首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Light plays a pivotal role in animal orientation. Aquatic animals face the problem that penetration of light in water is restricted through high attenuation which limits the use of visual cues. In pure water, blue and green light penetrates considerably deeper than red and infrared spectral components. Submicroscopic particles and coloured dissolved organic matter, however, may cause increased scattering and absorption of short-wave components of the solar spectrum, resulting in a relative increase of red and infrared illumination. Here we investigated the potential of near-infrared (NIR) light as a cue for swimming orientation of the African cichlid fish (Cichlidae) Oreochromis mossambicus. A high-throughput semi-automated video tracking assay was used to analyse innate behavioural NIR-sensitivity. Fish revealed a strong preference to swim in the direction of NIR light of a spectral range of 850-950nm at an irradiance similar to values typical of natural surface waters. Our study demonstrates the ability of teleost fish to sense NIR and use it for phototactic swimming orientation.  相似文献   

2.
Diverse circadian systems related to phylogeny and ecological adaptive strategies are proposed in teleosts. Recently, retinal photoreception was reported to be important for the circadian pacemaking activities of the Nile tilapia Oreochromis niloticus. We aimed to confirm the photic and circadian responsiveness of its close relative-the Mozambique tilapia O. mossambicus. Melatonin production in cannulated or ophthalmectomized fish and its secretion from cultured pineal glands were examined under several light regimes. Melatonin production in the cannulated tilapias was measured at 3-h intervals; it fluctuated daily, with a nocturnal increase and a diurnal decrease. Exposing the cannulated fish to several light intensities (1500-0.1 lx) and to natural light (0.1 and 0.3 lx) suppressed melatonin levels within 30 min. Static pineal gland culture under light-dark and reverse light-dark cycles revealed that melatonin synthesis increased during the dark periods. Rhythmic melatonin synthesis disappeared on pineal gland culture under constant dark and light conditions. After ophthalmectomy, plasma melatonin levels did not vary with light-dark cycles. These results suggest that (1) Mozambique tilapias possess strong photic responsiveness, (2) their pineal glands are sensitive to light but lack circadian pacemaker activity, and (3) they require lateral eyes for rhythmic melatonin secretion from the pineal gland.  相似文献   

3.
Mozambique tilapia, Oreochromis mossambicus, born and raised in five salinities, viz. (relatively soft) fresh water, 25, 50, 75% and full-strength sea-water, were analyzed for ionoregulatory performance (in particular sodium and calcium handling) and growth. This tilapia regulates its blood serum mineral composition rather effectively; however, in sea-water serum concentrations of sodium, chloride and calcium (in males only) were increased, as was the serum osmolarity. In sea-water, the total body sodium pool was significantly enlarged. With increasing salinity, sodium turnover increased. Serum calcium levels and the total body calcium pool were more strictly controlled than those of sodium. The lowest density of chloride cells in opercular epithelium and the lowest branchial Na+-K+-ATPase activity were observed in 50% sea-water; these values were higher in fish kept in waters of lower or higher salinities. Fish grew more rapidly in brackish water. Fish kept in brackish water appeared to depend on food-related calcium for growth as branchial calcium uptake provides no more than 20% of growth related Ca-accumulation.  相似文献   

4.
This study describes experimental herbivory and detritivory of three common native aquatic macrophyte species by the introduced Mozambique tilapia Oreochromis mossambicus (Peters) (Pisces: Cichlidae), and its physiological response to their consumption. There was a highly significant effect of fish herbivory on plant weight for each of the macrophyte species, but this effect was not influenced by any preference for periphyton. Despite the herbivory, there was a highly significant loss of fish body weight across all plant species and weight could only be maintained by supplementary feeding of a high protein fish flake. These results suggest that despite eating these plants, an alternative food resource may be needed for survival and may trigger trophic plasticity in O. mossambicus.  相似文献   

5.
6.
Copper (Cu) is one of the most commonly reported metal pollutants in African water bodies, but there are few studies on African freshwater fish species of copper accumulation and copper toxicity. Adult O. mossambicus were exposed to 0mg l?1 (control) and 0.75mg l?1 Cu for 96h and 0 (control), 0.11, 0.29 and 0.47mg l?1 copper for 64 days. Samples of liver and gills were collected after 96h, and after 1, 32 and 64 days, respectively. There were significant differences in the mean Cu accumulation values in the liver and gills between the control and the Cu-exposed fish after the 96-h exposure. In fish exposed to 0.11 and 0.29mg l?1 Cu for 64 days there was an increase in copper level in the tissues. In fish exposed to 0.47mg l?1 Cu the concentration in the gill and liver tissue did not increase between Day 1 and Day 32. At this time, Cu accumulation in the liver was higher than for fish exposed to 0.11 and 0.29mg l?1 Cu for 64 days. Exposure to approximately 0.47mg l?1 Cu for more than 32 days induced mortality.  相似文献   

7.
Na,K-ATPase (sodium pumps) provide the primitive driving force for ion transport in branchial epithelial cells. Immunoblots of epithelial homogenates of both seawater (SW)- and freshwater (FW)-adapted tilapia gills as well as rat brain homogenate, a positive control, revealed one major band with a molecular weight of about 100 kDa. SW-adapted tilapia gills possessed larger (about 2-fold) amounts of sodium pumps compared with FW-adapted tilapia gills. (3)H-ouabain binding representing functional binding sites of Na,K-ATPase was also higher (about 3.5-fold) in gills of SW-adapted tilapia compared to that of FW-adapted fish. Moreover, specific activities of SW fish were higher (about 2-fold) than those of FW fish. Double labeling of Na,K-ATPase and Con-A, a fluorescent marker of MR cells, in tilapia gills followed by analysis with confocal microscopy showed that sodium pumps were localized mainly in MR cells, including the SW type and different FW types. Although more-active expression of Na,K-ATPase was demonstrated in gills of SW-adapted tilapia, no significant differences in densities of apical openings of MR cells were found between SW- and FW-adapted fish. These results indicate that, during salinity challenge, tilapia develop more "functional" Na,K-ATPase in SW-type MR cells to meet physiological demands.  相似文献   

8.
Experimental tanks were used to observe predatory effects in three different size classes of Mozambique tilapia Oreochromis mossambicus (one of the world's most widespread exotic species and generally regarded to be a herbivore or both herbivore and detritivore) when tested against 10 juvenile Australian freshwater fish species, and significant levels of predation against all were recorded. There was a general trend for larger O. mossambicus to kill more prey and this was also reflected in a separate series of experiments using juvenile barramundi Lates calcarifer over a range of size classes. Predatory effects by O. mossambicus broadly reflected the accepted models of predator–prey interactions, being that mortality (and survival) was closely related to relative body size and mouth gape limitation. Experimental evidence for piscivory in O. mossambicus was supported by field sampling that detected prey fish remains in 16% of all fish surveyed ( n = 176). The recognition of active piscivory by O. mossambicus in laboratory and field situations is the first such evidence, and suggests a need to re-evaluate the nature of their effects in introduced environments.  相似文献   

9.
Freshwater (FW)-adapted tilapia (Oreochromis mossambicus) were treated with estradiol (E(2)) for 4 days to stimulate protein synthesis and sampled at 0, 4, and 24 h after exposure to 50% seawater (SW). E(2) increased circulating vitellogenin (VTG) levels in large amounts, indicative of unusually high rates of hepatic protein synthesis. E(2) treatment prevented the recovery of plasma osmolality in 50% SW that was evident in the sham group. Plasma sodium concentration was significantly elevated with E(2) in FW, but the levels did not change in 50% SW. Gill Na(+)-K(+)-ATPase activity was significantly lower in the E(2) group compared with sham-injected tilapia in 50% SW. No significant differences were noted in plasma cortisol, thyroxine, triiodothyronine, or glucose concentration with E(2) in 50% SW. E(2) significantly lowered several key liver enzyme activities and also decreased gill lactate dehydrogenase and malate dehydrogenase activities over a 24-h period. Together, our results suggest that E(2) impairs ion regulation in tilapia, partially mediated by a decreased metabolic capacity in liver and gill. The decreased tissue metabolic capacity is likely due to E(2)-induced energy repartitioning processes that are geared toward VTG synthesis at the expense of other energy-demanding pathways.  相似文献   

10.
Summary Postovulatory follicles of the tilapia, Oreochromis mossambicus, were examined with electron microscopy and enzyme histochemistry for evidence of steroid-hormone production. Light microscopy was also used to examine changes in the ovary with time after spawning. Electron microscopy detected the presence of smooth endoplasmic reticulum, lipid droplets, and mitochondria with tubular cristae in certain cells of the theca interna. These structures are suggestive of cells that synthesize steroid hormones. Granulosa cells also contained some smooth endoplasmic reticulum, along with an augmentation of Golgi complexes, vesicles, microvilli, and microfilaments within 5–7 days after spawning. Enzyme histochemistry demonstrated an intense reaction of 5, 3-hydroxysteroid dehydrogenase (3-HSD) in variably placed thecal cells up to 7 days after spawning. At this time, the thecal cells of vitellogenic oocyte follicles also began to show strong 3-HSD activity. During the first 7 days after spawning, there was an increase in young primary oocytes and recruitment of some of these to vitellogenic oocytes. By 10 days after spawning, certain thecal cells in the follicles of these vitellogenic oocytes showed an intense 3-HSD reaction, while the postovulatory follicular tissue demonstrated a weak reaction. This arrangement continued for the lifespan of the postovulatory follicular tissue. Postovulatory follicles had a lifespan of up to 25 days after spawning in females that continued to hold the developing fry inside their mouths, i.e., mouthbrooders. At 25 days after spawning, the postovulatory follicular tissue showed signs of degeneration with the presence of vacuoles and lysosomes. In females that ate the zygotes, therefore exhibiting no parental behavior, the postovulatory follicular tissue showed signs of degeneration at l0days after spawning. In these females, the next clutch of eggs also developed at a higher rate than in mouthbrooders.  相似文献   

11.
The dorsal fin of the larval and juvenile Oreochromis mossambicus exhibits a unique black spot known as the ' Tilapia mark'. We traced its development and found that it occupied a specific position in the dorsal fin bounded by rays 15 and 20. Ablation experiments carried out on the larval dorsal fin showed that this spot region constituted a developmental positional field. This positional field in the fin could regenerate and re-establish the spot pattern despite repeated perturbation. The re-establishment of spot was not simply due to fin injury since ablation of the non-spotted region of the dorsal and the tail fin did not result in aggregation of melanophores. We propose that that' Tilapia mark' is a result of positional information in operation.  相似文献   

12.
Mozambique tilapia Oreochromis mossambicus were housed individually during 7 days in a continuous flow-trough respirometry system and daily exposed to one of three treatments: (1) a series of knocks on the side of the aquarium, (2) a series of photo-flashes and (3) control group. Exposure to photo-flashes did not change locomotor activity but decreased both night-time and daytime oxygen consumption throughout the experiment. Knocking induced a short-lived increase in locomotor activity and tended to increase oxygen consumption, but this latter effect was not significant. Night-time oxygen consumption was not affected by knocking exposure. Cortisol levels assayed from fish-holding water collected at the end of the experiment were significantly lower in subjects exposed to photo-flashes than in subjects exposed to knocks or controls. Males did not respond differently than females to the treatments in any of the measurements taken. In summary, the data reported here suggest that exposure to repetitive photo-flashes, but not knocking, suppressed normal energy metabolism and cortisol levels. These effects were present hours to a half day after exposure to the flashes.  相似文献   

13.
Cellular recruitment and degeneration of branchial mitochondrion-rich (MR) cells were examined in Mozambique tilapia transferred from hypoosmotic to hyperosmotic water. To examine apoptosis in the gills associated with salinity change, tilapia were directly transferred from freshwater to 70% seawater. The TUNEL assay showed that apoptotic cells in the gills were significantly increased at 1 day after transfer, which was supported by an electron-microscopic observation that gill MR cells underwent morphological changes characteristic of apoptosis such as an irregularly shaped electron-dense nucleus and distension of the tubular system. To further examine MR-cell recruitment, freshwater-acclimated tilapia were transferred either to freshwater or to 70% seawater after BrdU injection. Immunohistochemical detection of BrdU-labeled nuclei and Na(+)/K(+)-ATPase-rich MR cells allowed us to classify BrdU-labeled MR cells into two subtypes: a single MR cell and an MR-cell complex. Although newly generated single MR cells were observed similarly in both freshwater and 70% seawater-transferred fish, the density of MR-cell complexes was much higher in 70% seawater than in freshwater. Our findings indicated that transfer from hypoosmotic to hyperosmotic water enhanced apoptosis of freshwater-type MR cells, resulting in reduction in hyperosmoregulatory ability for freshwater adaptation, and stimulated the recruitment of MR-cell complexes to develop hypoosmoregulatory ability for seawater adaptation.  相似文献   

14.
15.
In this study, the correlation between Cl(-) influx in freshwater tilapia and various transporters or enzymes, the Cl(-)/HCO(3)(-) exchanger, Na(+),K(+)-ATPase, V-type H(+)-ATPase, and carbonic anhydrase were examined. The inhibitors 2x10(-4) M ouabain (a Na(+),K(+)-ATPase inhibitor), 10(-5) M NEM (a V-type H(+)-ATPase inhibitor), 10(-2) M ACTZ (acetazolamide, a carbonic anhydrase inhibitor), and 6x10(-4) M DIDS (a Cl(-)/HCO(3)(-) exchanger inhibitor) caused 40%, 60%-80%, 40%-60%, and 40%-60% reduction in Cl(-) influx of freshwater tilapia, respectively. The inhibitor 2x10(-4) M ouabain also caused 50%-65% inhibition in gill Na(+),K(+)-ATPase activity. Western blot results showed that protein levels of gill Na(+),K(+)-ATPase, V-type H(+)-ATPase, and carbonic anhydrase in tilapia acclimated in low-Cl(-) freshwater were significantly higher than those acclimated to high-Cl(-) freshwater. Based on these data, we conclude that Na(+),K(+)-ATPase, V-H(+)-ATPase, the Cl(-)/HCO(3)(-) exchanger, and carbonic anhydrase may be involved in the active Cl(-) uptake mechanism in gills of freshwater-adapted tilapia.  相似文献   

16.
California Mozambique tilapia (Oreochromis mossambicus x O. urolepis hornorum) are extremely saline tolerant and have been previously shown to reduce whole-animal oxygen consumption rate (MO(2)) upon exposures to salinities greater than that of seawater (SW). In this study tilapia were acclimated to 15, 30, 45, 60 and 75 g/L salinity for 1, 5, 14, or 28 days. There was little change in plasma osmolality or muscle water content in salinities below 60 g/L, and branchial Na(+), K(+)-ATPase (NKA) activity was low in 15 and 30 g/L relative to 60 and 75 g/L. When tilapia were exposed to 75 g/L, plasma osmolality and NKA activity were significantly increased within 5 days of exposure relative to those in 15 and 30 g/L, and remained elevated over the entire 28 days acclimation, indicating that short term salinity challenges (i.e., 5 days) are predictive of longer exposure durations in this species. MO(2) following transfer to 15 and 30 g/L was elevated, reflecting the high energy demand required for switching from a hyper- to a hypo-osmoregulatory strategy. The MO(2) of 60 g/L-exposed fish was significantly reduced at 1, 5, and 14 days, relative to 30 g/L-exposed fish; however by 28 days there were no significant differences. We investigated the potential for a metabolic basis for the salinity-induced MO(2) reduction, using forward stepwise linear regression to correlate enzyme activities of brain, liver, and kidney with MO(2). Brain NKA was correlated with MO(2) after 5 days (p<0.01, r(2)=0.944) and both brain NKA and hepatic total ATPase were correlated with the reduced MO(2) at 14 days (p=0.027, r(2)=0.980 and p=0.025, r(2)=0.780, respectively). These results may indicate a tissue-level metabolic suppression, which has not been previously described as a response to hypersaline exposure in fishes.  相似文献   

17.
18.
The gene expression of parvalbumin (Pvalb), a high-affinity calcium-binding protein and the major fish allergen, was significantly increased in the tilapia fry treated with methyltestosterone (MT) as examined using a subtractive hybridization assay. Using the real-time quantitative PCR, we further confirmed the increased Pvalb expression in the MT-treated tilapia fry. The 568 base pairs (bp) tilapia Pvalb (tPvalb) cDNA clone was fully sequenced and found to contain a coding region of 330 bp, which encodes a 108 amino acids protein with a molecular weight of 11,370.5 and an calculated isoelectric point of 4.56. The predicted secondary structure of tPvalb is comprised of seven alpha helices. It contains two characteristic EF-hand calcium-binding motifs, one PKC and five casein kinase II consensus phosphorylation sites. The tPvalb is highly homologous to the selected fish Pvalbs at a similarity ranging from 53% to 80%. The phylogenetic tree analysis showed that the tPvalb is closest to the Scomber japonicus Pvalb. The tPvalb was found to express in the heart, muscle, gill, kidney, brain and ovary of adult fish by RT-PCR analysis. In situ hybridization also revealed that the tPvalb was highly expressed in the hypothalamus and sarcoplasmic reticulum. A tPvalb glutathione S-transferase (GST) fusion protein was generated and digested by thrombin to remove the GST moiety. Further Western analysis showed that the tPvalb protein was cross-reacted to an anti-rat Pvalb antibody. Those results suggest that Pvalb is evolutionally conserved in tilapia.  相似文献   

19.
Selenoproteins are ubiquitously expressed, act on a variety of physiological redox-related processes, and are mostly regulated by selenium levels in animals. To date, the expression of most selenoproteins has not been verified in euryhaline fish models. The Mozambique tilapia, Oreochromis mossambicus, a euryhaline cichlid fish, has a high tolerance for changes in salinity and survives in fresh water (FW) and seawater (SW) environments which differ greatly in selenium availability. In the present study, we searched EST databases for cichlid selenoprotein mRNAs and screened for their differential expression in FW and SW-acclimated tilapia. The expression of mRNAs encoding iodothyronine deiodinases 1, 2 and 3 (Dio1, Dio2, Dio3), Fep15, glutathione peroxidase 2, selenoproteins J, K, L, M, P, S, and W, was measured in the brain, eye, gill, kidney, liver, pituitary, muscle, and intraperitoneal white adipose tissue. Gene expression of selenophosphate synthetase 1, Secp43, and selenocysteine lyase, factors involved in selenoprotein synthesis or in selenium metabolism, were also measured. The highest variation in selenoprotein and synthesis factor mRNA expression between FW- and SW-acclimated fish was found in gill and kidney. While the branchial expression of Dio3 was increased upon transferring tilapia from SW to FW, the inverse effect was observed when fish were transferred from FW to SW. Protein content of Dio3 was higher in fish acclimated to FW than in those acclimated to SW. Together, these results outline tissue distribution of selenoproteins in FW and SW-acclimated tilapia, and indicate that at least Dio3 expression is regulated by environmental salinity.  相似文献   

20.
The Mozambique tilapia, Oreochromis mossambicus, is capable of surviving a wide range of salinities and temperatures. The present study was undertaken to investigate the influence of environmental salinity and temperature on osmoregulatory ability, organic osmolytes and plasma hormone profiles in the tilapia. Fish were acclimated to fresh water (FW), seawater (SW) or double-strength seawater (200% SW) at 20, 28 or 35 degrees C for 7 days. Plasma osmolality increased significantly as environmental salinity and temperature increased. Marked increases in gill Na(+), K(+)-ATPase activity were observed at all temperatures in the fish acclimated to 200% SW. By contrast, Na(+), K(+)-ATPase activity was not affected by temperature at any salinity. Plasma glucose levels increased significantly with the increase in salinity and temperature. Significant correlations were observed between plasma glucose and osmolality. In brain and kidney, content of myo-inositol increased in parallel with plasma osmolality. In muscle and liver, there were similar increases in glycine and taurine, respectively. Glucose content in liver decreased significantly in the fish in 200% SW. Plasma prolactin levels decreased significantly after acclimation to SW or 200% SW. Plasma levels of cortisol and growth hormone were highly variable, and no consistent effect of salinity or temperature was observed. Although there was no significant difference among fish acclimated to different salinity at 20 degrees C, plasma IGF-I levels at 28 degrees C increased significantly with the increase in salinity. Highest levels of IGF-I were observed in SW fish at 35 degrees C. These results indicate that alterations in gill Na(+), K(+)-ATPase activity and glucose metabolism, the accumulation of organic osmolytes in some organs as well as plasma profiles of osmoregulatory hormones are sensitive to salinity and temperature acclimation in tilapia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号