共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Shenzong Rao Jingsong Huang Zhijun Shen Changgang Xiang Min Zhang Xueliang Lu 《Journal of cellular biochemistry》2019,120(7):11867-11877
In the liver tissues of obese diabetic or nondiabetic patients, triggering receptor expressed on myeloid cells-1 (TREM-1) is usually found to be upregulated, thus leading to upregulation of various inflammatory cytokines and lipid accumulation. On the other hand, nonalcoholic fatty liver disease (NAFLD), characterized by excess lipid accumulation, and inflammatory injury in liver, is becoming an epidemic disease, globally. In the present study, we aimed to investigate the biological role and the underlying mechanisms of TREM-1 in NAFLD. upregulation of TREM-1 occurred in high-fat diet (HFD)-induced mice NAFLD model and oleic acid-treated HepG2 and primary mouse hepatocytes cell model at messenger RNA and protein levels. Functional studies established that overexpression of TREM-1 displayed hyperlipidemia, and increased in inflammatory indicators and lipid accumulation-related genes, which was ameliorated by knockdown of TREM-1. Our results also showed that obvious lipid accumulation and inflammatory injury occurred in the liver tissue of HFD-fed mice, while treatment with lentiviral vector short hairpin TREM showed marked improvement in tissue morphology and architecture and less lipid accumulation, thus deciphering the mechanism through which knockdown of TREM-1 ameliorated the inflammatory response and lipid accumulation of NAFLD mice through inactivation of the nuclear factor-κB (NF-κB) and PI3K/AKT signal pathways, respectively. In conclusion, TREM-1/NF-κB and TREM-1/PI3K/AKT axis could be an important mechanism in ameliorating the inflammatory response and lipid accumulation, respectively, thus shedding light on the development of novel therapeutics to the treatment of NAFLD. 相似文献
4.
5.
6.
Rong Xie Shaodong Chen Fang Li Liu Yang Bangliang Yu 《Journal of biochemical and molecular toxicology》2023,37(2):e23251
Nonalcoholic fatty liver disease (NAFLD) originates from the hepatopathy of fatty liver. Pirfenidone is a novel broad-spectrum anti-fibrosis agent used for treating various kinds of tissue fibrosis. The present study will evaluate the effects of Pirfenidone on liver injury in high-fat diet (HFD)-fed mice to evaluate the value of Pirfenidone in treating NAFLD. The pathology of NAFLD was simulated by feeding mice with an HFD in the present study, followed by treating the HFD mice with 150 and 300 mg/kg/day Pirfenidone once a day. The pathological state of HFD mice was identified by the elevated liver weight, promoted serum triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels, declined serum high-density lipoprotein cholesterol (HDL-C) levels, increased alanine aminotransferase and aspartate aminotransferase activity, and histopathological changes to the liver tissues, all of which were dramatically ameliorated by 150 and 300 mg/kg Pirfenidone administration. Furthermore, the excessive production of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and IL-6, as well as upregulated phosphorylated nuclear factor kappa-B (p- NF-κB p65), were observed in HFD-fed mice, but significantly reversed by Pirfenidone. Finally, activated oxidative stress, identified by promoted malondialdehyde (MDA) levels and declined catalase (CAT) activity, was observed in HFD-fed mice, accompanied by the downregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and sterol-regulatory element-binding proteins-1c (SREBP-1c). After the treatment with Pirfenidone, oxidative stress was greatly mitigated. Our results imply that Pirfenidone ameliorated the progression of NAFLD by mediating inflammation and oxidative stress. 相似文献
7.
8.
Lin Jia Yinyan Ma Shunxing Rong Jenna L. Betters Ping Xie Soonkyu Chung Nanping Wang Weiqing Tang Liqing Yu 《Journal of lipid research》2010,51(11):3135-3144
Niemann-Pick C1-Like 1 (NPC1L1) mediates intestinal absorption of dietary and biliary cholesterol. Ezetimibe, by inhibiting NPC1L1 function, is widely used to treat hypercholesterolemia in humans. Interestingly, ezetimibe treatment appears to attenuate hepatic steatosis in rodents and humans without a defined mechanism. Overconsumption of a high-fat diet (HFD) represents a major cause of metabolic disorders including fatty liver. To determine whether and how NPC1L1 deficiency prevents HFD-induced hepatic steatosis, in this study, we fed NPC1L1 knockout (L1-KO) mice and their wild-type (WT) controls an HFD, and found that 24 weeks of HFD feeding causes no fatty liver in L1-KO mice. Hepatic fatty acid synthesis and levels of mRNAs for lipogenic genes are substantially reduced but hepatic lipoprotein-triglyceride production, fatty acid oxidation, and triglyceride hydrolysis remain unaltered in L1-KO versus WT mice. Strikingly, L1-KO mice are completely protected against HFD-induced hyperinsulinemia under both fed and fasted states and during glucose challenge. Despite similar glucose tolerance, L1-KO relative WT mice are more insulin sensitive and in the overnight-fasted state display significantly lower plasma glucose concentrations. In conclusion, NPC1L1 deficiency in mice prevents HFD-induced fatty liver by reducing hepatic lipogenesis, at least in part, through attenuating HFD-induced insulin resistance, a state known to drive hepatic lipogenesis through elevated circulating insulin levels. 相似文献
9.
10.
Wei Yang Runqi Liu Cheng Xia Yuanyuan Chen Zhihao Dong Baoyin Huang Ruirui Li Ming Li Chuang Xu 《Journal of cellular physiology》2020,235(9):6246-6256
To evaluate the effects of fatty acids on endoplasmic reticulum (ER) stress, oxidative stress, and lipid damage. We treated BRL3A rat liver cells with, linoleic (LA), linolenic, oleic (OA), palmitic (PA), palmitoleic (POA), or stearic (SA) acid for 12 hr. The characteristics of cell lipid deposition, oxidative stress indexes, ER stress markers, nuclear factor κB p65 (NF-κB p65), lipid synthesis and transport regulators, and cholesterol metabolism regulators were analyzed. Endoplasmic chaperones like glucose-regulated protein 78, CCAAT-enhancer-binding protein, NF-κB p65, hydrogen peroxide, and malonaldehyde in PA- and SA-treated cells were significantly higher than in other treated cells. Deposition of fatty acids especially LA and POA were significantly increased than in other treated cells. De novo lipogenesis regulators sterol regulatory element-binding protein 1c, fatty acid synthase, and acetyl-coenzyme A carboxylase 1 (ACC1) expression were significantly increased in all fatty acid stimulation groups, and PA- and SA-treated cells showed lower p-ACC1 expression and higher scd1 expression than other fatty acid groups. Very low-density lipoprotein synthesis and apolipoprotein B100 expression in free fatty acids treated cells were significantly lower than control. PA, SA, OA, and POA had shown significantly increased cholesterol synthesis than other treated cells. PA and SA showed the lower synthesis of cytochrome P7A1 and total bile acids than other fatty acids treated cells. Excess of saturated fatty acids led to severe ER and oxidative stress. Excess unsaturated fatty acids led to increased lipid deposition in cultured hepatocytes. A balanced fatty acid intake is needed to maintain lipid homeostasis. 相似文献
11.
12.
Byeong Tak Jeon Rok Won Heo Hyun Joo Shin Chin-ok Yi Yu Hee Lee Han-nah Joung 《Bioscience, biotechnology, and biochemistry》2013,77(3):482-489
A Vigna nakashimae (VN) extract has been shown to have antidiabetic and anti-obesity effects. However, the mechanism underlying the effect of a VN extract on hepatic inflammation and endoplasmic reticulum (ER) stress remains unclear. In the present study, we investigated how a VN extract protects against the development of non-alcoholic fatty liver disease (NAFLD). A VN extract for 12 weeks reduced the body weight, serum metabolic parameters, cytokines, and hepatic steatosis in high-fat diet (HFD)-fed mice. A VN extract decreased HFD-induced hepatic acetyl CoA carboxylase and glucose transporter 4 expressions. In addition to the levels of high-mobility group box 1 and receptor for advanced glycation, the hepatic expression of ATF4 and caspase-3 was also reduced by a VN extract. Thus, these data indicate that a chronic VN extract prevented NAFLD through multiple mechanisms, including inflammation, ER stress, and apoptosis in the liver. 相似文献
13.
14.
Youwen Yuan Kangli Li Fei Teng Weiwei Wang Bing Zhou Xuan Zhou Jiayang Lin Xueru Ye Yajuan Deng Wenhui Liu Shenjian Luo Peizhen Zhang Deying Liu Minghua Zheng Jin Li Yan Lu Huijie Zhang 《The Journal of biological chemistry》2022,298(6)
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide. However, the molecular mechanisms that promote dysregulation of hepatic triglyceride metabolism and lead to NAFLD are poorly understood, and effective treatments are limited. Leukemia inhibitory factor (LIF) is a member of the interleukin-6 cytokine family and has been shown to regulate a variety of physiological processes, although its role in hepatic triglyceride metabolism remains unknown. In the present study, we measured circulating LIF levels by ELISA in 214 patients with biopsy-diagnosed NAFLD as well as 314 normal control patients. We further investigated the potential role and mechanism of LIF on hepatic lipid metabolism in obese mice. We found that circulating LIF levels correlated with the severity of liver steatosis. Patients with ballooning, fibrosis, lobular inflammation, and abnormally elevated liver injury markers alanine transaminase and aspartate aminotransferase also had higher levels of serum LIF than control patients. Furthermore, animal studies showed that white adipose tissue–derived LIF could ameliorate liver steatosis through activation of hepatic LIF receptor signaling pathways. Together, our results suggested that targeting LIF-LIF receptor signaling might be a promising strategy for treating NAFLD. 相似文献
15.
《Cell cycle (Georgetown, Tex.)》2013,12(10):1918-1928
Steatoapoptosis is a hallmark of non-alcoholic fatty liver disease (NAFLD) and is an important factor in liver disease progression. We hypothesized that increased reactive oxygen species resulting from excess dietary fat contribute to liver disease by causing DNA damage and apoptotic cell death, and tested this by investigating the effects of feeding mice high fat or standard diets for 8 weeks. High fat diet feeding resulted in increased hepatic H2O2, superoxide production, and expression of oxidative stress response genes, confirming that the high fat diet induced hepatic oxidative stress. High fat diet feeding also increased hepatic steatosis, hepatitis and DNA damage as exemplified by an increase in the percentage of 8-hydroxyguanosine (8-OHG) positive hepatocytes in high fat diet fed mice. Consistent with reports that the DNA damage checkpoint kinase Ataxia Telangiectasia Mutated (ATM) is activated by oxidative stress, ATM phosphorylation was induced in the livers of wild type mice following high fat diet feeding. We therefore examined the effects of high fat diet feeding in Atm-deficient mice. The prevalence of apoptosis and expression of the pro-apoptotic factor PUMA were significantly reduced in Atm-deficient mice fed the high fat diet when compared with wild type controls. Furthermore, high fat diet fed Atm?/? mice had significantly less hepatic fibrosis than Atm+/+ or Atm+/? mice fed the same diet. Together, these data demonstrate a prominent role for the ATM pathway in the response to hepatic fat accumulation and link ATM activation to fatty liver-induced steatoapoptosis and fibrosis, key features of NAFLD progression. 相似文献
16.
目的:探讨莪术醇(CC)对非酒精性脂肪性肝(NAFLD)大鼠模型肝功能和肝纤维化的影响及机制。方法:采用高脂饮食构建非酒精脂肪肝炎(NASH)伴肝纤维化的大鼠模型,将60只SD大鼠随机分为:空白对照组、模型组(NASH)、NASH+复方鳖甲软肝片(CBT)组(阳性对照组)、NASH+CC组(25、50、100 mg/kg),每组10只。测量大鼠肝脏占体重的百分比,测量大鼠高密度脂蛋白(HDL)、甘油三酯(TG)、谷丙转氨酶(ALT)、谷草转氨酶(AST)水平,HE染色观察肝纤维化情况,免疫组化检测鼠肝组织α-平滑肌肌动蛋白(α-SMA)表达及肝组织核因子κB p65(NF-κB p65)的阳性染色情况,蛋白印迹(Western blot)检测α-SMA、基质金属蛋白酶-1(MMP-1)、基质金属蛋白酶抑制剂-1(TIMP-1)蛋白表达及Toll样受体-4(TLR4)、转化生长因子激活激酶-1(TAK1)、NF-κB p65、血管细胞粘附分子-1(VCAM-1)蛋白的表达情况,酶联免疫吸附法(ELISA)检测肝组织中白介素(IL-6、IL-10、IL-1β)、肿瘤坏死因子-α(TNF-α)的表达。结果:与空白对照组相比,模型组大鼠HDL、 IL-10含量、MMP-1蛋白表达量显著降低(P<0.05),TG、ALT、AST、肝组织P65阳性率,α-SMA、TIMP-1、TLR4、TAK1、NF-κB p65、VCAM-1表达、IL-6、TNF-α及IL-1β含量显著升高(P<0.05)。与模型组相比,CBT和CC处理后大鼠HDL、 IL-10含量、MMP-1蛋白表达量显著升高(P<0.05),TG、ALT、AST、肝组织P65阳性率,α-SMA、TIMP-1、TLR4、TAK1、NF-κB p65、VCAM-1表达、IL-6、TNF-α及IL-1β含量显著降低(P<0.05),其中模型+CC组以高浓度组改善最显著(P<0.05),但各剂量改善幅度均低于模型+CBT组(P<0.05)。结论:莪术醇通过调节TLR4、TAK1、NF-κB p65信号通路,减轻炎症反应,改善肝功能,从而缓解非酒精性脂肪肝肝肝纤维化,且在一定范围内呈浓度依赖性。 相似文献
17.
Erin K. Daugherity Gabriel Balmus Ahmed Al Saei Elizabeth S. Moore Delbert Abi Abdallah Arlin B. Rogers Robert S. Weiss Kirk J. Maurer 《Cell cycle (Georgetown, Tex.)》2012,11(10):1918-1928
Steatoapoptosis is a hallmark of non-alcoholic fatty liver disease (NAFLD) and is an important factor in liver disease progression. We hypothesized that increased reactive oxygen species resulting from excess dietary fat contribute to liver disease by causing DNA damage and apoptotic cell death, and tested this by investigating the effects of feeding mice high fat or standard diets for 8 weeks. High fat diet feeding resulted in increased hepatic H2O2, superoxide production, and expression of oxidative stress response genes, confirming that the high fat diet induced hepatic oxidative stress. High fat diet feeding also increased hepatic steatosis, hepatitis and DNA damage as exemplified by an increase in the percentage of 8-hydroxyguanosine (8-OHG) positive hepatocytes in high fat diet fed mice. Consistent with reports that the DNA damage checkpoint kinase Ataxia Telangiectasia Mutated (ATM) is activated by oxidative stress, ATM phosphorylation was induced in the livers of wild type mice following high fat diet feeding. We therefore examined the effects of high fat diet feeding in Atm-deficient mice. The prevalence of apoptosis and expression of the pro-apoptotic factor PUMA were significantly reduced in Atm-deficient mice fed the high fat diet when compared with wild type controls. Furthermore, high fat diet fed Atm−/− mice had significantly less hepatic fibrosis than Atm+/+ or Atm+/− mice fed the same diet. Together, these data demonstrate a prominent role for the ATM pathway in the response to hepatic fat accumulation and link ATM activation to fatty liver-induced steatoapoptosis and fibrosis, key features of NAFLD progression. 相似文献
18.
19.
The tricarboxylic acid (TCA) cycle, otherwise known as the Krebs cycle, is a central metabolic pathway that performs the essential function of oxidizing nutrients to support cellular bioenergetics. More recently, it has become evident that TCA cycle behavior is dynamic, and products of the TCA cycle can be co-opted in cancer and other pathologic states. In this review, we revisit the TCA cycle, including its potential origins and the history of its discovery. We provide a detailed accounting of the requirements for sustained TCA cycle function and the critical regulatory nodes that can stimulate or constrain TCA cycle activity. We also discuss recent advances in our understanding of the flexibility of TCA cycle wiring and the increasingly appreciated heterogeneity in TCA cycle activity exhibited by mammalian cells. Deeper insight into how the TCA cycle can be differentially regulated and, consequently, configured in different contexts will shed light on how this pathway is primed to meet the requirements of distinct mammalian cell states. 相似文献