isolated cardiac mitochondria from PTU-treated and control animals. Protein lysates from mitochondria were separated by SDS-PAGE and probed with a human anti-EAAT1 IgG. Compared with control, EAAT1 mRNA levels (arbitrary units) were increased nearly threefold in T3-treated (3.1 +/- 0.5 vs. 1.1 +/- 0.2; P < 0.05) and decreased in PTU-treated (2.0 +/- 0. 3 vs. 5.2 +/- 1; P < 0.05) rats. Aralar1 mRNA levels were unchanged in T3-treated and somewhat decreased in PTU-treated (7.1 +/- 1.0 vs. 9.3 +/- 0.1, P < 0.05) rats. Citrin mRNA levels were decreased in T3-treated and unchanged in PTU-treated rats. EAAT1 protein levels (arbitrary units) in T3-treated cardiac mitochondria were increased compared with controls (8.9 +/- 0.4 vs. 5.9 +/- 0.6; P < 0.005) and unchanged in PTU-treated mitochondria. No difference in malate/aspartate shuttle capacity was found between PTU-treated and control cardiac mitochondria. Hyperthyroidism in rats is related to an increase in cardiac expression of EAAT1 mRNA and protein. The 49% increase in EAAT1 mitochondrial protein level shows that malate/aspartate shuttle activity increased in hyperthyroid rat cardiac mitochondria. Although hypothyroidism resulted in a decrease in EAAT1 mRNA, neither the EAAT1 protein level nor shuttle activity was affected. EAAT1 regulation by thyroid hormone may facilitate increased metabolic demands of the cardiomyocyte during hyperthyroidism and impact cardiac function in hyperthyroidism.  相似文献   

6.
Three groups of female Sprague-Dawley rats (n = 4) were conditioned to drink water during a daily 2 hr session. The water was then changed to a solution of 1.0 mg/ml lithium chloride producing average doses between 62.9 and 72.1 mg/kg/day for Groups I and II. These rats were challenged with 4 mg/kg PCP i.p. before and during lithium treatment. Group I was tested for spontaneous locomotor activity in the open field apparatus. Lithium alone did not affect activity. After 1, 2, and 3 weeks of chronic lithium, PCP-induced activity increased 2.1, 1.7, and 2.8 fold, respectively, relative to PCP-induced activity during limited access to water only. Whole brain homogenates from Group II, after one week of chronic lithium, were used for receptor binding experiments using [3H] PCP; Group III served as water controls. The Kd (nM +/- S.E.M.) was not different in untreated (146.39 +/- 18.95) and lithium-treated (181.22 +/- 14.35) rats. The Bmax (pmole/mg protein +/- S.E.M.), however, was increased 48% (p less than 0.01) from 1.50 +/- 0.08 to 2.22 +/- 0.10 after lithium. These preliminary results suggest that chronic administration of lithium modifies the behavioral effects of PCP possibly via alterations at the receptor level.  相似文献   

7.
Brattleboro diabetes insipidus mutant rats and normal WAG rats were subjected to water loading or thirst during 3 days. It was found that tropomyosin-encoding gene expression has a tissue-specific pattern in the kidney. Northern blot and western blot analysis had shown that the main expression of Tpm3(3) takes place in the renal medulla, and its intensity differs in normal and mutant rats. The differences between mutants with an ineffective vasopressin synthesizing system and the rats having an intact vasopressin gene were more distinct under long-lasting dehydration. The ratio between renal medullary tropomyosin of Brattleboro and WAG lines of rats was 39.76 +/- 0.90 versus 18.29 +/- 0.86 under water loading, and 46.12 +/- 2.14 versus 13.83 +/- 0.66 in thirst.  相似文献   

8.
Measurements of rectal temperature (Tre), water lost by evaporation (Eresp) and drooling, cardiac output (CO), and common carotid blood flow (CCBF) were made in dogs (mean hydrated wt 31.0 +/- 1.5 kg) running for 1 h on a level treadmill at 7.5 km/h at an ambient temperature of 25 degrees C. Each animal was studied when it was hydrated ad libitum and when it had been dehydrated by removal of drinking water until 9-10% of the initial body weight had been lost. Dehydrated exercising animals had significantly higher Tre and lower rates of Eresp, CO, and CCBF. Tre and Eresp were measured in seven animals. Average Tre during running was 39.11 +/- 0.10 degrees C in hydrated and 39.80 +/- 0.25 degrees C in dehydrated animals (P less than 0.01). Average Eresp during running was 3.9 +/- 0.3 g/min in hydrated animals and 2.3 +/- 0.3 g/min in dehydrated animals (P less than 0.01). Average CO during exercise, measured in five animals, was 11.1 +/- 0.7 1/min in the hydrated state and 8.6 +/- 0.5 1/min in the dehydrated state (P less than 0.01). Unilateral CCBF during exercise, measured in four animals, was 602 +/- 40 ml/min in the hydrated state and 418 +/- 22 ml/min in the dehydrated state (P less than 0.01). Water lost by drooling in seven exercising animals was 41.5 +/- 11 g/h when they were hydrated and 0.6 +/- 0.4 g/h when they were dehydrated. It is concluded that dehydrated dogs doing mild exercise can save water by reducing Eresp and regulating body temperature above hydrated levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
A significant amount of specific proteins are involved in kidney's response to vasopressin. A relative content of 120 kDa protein in the Wistar rat kidney medulla following a 3-day dehydration, was found to be 0.975 +/- 0.037 and after drinking 4% sucrose solution alone--0.871 +/- 0.038. The difference of protein 120 kDa content was not revealed in Brattleboro rats: in the control rats it was 0.814 +/- 0.044, and in the dehydrated ones--0.854 +/- 0.020. The findings suggest that vasopressin directly regulates the 120 kDa protein level in the kidney inner medulla.  相似文献   

10.
Prostaglandin (PG) F2 alpha binding parameters were measured in purified plasma membrane preparations isolated from livers of chronically endotoxin-(ET) treated rats and corresponding controls. Two classes of binding sites were detected in both groups: high affinity, low capacity, with a KD of 44.4 +/- 8.8 nM for saline- and 28.6 +/- 11.3 nM for ET-treated rats (n = 5 for both, p greater than 0.05) and low affinity, high capacity with a KD of 1.12 +/- 0.49 microM for saline- and 1.24 +/- 0.43 microM for ET-treated rats (p greater than 0.05). Bmax values for high affinity sites were 1.01 +/- 0.18 fmol.mg-1 protein for saline- and 1.02 +/- 0.54 (same units) for ET-treated rats (p greater than 0.05). There was a significant difference (p less than 0.01) between the Bmax values for low affinity sites in saline- (675 +/- 332 fmol.mg-1 protein) and ET-treated rats (12 +/- 1, same units). This decrease in the amount of PGF2 alpha low affinity high capacity binding sites may underlie the depression of the PGF2 alpha stimulatory effect on hepatic gluconeogenesis induced by non-lethal, chronic ET treatment of rats, recently described by us (9).  相似文献   

11.
The diagnostic significance of phosphoglycerate mutase (PGM) B-type isozyme activity capable of being inducible under hypoxia at the gene level as a serum marker for cerebral stroke was investigated. The normal level (mean +/- 2 SD) in human serum was determined to be 38 +/- 18 units/L. Within 2 h after the onset of cerebral stroke (n = 65), B-type isozyme activity was elevated to 68 +/- 36 units/L, and retained to be higher level until 1-3 days. Serum B-type isozyme activities of 52 survival cases and 13 dead cases, being judged at the period of 1-2 months after the onset, were retrospectively compared; B-type isozyme activity that had been measured within 24 h after the onset was significantly higher (81 +/- 42 units/L) for the dead cases than for survival cases (57 +/- 27 units/L) with P < 0.05. These results suggest that serum PGM B-type isozyme has the potential as a novel marker for diagnosis of cerebral stroke and its severity.  相似文献   

12.
Kidneys of new-born animals are resistant to arginine vasopressin (AVP). The ability of the hormone to regulate water permeability of the collecting duct can be seen from weaning period, probably due to the maturation of the intracellular signaling pathway. The purpose of the present work was to investigate the effect of V2 receptor agonist dDAVP on the water permeability of OMCD basolateral membrane in 10-, 22- and 60-day old Wistar rats. We also estimated ontogenetic gene expression of AQP2, AQP3, AQP4 and V2 receptor. Osmotic water permeability (Pf) of the basolateral membrane of microdissected OMCD was measured under control conditions and after incubation with the agonist V2 receptor desmopressin (dDAVP; 10(-7) M). Water permeability in 10- and 22-day old rats under control conditions were significantly higher than in adults. Desmopressin stimulated significant increase of this parameter in 22-day old pups (Pf = = 125 +/- 4.85; Pf = 174 +/- 8.2 microns/s, p < 0.001) and adult rats (Pf = 100.5 +/- 7.38; Pf = 178.8 +/- 9.54 microns/s, p < 0.001). Osmotic water permeability of the OMCD basolateral membrane in 10-day old rats does not depend on dDAVP (Pf = 172.5 +/- 23.8; Pf = 164.8 +/- 34 microns/s). With the RT-PCR, we observed a gradual increase of AQP2 and V2 receptor genes expression during postnatal ontogenesis. The gene expression of AQP3 and AQP4 remained unchanged during postnatal ontogenesis. In general, the water permeability of the OMCD basolateral membrane of rats can be stimulated by AVP since the 22nd day of postnatal life. The water permeability of the OMCD basolateral membrane under control conditions gradually decreased during postnatal development, while gene expression of AQP3 and AQP4 was unchanged. The mechanism of this decrease remains to be established.  相似文献   

13.
Hyaluronan is a megadalton glycosaminoglycan composed of repeating units of D-N-acetylglucosamine-beta-D-Glucuronic acid. It is known to form a highly hydrated pericellular coat around chondrocytes, fibrosarcoma, and smooth muscle cells. Using environmental scanning electron microscopy we detected fully hydrated hyaluronan pericellular coats around rat chondrocytes (RCJ-P) and epithelial cells (A6). Hyaluronan mediates early adhesion of both chondrocytes and A6 cells to glass surfaces. We show that chondrocytes in suspension establish early "soft contacts" with the substrate through a thick, hyaluronidase-sensitive coat (4.4 +/- 0.7 microm). Freshly-attached cells drift under shear stress, leaving hyaluronan "footprints" on the surface. This suggests that chondrocytes are surrounded by a multilayer of entangled hyaluronan molecules. In contrast, A6 cells have a 2.2 +/- 0.4- microm-thick hyaluronidase-sensitive coat, do not drift under shear stress, and remain firmly anchored to the surface. We consider the possibility that in A6 cells single hyaluronan molecules, spanning the whole thickness of the pericellular coat, mediate these tight contacts.  相似文献   

14.
Estrogen receptor-beta (ER-beta) expression in rat magnocellular vasopressin (VP) neurons of the supraoptic and paraventricular nuclei (SON and PVN, respectively) becomes undetectable after 72 h of 2% NaCl consumption. To test the hypothesis that osmosensitive mechanisms that originate in the region of the organum vasculosum lamina terminalis (OVLT) control ER-beta expression in the SON and PVN, animals were water deprived after electrolytic lesions were performed on the area anterior to the ventral third ventricle (AV3V). Such lesions prevent osmotic stimulation of VP release. Four weeks after surgery, male rats [lesioned (n = 16) or sham (n = 14)] were water deprived for 48 h or allowed water ad libitum. Water deprivation eliminated ER-beta-immunoreactivity (-ir) in SON and magnocellular PVN of sham-lesioned animals. Fos-ir was evident in these neurons, and plasma osmolality (Posm) and hematocrit (Ht) were significantly elevated compared with the sham-hydrated rats (Posm, 304 +/- 1 vs. 318 +/- 2 mosmol/kgH2O; P < 0.001; Ht, 49.6 +/- 0.6 vs. 55.0 +/- 0.9%; P < 0.001). ER-beta expression was comparable in sham-hydrated, AV3V-hydrated, and 6 of 8 AV3V-dehydrated rats despite significant increases in Posm in both groups (AV3V hydrated, 312 +/- 2; AV3V dehydrated, 380 +/- 10 mosmol/kgH2O; P < 0.001). OVLT was not ablated in the AV3V-dehydrated rats in which ER-beta was depleted. Fos-ir was low or undetectable in SON in the AV3V-hydrated animals despite elevated Posm values. In AV3V-dehydrated rats, Fos-ir was significantly less than in sham-dehydrated animals but was significantly increased compared with the sham-hydrated group. This could reflect activation by nonosmotic parameters that do not inhibit ER-beta expression. These data support the hypothesis that inhibition of ER-beta expression in the SON by osmotic stimulation is mediated by osmoreceptive neurons in the lamina terminalis.  相似文献   

15.
Magnesium uptake by intestinal brush-border membranes (BBM) was studied in duodenal and jejunal vesicles of the spontaneously hypertensive rat (SHR) and normotensive control, the Wistar-Kyoto (WKY) rat. In the duodenum, no statistical difference was evidenced between the two types of rats. By contrast, initial rates of magnesium uptake in jejunal vesicles were lower in SHR (5.4 +/- 2.1 nmol/mg protein x 10 sec) in comparison to WKY rats (11.0 +/- 2.5 nmol/mg protein x 10 sec) at a magnesium concentration of 1 mM (P less than 0.01). In jejunal BBM, kinetic analysis of magnesium uptake showed three components in WKY rats, with one being diffusional. In SHR, only two components were seen, with the diffusional one being absent. The two saturable components showed Vmax of 6.5 +/- 1.3 and 26.2 +/- 6.0 nmol/mg protein x 10 sec and apparent Km of 0.22 +/- 0.12 mM and 1.9 +/- 0.4 mM in WKY rats, and Vmax of 10.9 +/- 3.5 and 14.8 +/- 5.9 nmol/mg protein x 10 sec and apparent Km of 0.43 +/- 0.23 mM and 1.3 +/- 0.2 mM in SHR. Only the component with the lowest apparent affinity appeared statistically different in SHR as compared with WKY rats for both Vmax and apparent Km (P less than 0.05). Time course evolution of magnesium uptake in jejunal BBM indicated, by extrapolation at zero time, that 2.5 and 5.1 nmol magnesium/mg protein in SHR and WKY rats, respectively, would be in the bound state. The study of the influence of medium osmolarity on 60-min magnesium uptakes was also indicative of a smaller binding compartment in jejunal BBM of SHR (3.70 and 8.26 nmol/mg protein in SHR and WKY rats, respectively); at the four osmolarities assayed, the 60-min uptakes were significantly lower in SHR as compared with WKY rats (P less than 0.01). From 60-min glucose uptakes, a smaller volume of jejunal BBM vesicles was determined for SHR as compared with WKY rats (0.34 +/- 0.06 and 0.63 +/- 0.17 microliter/mg of protein in SHR and WKY rats respectively, P less than 0.05), this volume being significantly augmented by the presence of 1 mM MgCl2 (0.48 +/- 0.05 and 1.27 +/- 0.02 microliter/mg of protein in SHR and WKY rats respectively, P less than 0.01). These results suggest that magnesium uptake and binding by jejunal BBM are altered in SHR in comparison to WKY rats, implying a possible role of the small intestine in the abnormalities of magnesium metabolism in genetic hypertension.  相似文献   

16.
1. The effect of depriving rats of food for 48 h on the specific activity of phosphofructokinase in the epithelial cells of the small intestine and on the regulatory properties of the enzyme displayed in crude (particle-free) mucosal extracts was studied. 2. The specific activity of phosphofructokinase, measured under optimal conditions at pH8, in the mucosa of fed rats showed a negative aboral gradient along the intestine, decreasing from 15.2 +/- 1.2 units (mumol/min)/g wet wt. in the proximal jejunum to 4.6 +/- 1.2 units/g wet wt. in the terminal ileum. 3. After starvation, the gradient was diminished, but not abolished; the diminution in gradient was due almost exclusively to a decrease in the specific activity of phosphofructokinase in the proximal jejunum by about 30%, there being no change in the terminal ileum. 4. In fed rats, the susceptibility of phosphofructokinase to inhibition by ATP, when assayed in crude mucosal extracts under suboptimal conditions, was independent of length along the small intestine; the ratio of the activity observed at pH 7.0 in the presence of 0.5 mM-fructose 6-phosphate and 2.5 mM-ATP to the optimal activity at pH 8, v0.5/V, was 0.36 +/- 0.05 in the proximal jejunum and 0.42 +/- 0.07 in the terminal ileum. 5. After starvation, the susceptibility of phosphofructokinase to inhibition by ATP was increased and was again found to be independent of length along the small intestine: after starvation, v0.5/V was 0.19 +/- 0.04 and 0.20 +/- 0.07 for the proximal jejunum and the terminal ileum respectively. 6. Re-feeding of previously starved rats on a high-carbohydrate diet overnight for 16 h restored both the specific activities of phosphofructokinase and its susceptibility to inhibition by ATP to normal values for fed rats. 7. The data support the idea that the specific activities and the regulatory properties of phosphofructokinase in the epithelial cells of rat small intestine are mediated by distinct humoral factors. 8. The changes in glucose utilization rate of the jejunum when rats are starved can in principle be accounted for by a combination of changes in the specific activity and in the regulatory properties of mucosal phosphofructokinase.  相似文献   

17.
Exposure to hypobaric hypoxia (H; simulated altitude = 3658 m) was initiated in 5-week-old, male spontaneously hypertensive (SHR) and Wistar-Kyoto (WKy) normotensive rats while normoxic controls (N) for both groups were maintained under laboratory conditions. Significant attenuation of systolic arterial blood pressure was evident in SHR-H relative to SHR-N (125 +/- 6 vs 145 +/- 5 mm Hg; P less than 0.05) but not in WKy-H relative to WKy-N (WKy-H, 116 +/- 2 vs WKy-N, 117 +/- 5 mm Hg). Hypoxia significantly decreased metabolic efficiency in both normotensive and hypertensive rats, although being both more severe and accompanied by significantly impaired growth rate in SHR-H. Urinary excretion of norepinephrine in the SHR was elevated relative to WKy, irrespective of altitude treatment, while hypoxia elicited similar increases in urinary excretion of norepinephrine in both SHR and WKy. Myocardial and adrenal contents of norepinephrine were significantly reduced following 3 days of simulated altitude exposure in both strains of rats. Tissue contents of norepinephrine in hypoxic rats returned to normoxic levels by 21 days of simulated altitude. Both urine and tissue indices provided consistent indirect evidence that changes in sympathetic neuronal activity in response to hypoxia were similar in normotensive and hypertensive rats. These findings suggest that prior reports of reduced alpha-adrenergic responsiveness in vasculature from hypoxia-exposed SHR reflect a postsynaptic event that is regulated independently of norepinephrine release from sympathetic nerve terminals.  相似文献   

18.
The rate of protein synthesis in the isolated perfused rat pancreas was measured from the rate of incorporation of L-[3H]phenylalanine into total protein, and was compared with the transport of this amino acid into the epithelium. Unidirectional (15 s) and net (15-30 min) uptake of L-[3H]phenylalanine was measured relative to D-[14C]mannitol (extracellular marker) using a cell loading technique. The fractional rate of protein synthesis in the pancreas was also measured in vivo using a flooding dose technique and found to be 118 +/- 10% day-1 (corresponding to an absolute rate of incorporation of L-Phe into protein of 36.1 +/- 3 nmol min-1 g-1) in overnight fasted rats. Compared with the in vivo rate, the perfused pancreas exhibited a markedly lower rate of protein synthesis which increased significantly when amino acids were added to the perfusate (15.6 +/- 1.9 vs. 22.5 +/- 0.9% day-1 or 4.7 +/- 0.6 vs. 6.9 +/- 0.3 nmol L-Phe min-1 g-1). Carbachol (3 x 10(-7) M) stimulated protein synthesis provided amino acids were also supplied in the perfusate. Protein synthesis rates measured under all conditions in vivo and in vitro were at least an order of magnitude lower than the unidirectional influx (121 +/- 14 nmol min-1 g-1) of L-phenylalanine into the pancreatic epithelium. These results demonstrate that amino acid transport across the basolateral membrane of the epithelium is not rate-limiting for pancreatic protein synthesis.  相似文献   

19.
The digestive physiology and stomach contents of six crab species from a variety of habitats were investigated to provide an indication of their digestive capability and dietary preferences. Stomach contents varied between species, but the key enzymes present were generally consistent with the types of dietary material being ingested. Nectocarcinus integrifons (red rock crab) consumed large quantities of seagrass and had high cellulase activity (0.02+/-0.004 units mg-1) to digest the constituent cellulose. Petrolisthes elongatus (porcelain crab) ingested brown and green phytoplankton and algae and had considerable laminarinase (0.35+/-0.08 units mg-1) and beta-glucosidase (0.025+/-0.005 units mg-1) activities to digest the laminarin in its diet. Leptograpsus variegatus (omnivorous swift-footed shore crab) had high activities of protease (1.2+/-0.02 units mg-1), alpha-glucosidase, and alpha-amylase and appeared well equipped to utilize both dietary protein and carbohydrate. Stomach contents in Nectocarcinus tuberculosus (velvet crab) and Carcinus maenas (green crab) also suggest that these species are omnivorous. N. tuberculosus had high cellulase and chitinase for digesting the cellulose in plants and the chitin in invertebrate shells respectively. C. maenas had intermediate digestive enzyme levels and may employ more of a generalist feeding strategy than other species. Plagusia chabrus (speedy crab) is carnivorous, consuming encrusting bryozoans, hydroids, crustaceans, and fish. It has high protease activity, particularly trypsin (0.73+/-0.12 units mg-1), to digest the protein in its animal prey. Each species of crab studied had a complex suite of digestive enzymes, the relative activities of which reflected individual and very different species-specific dietary niches.  相似文献   

20.
We compared in human skeletal muscle the effect of absolute vs. relative exercise intensity on AMP-activated protein kinase (AMPK) signaling and substrate metabolism under normoxic and hypoxic conditions. Eight untrained males cycled for 30 min under hypoxic conditions (11.5% O(2), 111 +/- 12 W, 72 +/- 3% hypoxia Vo(2 peak); 72% Hypoxia) or under normoxic conditions (20.9% O(2)) matched to the same absolute (111 +/- 12 W, 51 +/- 1% normoxia Vo(2 peak); 51% Normoxia) or relative (to Vo(2 peak)) intensity (171 +/- 18 W, 73 +/- 1% normoxia Vo(2 peak); 73% Normoxia). Increases (P < 0.05) in AMPK activity, AMPKalpha Thr(172) phosphorylation, ACCbeta Ser(221) phosphorylation, free AMP content, and glucose clearance were more influenced by the absolute than by the relative exercise intensity, being greatest in 73% Normoxia with no difference between 51% Normoxia and 72% Hypoxia. In contrast to this, increases in muscle glycogen use, muscle lactate content, and plasma catecholamine concentration were more influenced by the relative than by the absolute exercise intensity, being similar in 72% Hypoxia and 73% Normoxia, with both trials higher than in 51% Normoxia. In conclusion, increases in muscle AMPK signaling, free AMP content, and glucose disposal during exercise are largely determined by the absolute exercise intensity, whereas increases in plasma catecholamine levels, muscle glycogen use, and muscle lactate levels are more closely associated with the relative exercise intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号