首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heme oxygenase‐1 (HO‐1) is an inducible antioxidant enzyme that degrades heme to three products, biliverdin, carbon monoxide (CO), and iron ion. The present study was originally designed to characterize the HO‐1 induction by Lumbricus extract as a potential cytoprotective mechanism. Through bioactivity‐guided fractionation, with human HepG2 cells as the cellular detector, surprisingly, we found that arsenic was enriched in the active fractions isolated from Lumbricus extract. Arsenic speciation was further carried out by liquid chromatography with inductively coupled plasma mass spectrometry (LC/ICP‐MS). Our results showed that Lumbricus extract contained two major arsenic species, arsenite (AsIII; 53.7%) and arsenate (AsV; 34.2%), and six minor arsenic species. Commercial sodium arsenite (NaAsO2) was used to verify the effects of Lumbricus extract on HO‐1 expression and related intracellular signaling pathways. Both p38 MAP kinase and NF‐E2‐related factor 2 (Nrf2) pathways were found to modulate HO‐1 induction by Lumbricus extract and NaAsO2. The cytotoxicity of arsenite was augmented by p38 MAP kinase inhibitor SB202190 and HO‐1 inhibitor tin protoporphyrin IX (SnPP), whereas p38 MAP kinase inhibitor SB202190 also inhibited HO‐1 induction by NaAsO2. These results suggest that arsenic‐containing compounds are responsible for HO‐1 induction by Lumbricus extract. Although the exact role of toxic arsenic compounds in the treatment of oxidative injury remains unclear, concomitant HO‐1 induction may be a key mechanism to antagonize the cytotoxicity of arsenic compounds in human cells.  相似文献   

2.
Although SB202190 and SB203580 are described as specific p38 MAP kinase inhibitors, several reports have indicated that other enzymes are also sensitive to SB203580. Using a pharmacological approach, we report for the first time that compounds SB202190 and SB203580 were able to directly and selectively interact with a G-protein-coupled receptor, namely the cholecystokinin receptor subtype CCK1, but not with the CCK2 receptor. We demonstrated that these compounds were non-competitive antagonists of the CCK1 receptor at concentrations typically used to inhibit protein kinases. By chimeric construction of the CCK2 receptor, we determined the involvement of two CCK1 receptor intracellular loops in the binding of SB202190 and SB203580. We also showed that two CCK antagonists, L364,718 and L365,260, were able to regulate p38 mitogen-activated protein (MAP) kinase activity. Using a reporter gene strategy and immunoblotting experiments, we demonstrated that both CCK antagonists inhibited selectively the enzymatic activity of p38 MAP kinase. Kinase assays suggested that this inhibition resulted from a direct interaction with both CCK antagonists. Molecular modeling simulations suggested that this interaction occurs in the ATP binding pocket of p38 MAP kinase. These results suggest that SB202190 and SB203580 bind to the CCK1 receptor and, as such, these compounds should be used with caution in models that express this receptor. We also found that L364,718 and L365,260, two CCK receptor antagonists, directly interacted with p38 MAP kinase and inhibited its activity. These findings suggest that the CCK1 receptor shares structural analogies with the p38 MAP kinase ATP binding site. They open the way to potential design of either a new family of MAP kinase inhibitors from CCK1 receptor ligand structures or new CCK1 receptor ligands based on p38 MAP kinase inhibitor structures.  相似文献   

3.
A selective p38 MAP kinase (p38 MAPK) inhibitor, SB202190, induced apoptotic cell death of a macrophage-like cell line, J774.1, in the presence of lipopolysaccharide (LPS), as judged by DNA nicks revealed by terminal deoxy transferase (TdT)-mediated dUTP nick end labeling (TUNEL), activation of caspase-3, and subsequent release of lactate dehydrogenase. This cytotoxicity was dependent on both LPS and SB202190, and such inhibitors of the upstream LPS-signaling cascade as polymyxin B and TPCK blocked this macrophage cell death. SB202190 suppressed the kinase activity of p38, leading to inhibition of activation of MAPKAPK2 and then the subsequent phosphorylation of hsp27 in LPS-treated macrophages both in vitro and in vivo, but an inactive analog of SB202190, SB202474, did not. There was a threshold of the time of addition of SB202190 to LPS-treated macrophages to induce apoptosis, which was before full transmission of p38 activity to a direct downstream kinase, MAPKAPK2. Besides, localization of phosphorylated hsp27 in Golgi area of the LPS-treated macrophages was suppressed by SB202190, while it was not by SB202474. These results suggest that selective inhibition of p38 MAPK activity in LPS-induced MAP kinase cascade leads to apoptosis of macrophages.  相似文献   

4.
5.
Das S  Fraga CG  Das DK 《Free radical research》2006,40(10):1066-1075
Recent studies have demonstrated that resveratrol (trans-3,4',5-trihydroxy stilbene), a phytoalexin found in the skin and seeds of grapes, can pharmacologically precondition (PC) the heart through a nitric oxide (NO)-dependent and adenosine receptors-mediated mechanism. Since NO can induce the expression of heme oxygenase-1 (HO-1), we examined if HO-1 induction has a direct role in resveratrol-preconditioning of the heart. Eight groups of rats were studied during 7 days: (i) control rats; (ii) rats receiving resveratrol (gavage, 2.5 mg/kg); (iii) rats injected tin protoporphyrin (SnPP), a HO-1 inhibitor, i.p. on days 1, 3 and 6; (iv) rats injected 202190 (SB), a p38MAPK inhibitor, i.p. for 7 days; (v) rats injected 294002 (LY), a Akt inhibitor, i.p. for 7days; (vi) rats receiving resveratrol and SnPP; (vii) rats receiving resveratrol and SB; and (viii) rats receiving resveratrol and LY. After the treatments, the rats were sacrificed, and the hearts isolated and subjected to 30 min global ischemia followed by 2 h of reperfusion. The results shown a significant cardioprotection with resveratrol as evidenced by superior post-ischemic ventricular recovery, reduced myocardial infarct size, and decreased number of apoptotic cardiomyocytes. SnPP treatment abolished the cardioprotective effect of resveratrol. Resveratrol induced the activation of nuclear factor kappa-beta(NFkappaB), the phosphorylation of p38MAP kinase beta and Akt, as well as the inhibition of p38 MAP kinase alpha; all these effects but the activation of NFkappaB, were completely reversed by treatment with SnPP. These results indicate that resveratrol generates cardioprotection by preconditioning the heart by HO-1-mediated mechanisms, which are regulated by p38MAP kinase and Akt survival signaling, but non-dependent on NFkappaB activation.  相似文献   

6.
We have investigated possible factors that underlie changes in the production of eicosanoids after prolonged exposure of mast cells to Ag. Ag stimulation of cultured RBL-2H3 mast cells resulted in increased expression of cyclooxygenase (COX-2) protein and message. Other eicosanoid-related enzymes, namely COX-1, 5-lipoxygenase, and cytosolic phospholipase A(2) were not induced. Activation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 mitogen-activated protein (MAP) kinase preceded the induction of COX-2, whereas phosphatidylinositol 3' kinase and its substrate, Akt, were constitutively activated in RBL-2H3 cells. Studies with pharmacologic inhibitors indicated that of these kinases, only p38 MAP kinase regulated expression of COX-2. The induction of COX-2 was blocked by the p38 MAP kinase inhibitor SB202190, even when added 12-16 h after stimulation with Ag when p38 MAP kinase activity had returned to near basal, but still minimally elevated, levels. Interestingly, expression of COX-2 as well as cytosolic phospholipase A(2) and 5-lipoxygenase were markedly reduced by SB202190 in unstimulated cells. Collectively, the results imply that p38 MAP kinase regulates expression of eicosanoid-related enzymes, passively or actively, at very low levels of activity in RBL-2H3 cells. Also, comparison with published data suggest that different MAP kinases regulate induction of COX-2 in inflammatory cells of different and even similar phenotype and suggest caution in extrapolating results from one type of cell to another.  相似文献   

7.
8.
9.
The role of stress-activated protein kinases (SAPKs), c-Jun NH(2)-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase, in preconditioning (PC) was examined with the use of isolated rat hearts subjected to four cyclic episodes of 5-min ischemia and 10-min reperfusion followed by 30-min ischemia and 2-h reperfusion (I/R). A group of hearts was preperfused with 100 microM curcumin, a c-Jun and JNK1 inhibitor, or 5 microM SB 203580, a p38 MAP kinase inhibitor. Another group of hearts was preperfused with 20 microM anisomycin, a stimulator for both JNK and p38 MAP kinases. I/R increased the protein levels of JNK1, c-Jun, and p38 MAP kinase. PC also enhanced the induction of these kinases, but subsequent I/R-mediated increase was blocked by PC. Curcumin blocked I/R- and PC-mediated increase in JNK1 and c-Jun protein levels, whereas it had no effects on p38 MAP kinase. SB 203580, on the other hand, was equally effective in reducing the p38 MAP kinase activation but exerted no effects on JNK1 and c-Jun induction. I/R-mediated increased myocardial infarction was reduced by any of the following compounds: anisomycin, curcumin, and SB 203580. The cardioprotective effects of PC were abolished by either curcumin or SB 203580. The results demonstrate that PC is mediated by a signal-transduction pathway involving both JNK1 and p38 MAP kinase. Activation of SAPKs, although transient, is obligatory for PC.  相似文献   

10.
Because of its dual roles in acute toxicity and in therapeutic application in cancer treatment, arsenic has recently attracted a renewed attention. In this study, we report NaAsO(2)-induced signal cascades from the cell surface to the nucleus of murine thymic T lymphocytes that involve membrane rafts as an initial signal transducer. NaAsO(2) induced apoptosis through fragmentation of DNA, activation of caspase, and reciprocal regulation of Bcl-2/Bax with the concomitant reduction of membrane potential. We demonstrated that NaAsO(2)-induced caspase activation is dependent on curcumin-sensitive c-Jun amino-terminal kinase and barely dependent on SB203580-sensitive p38 kinase or PD98059-sensitive extracellular signal-regulated kinase. Additionally, staurosporine, which severely inhibited the activation of mitogen-activated protein (MAP) family kinases and c-Jun, partially blocked the NaAsO(2)-mediated signal for poly(ADP-ribose) polymerase (PARP) degradation. Potentially as the initial cell surface event for intracellular signaling, NaAsO(2) induced aggregation of GPI-anchored protein Thy-1 and superoxide production. This Thy-1 aggregation and subsequent activation of MAP family kinase and c-Jun and the degradation of PARP induced by NaAsO(2) were all inhibited by DTT, suggesting the requirement of interaction between arsenic and protein sulfhydryl groups for those effects. beta cyclodextrin, which sequestrates cholesterol from the membrane rafts, inhibited NaAsO(2)-induced activation of protein tyrosine kinases and MAP family kinases, degradation of PARP, and production of superoxide. In addition, beta cyclodextrin dispersed NaAsO(2)-induced Thy-1 clustering. These results suggest that a membrane raft integrity-dependent cell surface event is a prerequisite for NaAsO(2)-induced protein tyrosine kinase/c-Jun amino-terminal kinase activation, superoxide production, and downstream caspase activation.  相似文献   

11.
Survivin is expressed in most tumor cells and has been associated with both anti-apoptosis and mitotic progression. However, the mechanism of regulation of the survivin expression remains unclear. In this study we investigated the expression and regulation of survivin in the nitric oxide (NO)-exposed human lung carcinoma cells. The lung carcinoma cell lines CL3, H1299, and A549 but not normal lung fibroblast expressed high levels of survivin proteins. NO donors S-nitroso-N-acetyl-penicillamine (SNAP) and sodium nitroprusside (SNP) decreased the survivin expression. SNAP (0.4 mm, 24h)and SNP (1 mm, 24 h) significantly induced cytotoxicity and apoptosis in lung carcinoma cells. Furthermore, SNAP inhibited the cell growth and increased the fractions of G(2)/M phase. The levels of cyclin B1 and phospho-cdc2-(Thr-161) proteins were inhibited in the NO-exposed cells. The cdc25 phosphatase inhibitors (Cpd 5 and NSC 663284) and the cdc2 kinase inhibitors (alsterpaullone and purvalanol A) enhanced SNP-induced cytotoxicity and the decrease in survivin expression. However, overexpression of survivin by a pOTB7-survivin vector reduced SNP-induced cell growth inhibition and cytotoxicity. In addition, SNP activated the phosphorylation of p38 mitogen-activated protein (MAP) kinase. The specific p38 MAP kinase inhibitor, SB202190, significantly decreased the cytotoxicity and increased the survivin levels in NO donor-treated and inducible NOS-transfected cells. Conversely, anticancer agents including quercetin, arsenite, and cisplatin but not genistein increased the levels of survivin protein. Our results indicated for the first time that NO inhibited the expression of survivin, which was down-regulated by the p38 MAP kinase pathway.  相似文献   

12.
13.
Recent studies of intracellular signal transduction mechanisms for the transforming growth factor-beta (TGF-beta) superfamily have focused on Smad proteins, but have paid little attention to mitogen-activated protein (MAP) kinase cascades. Here we demonstrate that growth/differentiation factor-5 (GDF-5), but neither bone morphogenetic protein-2 (BMP-2) nor TGF-beta1, fully promotes the early phase of the chondrogenic response by inducing cellular condensation followed by cartilage nodule formation in a mouse chondrogenic cell line, ATDC5. We investigated which, if any, of the three major types of MAP kinase plays a functional role in the promotion of chondrogenesis induced by GDF-5. GDF-5 induced phosphorylation of p38 MAP kinase and extracellular signal-regulated kinase (ERK) but not that of c-Jun N-terminal kinase (JNK). The phosphorylation of p38 MAP kinase was also induced by BMP-2 and TGF-beta1. An inhibitor of p38 and p38 beta MAP kinase, SB202190, showed complete inhibition of cartilage nodule formation but failed to affect alkaline phosphatase (ALP) activity induced by GDF-5. Expression of the type II collagen gene, a hallmark of chondrogenesis in vertebrates, was also induced by GDF-5 treatment and strongly suppressed by SB202190. On the other hand, although an inhibitor of MAP/ERK kinase, PD98059, inhibited the rapid phosphorylation of ERK by GDF-5, it inhibited neither ALP activity nor cartilage nodule formation induced by GDF-5. These results strongly suggest that the p38 MAP kinase cascade is involved in GDF-5 signaling pathways and that a role of the p38 MAP kinase pathway is necessary over a longer period to promote chondrogenesis in ATDC5 cells.  相似文献   

14.
15.
16.
The actions of the corticotropin-releasing factor (CRF) family of peptides are mediated by the seven transmembrane-domain G-protein-coupled receptors, the CRF receptors. CRF receptor type 2beta (CRFR2beta) messenger RNA (mRNA) is expressed primarily in the cardiovascular system, where its levels are decreased by urocortin 1 (Ucn1), a novel peptide in the CRF family. In a previous study, we reported that CRFR2beta mRNA levels were partially down-regulated via the cAMP-protein kinase A pathway. This study focused on the involvement of the intracellular mitogen-activated protein (MAP) kinase pathway in the modulation of CRFR2beta mRNA levels. Ribonuclease protection assays showed that decreases in CRFR2beta mRNA levels induced by Ucn1 and cAMP were attenuated by the p38 MAP kinase inhibitor SB202190 or SB203580. This finding suggested that the p38 MAP kinase pathway was involved in this regulation. Anisomycin, a classic p38 kinase activator, increased CRFR2beta mRNA levels in A7r5 cells. This effect of anisomycin was completely reversed by H7, a serine/threonine kinase inhibitor, while both p38 kinase and MAP kinase kinase inhibitors failed to block the increase in CRFR2beta mRNA levels caused by anisomycin. As anisomycin can activate Jun amino terminal kinases, as well as p38 MAP kinase, it is possible that other MAP kinases, such as Jun amino terminal kinases, also contribute to the increase in gene levels. Alternatively, anisomycin may increase CRFR2beta mRNA levels indirectly as a consequence of blocking protein synthesis.  相似文献   

17.
Oxaliplatin, a platinum derivative cancer drug, has been used for treating human colorectal cancers. Survivin has been proposed as a cancer target, which highly expressed in most cancer cells but not normal adult cells. In this study, we investigated the regulation of survivin expression by exposure to oxaliplatin in human colon cancer cells. Oxaliplatin (3–9 μM for 24 h) markedly induced cytotoxicity, proliferation inhibition and apoptosis in the human RKO colon cancer cells. The survivin protein expression of RKO cells is dramatically reduced by oxaliplatin; however, the survivin gene expression is slightly altered. The survivin blockage of oxaliplatin elevated caspase-3 activation and apoptosis in RKO cells. Over-expression of survivin proteins by transfection with a survivin-expressed vector resisted the oxaliplatin-induced cancer cell death. Meantime, oxaliplatin elicited the phosphorylation of p38 mitogen-activated protein (MAP) kinase. SB202190, a specific p38 MAP kinase inhibitor, restored the survivin protein level and attenuated oxaliplatin-induced cancer cell death. In addition, oxaliplatin increased the levels of phospho-p53 (Ser-15) and total p53 proteins. Inhibition of p53 expression by a specific p53 inhibitor pifithrin-α reduced the phosphorylated p38 MAP kinase and active caspase-3 proteins in the oxaliplatin-exposed RKO cells. In contrast, SB202190 did not alter the oxaliplatin-induced p53 protein level. Furthermore, treatment with a specific proteasome inhibitor MG132 restored survivin protein level in the oxaliplatin-treated colon cancer cells. Taken together, our results demonstrate for the first time that survivin is down-regulated by p38 MAP kinase and proteasome degradation pathway after treatment with oxaliplatin in the human colon cancer cells.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号