首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe the electron microscopic investigation of purified U4/U6 snRNPs from human and murine cells. The U4/U6 snRNP exhibits two morphological features, a main body approximately 8 nm in diameter and a peripheral filamentous domain, 7-10 nm long. Two lines of evidence suggest that the peripheral domain may consist of RNA and to contain U6 RNA as well as the 5' portion of U4 RNA. (a) Separation of the U4/U6 snRNA interaction regions from the core domains by site-directed cleavage of the U4 snRNA with RNase H gave filament-free, globular core snRNP structures. (b) By immuno and DNA-hybridization EM, both the 5' end of U4 and the 3' end of U6 snRNA were located at the distal region of the filamentous domain, furthest from the core. These results, together with our observation that the filamentous U4/U6 domain is often Y shaped, correlate strikingly with the consensus secondary structure proposed by Brow and Guthrie (1988. Nature (Lond.), 334:213-218), where U4 and U6 snRNA are base paired in such a way that two U4/U6 helices together with a stem/loop of U4 snRNA make up a Y-shaped U4/U6 interaction domain.  相似文献   

2.
The 5' exon donor in nematode trans-splicing, the SL RNA, is a small (approximately 100 nt) RNA that resembles cis-spliceosomal U snRNAs. Extensive analyses of the RNA sequence requirements for SL RNA function have revealed four essential elements, the core Sm binding site, three nucleotides immediately downstream of this site, a region of Stem-loop II, and a 5' splice site. Although these elements are necessary and sufficient for SL RNA function in vitro, their respective roles in promoting SL RNA activity have not been elucidated. Furthermore, although it has been shown that assembly of the SL RNA into an Sm RNP is a prerequisite for function, the protein composition of the SL RNP has not been determined. Here, we have used oligoribonucleotide affinity to purify the SL RNP and find that it contains core Sm proteins as well as four specific proteins (175, 40, 30, and 28 kDa). Using in vitro assembly assays; we show that association of the 175- and 30-kDa SL-specific proteins correlates with SL RNP function in trans-splicing. Binding of these proteins depends upon the sequence of the core Sm binding site; SL RNAs containing the U1 snRNA Sm binding site assemble into Sm RNPs that contain core, but not SL-specific proteins. Furthermore, mutational and thiophosphate interference approaches reveal that both the primary nucleotide sequence and a specific phosphate oxygen within a segment of Stemloop II of the SL RNA are required for function. Finally, mutational activation of an unusual cryptic 5' splice site within the SL sequence itself suggests that U5 snRNA may play a primary role in selecting and specifying the 5' splice site in SL addition trans-splicing.  相似文献   

3.
Stable association of U2 snRNP with the branchpoint sequence of mammalian pre-mRNAs requires binding of a non-snRNP protein to the polypyrimidine tract. In order to determine how U2 snRNP contacts this protein, we have used an RNA containing the consensus 5' and the (Py)n-AG 3' splice sites but lacking the branchpoint sequence so as to prevent direct U2 snRNA base pairing to the branchpoint. Different approaches including electrophoretic separation of RNP complexes formed in nuclear extracts, RNase T1 protection immunoprecipitation assays with antibodies against snRNPs and UV cross-linking experiments coupled to immunoprecipitations allowed us to demonstrate that at least three splicing factors contact this RNA at 0 degree C without ATP. As expected, U1 snRNP interacts with the region comprising the 5' splice site. A protein of approximately 65,000 molecular weight recognizes the RNA specifically at the 5' boundary of the polypyrimidine tract. It could be either the U2 auxiliary factor (U2AF) (Zamore and Green (1989) PNAS 86, 9243-9247), the polypyrimidine tract binding protein (pPTB) (Garcia-Blanco et al. (1989) Genes and Dev. 3, 1874-1886) or a mixture of both. U2 snRNP also contacts the RNA in a way depending on p65 binding, thereby further arguing that the latter may correspond to the previously characterized U2AF and pPTB. Cleavage of U2 snRNA sequence by a complementary oligonucleotide and RNase H led us to conclude that the 5' terminus of U2 snRNA is required to ensure the contact between U2 snRNP and p65 bound to the RNA. More importantly, this conclusion can be extended to authentic pre-mRNAs. When we have used a human beta-globin pre-mRNA instead of the above artificial substrate, RNA bound p65 became precipitable by anti-(U2) RNP and anti-Sm antibodies except when the 5' end of U2 snRNA was selectively cleaved.  相似文献   

4.
Mutations in yeast U5 snRNA alter the specificity of 5' splice-site cleavage   总被引:47,自引:0,他引:47  
A Newman  C Norman 《Cell》1991,65(1):115-123
Recognition of 5' splice sites in pre-mRNA splicing is achieved in part by base pairing with U1 snRNA. We have used interactive suppression in the yeast Saccharomyces cerevisiae to look for other factors involved in 5' splice-site recognition. This approach identified an extragenic suppressor that activates a cryptic 5' splice site. The suppressor is a gene for U5 snRNA (snR7) with a single base mutation in a strictly conserved 9 base sequence. This suggests that U5 snRNA can play a part in determining the position of 5' splice-site cleavage. Consistent with this, we have been able to isolate other mutations in the 9 base element in U5 snRNA that specifically activate a second cryptic 5' splice site nearby.  相似文献   

5.
Proposed secondary structure of eukaryotic U14 snRNA.   总被引:5,自引:1,他引:4       下载免费PDF全文
U14 snRNA is a small nuclear RNA that plays a role in the processing of eukaryotic ribosomal RNA. We have investigated the folded structure of this snRNA species using comparative analysis of evolutionarily diverse U14 snRNA primary sequences coupled with nuclease digestion analysis of mouse U14 snRNA. Covariant nucleotide analysis of aligned mouse, rat, human, and yeast U14 snRNA primary sequences suggested a basic folding pattern in which the 5' and 3' termini of all U14 snRNAs were base-paired. Subsequent digestion of mouse U14 snRNA with mung bean (single-strand-specific), T2 (single-strand-preferential), and V1 (double-strand-specific) nucleases defined the major and minor cleavage sites for each nuclease. This digestion data was then utilized in concert with the comparative sequence analysis of aligned U14 snRNA primary sequences to refine the secondary structure model suggested by computer-predicted folding. The proposed secondary structure of U14 snRNA is comprised of three major hairpin/helical regions which includes the helix of base-paired 5' and 3' termini. Strict and semiconservative covariation of specific base-pairs within two of the three major helices, as well as nucleotide changes that strengthen or extend base-paired regions, support this folded conformation as the evolutionary conserved secondary structure for U14 snRNA.  相似文献   

6.
The 3' processing of histone pre-mRNAs is a nuclear event in which the U7 small nuclear ribonucleoprotein (snRNP) participates as an essential trans-acting factor. We have constructed a chimeric histone-U7 RNA that when injected into the cytoplasm of Xenopus laevis oocytes assembles into a snRNP-like particle and becomes cleaved at the correct site(s). RNP assembly is a prerequisite for cleavage, but, since neither the RNA nor the RNP appreciably enter the nucleus, cleavage occurs mostly, if not exclusively, in the cytoplasm. Consistent with this, cleavage also occurs in enucleated oocytes or in oocytes which have been depleted of U7 snRNPs. Thus all necessary components for cleavage must be present in the oocyte cytoplasm. The novel cleavage occurs in cis, involving only a single molecule of chimeric RNA with its associated proteins. This reaction is equally dependent upon base pairing interactions between histone spacer sequences and the 5'-end of the U7 moiety as the natural in trans reaction. These results imply that U7 is the only snRNP required for histone RNA processing. Moreover, the chimeric RNA is expected to be useful for further studies of the cleavage and assembly mechanisms of U7 snRNP.  相似文献   

7.
B Séraphin  M Rosbash 《Gene》1989,82(1):145-151
In recent experiments we have used the power of yeast genetics to study U1 small nuclear RNA (snRNA): pre-messenger RNA (pre-mRNA) base pairing interactions [Séraphin et al. EMBO J. 7 (1988) 2533-2538]. Here we extend these observations to other potential U1 snRNA: pre-mRNA pairings. We show that several U1 snRNA mutants are viable. Using these U1 mutant strains we demonstrate further a base-pairing interaction between U1 snRNA position 3 and intron position 6. However, this interaction is only detected with a poor splicing substrate containing branchpoint mutations. These results provide information on the mechanism of 5' splice site-branch point interaction. We also propose several models which may explain why the sequence of the 5' end of the U1 snRNA is conserved among organisms as divergent as man and yeast.  相似文献   

8.
U4 small nuclear RNA (snRNA) is essential for pre-mRNA splicing, although its role is not yet clear. On the basis of a model structure (C. Guthrie and B. Patterson, Annu. Rev. Genet. 22:387-419, 1988), the molecule can be thought of as having six domains: stem II, 5' stem-loop, stem I, central region, 3' stem-loop, and 3'-terminal region. We have carried out extensive mutagenesis of the yeast U4 snRNA gene (SNR14) and have obtained information on the effect of mutations at 105 of its 160 nucleotides. Fifteen critical residues in the U4 snRNA have been identified in four domains: stem II, the 5' stem-loop, stem I, and the 3'-terminal region. These domains have been shown previously to be insensitive to oligonucleotide-directed RNase H cleavage (Y. Xu, S. Petersen-Bjørn, and J. D. Friesen, Mol. Cell. Biol. 10:1217-1225, 1990), suggesting that they are involved in intra- or intermolecular interactions. Stem II, a region that base pairs with U6 snRNA, is the most sensitive to mutation of all U4 snRNA domains. In contrast, stem I is surprisingly insensitive to mutational change, which brings into question its role in base pairing with U6 snRNA. All mutations in the putative Sm site of U4 snRNA yield a lethal or conditional-lethal phenotype, indicating that this region is important functionally. Only two nucleotides in the 5' stem-loop are sensitive to mutation; most of this domain can tolerate point mutations or small deletions. The 3' stem-loop, while essential, is very tolerant of change. A large portion of the central domain can be removed or expanded with only minor effects on phenotype, suggesting that it has little function of its own. Analysis of conditional mutations in stem II and stem I indicates that although these single-base changes do not have a dramatic effect on U4 snRNA stability, they are defective in RNA splicing in vivo and in vitro, as well as in spliceosome assembly. These results are discussed in the context of current knowledge of the interactions involving U4 snRNA.  相似文献   

9.
10.
U5 snRNA interacts with exon sequences at 5' and 3' splice sites.   总被引:55,自引:0,他引:55  
A J Newman  C Norman 《Cell》1992,68(4):743-754
U5 snRNA is an essential pre-mRNA splicing factor whose function remains enigmatic. Specific mutations in a conserved single-stranded loop sequence in yeast U5 snRNA can activate cleavage of G1----A mutant pre-mRNAs at aberrant 5' splice sites and facilitate processing of dead-end lariat intermediates to mRNA. Activation of aberrant 5' cleavage sites involves base pairing between U5 snRNA and nucleotides upstream of the cleavage site. Processing of dead-end lariat intermediates to mRNA correlates with base pairing between U5 and the first two bases in exon 2. The loop sequence in U5 snRNA may therefore by intimately involved in the transesterification reactions at 5' and 3' splice sites. This pattern of interactions is strikingly reminiscent of exon recognition events in group II self-splicing introns and is consistent with the notion that U5 snRNA may be related to a specific functional domain from a group II-like self-splicing ancestral intron.  相似文献   

11.
The U6 small nuclear RNA (snRNA) undergoes major conformational changes during the assembly of the spliceosome and catalysis of splicing. It associates with the specific protein Prp24p, and a set of seven LSm2p-8p proteins, to form the U6 small nuclear ribonucleoprotein (snRNP). These proteins have been proposed to act as RNA chaperones that stimulate pairing of U6 with U4 snRNA to form the intermolecular stem I and stem II of the U4/U6 duplex, whose formation is essential for spliceosomal function. However, the mechanism whereby Prp24p and the LSm complex facilitate U4/U6 base-pairing, as well as the exact binding site(s) of Prp24p in the native U6 snRNP, are not well understood. Here, we have investigated the secondary structure of the U6 snRNA in purified U6 snRNPs and compared it with its naked form. Using RNA structure-probing techniques, we demonstrate that within the U6 snRNP a large internal region of the U6 snRNA is unpaired and protected from chemical modification by bound Prp24p. Several of these U6 nucleotides are available for base-pairing interaction, as only their sugar backbone is contacted by Prp24p. Thus, Prp24p can present them to the U4 snRNA and facilitate formation of U4/U6 stem I. We show that the 3' stem-loop is not bound strongly by U6 proteins in native particles. However, when compared to the 3' stem-loop in the naked U6 snRNA, it has a more open conformation, which would facilitate formation of stem II with the U4 snRNA. Our data suggest that the combined association of Prp24p and the LSm complex confers upon U6 nucleotides a conformation favourable for U4/U6 base-pairing. Interestingly, we find that the open structure of the yeast U6 snRNA in native snRNPs can also be adopted by human U6 and U6atac snRNAs.  相似文献   

12.
The loop of a stem structure close to the 5' end of the 18S rRNA is complementary to the box A region of the U3 small nucleolar RNA (snoRNA). Substitution of the 18S loop nucleotides inhibited pre-rRNA cleavage at site A(1), the 5' end of the 18S rRNA, and at site A(2), located 1.9 kb away in internal transcribed spacer 1. This inhibition was largely suppressed by a compensatory mutation in U3, demonstrating functional base pairing. The U3-pre-rRNA base pairing is incompatible with the structure that forms in the mature 18S rRNA and may prevent premature folding of the pre-rRNA. In the Escherichia coli pre-rRNA the homologous region of the 16S rRNA is also sequestered, in that case by base pairing to the 5' external transcribed spacer (5' ETS). Cleavage at site A(0) in the yeast 5' ETS strictly requires base pairing between U3 and a sequence within the 5' ETS. In contrast, the U3-18S interaction is not required for A(0) cleavage. U3 therefore carries out at least two functionally distinct base pair interactions with the pre-rRNA. The nucleotide at the site of A(1) cleavage was shown to be specified by two distinct signals; one of these is the stem-loop structure within the 18S rRNA. However, in contrast to the efficiency of cleavage, the position of A(1) cleavage is not dependent on the U3-loop interaction. We conclude that the 18S stem-loop structure is recognized at least twice during pre-rRNA processing.  相似文献   

13.
14.
Who's on first? The U1 snRNP-5' splice site interaction and splicing   总被引:25,自引:0,他引:25  
U1 small nuclear ribonucleoprotein (snRNP) is important for pre-mRNA splicing both in yeast (Saccharomyces cerevisiae) and mammalian systems. The RNA component of U1 snRNP, U1 snRNA, interacts by base pairing with pre-mRNA 5' splice sites. This article examines recent evidence suggesting that U1 snRNP is important for an early step in spliceosome assembly rather than a late step that contributes to the specificity of 5' splice-site cleavage.  相似文献   

15.
Functional analysis of the sea urchin U7 small nuclear RNA.   总被引:11,自引:2,他引:9       下载免费PDF全文
U7 small nuclear RNA (snRNA) is an essential component of the RNA-processing machinery which generates the 3' end of mature histone mRNA in the sea urchin. The U7 small nuclear ribonucleoprotein particle (snRNP) is classified as a member of the Sm-type U snRNP family by virtue of its recognition by both anti-trimethylguanosine and anti-Sm antibodies. We analyzed the function-structure relationship of the U7 snRNP by mutagenesis experiments. These suggested that the U7 snRNP of the sea urchin is composed of three important domains. The first domain encompasses the 5'-terminal sequences, up to about nucleotides 7, which are accessible to micrococcal nuclease, while the remainder of the RNA is highly protected and hence presumably bound by proteins. This region contains the sequence complementarities between the U7 snRNA and the histone pre-mRNA which have previously been shown to be required for 3' processing (F. Schaufele, G. M. Gilmartin, W. Bannwarth, and M. L. Birnstiel, Nature [London] 323:777-781, 1986). Nucleotides 9 to 20 constitute a second domain which includes sequences for Sm protein binding. The complementarities between the U7 snRNA sequences in this region and the terminal palindrome of the histone mRNA appear to be fortuitous and play only a secondary, if any, role in 3' processing. The third domain is composed of the terminal palindrome of U7 snRNA, the secondary structure of which must be maintained for the U7 snRNP to function, but its sequence can be drastically altered without any observable effect on snRNP assembly or 3' processing.  相似文献   

16.
To probe functions of the U1 small nuclear ribonucleoprotein particle (snRNP) during in vitro splicing, we have used unusual splicing substrates which replace the 5' splice site region of an adenovirus substrate with spliced leader (SL) RNA sequences from Leptomonas collosoma or Caenorhabditis elegans. In agreement with previous results (J.P. Bruzik and J.A. Steitz, Cell 62:889-899, 1990), we find that oligonucleotide-targeted RNase H destruction of the 5' end of U1 snRNA inhibits the splicing of a standard adenovirus splicing substrate but not of the SL RNA-containing substrates. However, use of an antisense 2'-O-methyl oligoribonucleotide that disrupts the first stem of U1 snRNA as well as stably sequestering positions of U1 snRNA involved in 5' and 3' splice site recognition inhibits the splicing of both the SL constructs and the standard adenovirus substrate. The 2'-O-methyl oligoribonucleotide is no more effective than RNase H pretreatment in preventing pairing of U1 with the 5' splice site, as assessed by inhibition of psoralen cross-link formation between the SL RNA-containing substrate and U1. The 2'-O-methyl oligoribonucleotide does not alter the protein composition of the U1 monoparticle or deplete the system of essential splicing factors. Native gel analysis indicates that the 2'-O-methyl oligoribonucleotide inhibits splicing by diminishing the formation of splicing complexes. One interpretation of these results is that removal of the 5' end of U1 inhibits base pairing in a different way than sequestering the same sequence with a complementary oligoribonucleotide. Alternatively, our data may indicate that two elements near the 5' end of U1 RNA normally act during spliceosome assembly; the extreme 5' end base pairs with the 5' splice site, while the sequence or structural integrity of stem I is essential for some additional function. It follows that different introns may differ in their use of the repertoire of U1 snRNP functions.  相似文献   

17.
18.
To understand how the U5 small nuclear ribonucleoprotein (snRNP) interacts with other spliceosome components, its structure and binding to the U4/U6 snRNP were analyzed. The interaction of the U5 snRNP with the U4/U6 snRNP was studied by separating the snRNPs in HeLa cell nuclear extracts on glycerol gradients. A complex running at 25S and containing U4, U5, and U6 but not U1 or U2 snRNAs was identified. In contrast to results with native gel electrophoresis to separate snRNPs, this U4/U5/U6 snRNP complex requires ATP to assemble from the individual snRNPs. The structure of the U5 RNA within the U5 snRNP and the U4/5/6 snRNP complexes was then compared. Oligonucleotide-targeted RNase H digestion identified one RNA sequence in the U5 snRNP capable of base pairing to other nucleic acid sequences. Chemical modification experiments identified this sequence as well as two other U5 RNA sequences as accessible to modification within the U5 RNP. One of these regions is a large loop in the U5 RNA secondary structure whose sequence is conserved from Saccharomyces cerevisiae to humans. Interestingly, no differences in modification of free U5 snRNP as compared to U5 in the U4/U5/U6 snRNP complex were observed, suggesting that recognition of specific RNA sequences in the U5 snRNP is not required for U4/U5/U6 snRNP assembly.  相似文献   

19.
20.
A common core structure for U3 small nucleolar RNAs.   总被引:7,自引:1,他引:6       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号