首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Keratins (Ks), the intermediate filament (IF) proteins of epithelia, constitute at least 20 cytoskeletal proteins subdivided into type I (K9-20) and type II (K1-K8) and expressed as type I/type II pairs in a cell differentiation manner. Hepatocyte IFs are made only of K8/K18, the hallmark of simple epithelial cells. We have shown previously that a K8/K18 loss leads to a modulation of apoptosis in Fas-stimulated mouse hepatocytes. Here we report that K8-knockout mouse hepatocytes and K8-knockdown H4-II-E-C3 (shK8b1) rat hepatoma cells were much more resistant than their K8/K18-containing counterparts, wild-type hepatocytes, and H4ev hepatoma cells, in response to excess H2O2 or tert-butyl hydroperoxide, a ROS generator. While excess H2O2 altered glutathione (GSH) and ROS levels in H4ev versus shK8b1 cells, the differential death response was largely GSH level independent. Assessment of key cell death features revealed that hepatic cells exposed to H2O2 die through a mitochondrial involvement. Similarly, administration of the GSH depletor L-buthionine-sulfoximine to generate mitochondrial ROS-sensitized H4-II-E-C3 cells but not shK8b1 cells to death. Treatment with protein kinase C (PKC) inhibitors yielded a resistance of H2O2-treated H4-II-E-C3 cells comparable to that of nontreated shK8b1 cells, which in turn were not affected by the treatment. In addition, this differential death response was associated with altered PKCdelta activation and surface-membrane/mitochondria distribution in H2O2-treated shK8b1 cells. Together, these results point to a key regulatory function for K8/K18 in ROS-induced mitochondria-mediated death through PKCdelta involvement in hepatic cells.  相似文献   

2.
Dictyostelium HMX44A cells can withstand starvation under monolayer conditions for a few days without dying. They die only when the differentiation factor DIF-1 is exogenously added. Still, when HMX44A were subjected to starvation without addition of DIF-1 they showed, by electron microscopy and electron tomography, gross mitochondrial lesions including marked cristae alterations with frequent "holes" probably originating from dilated cristae. Since these cells did not die as shown for instance by FACS analysis, these results showed unexpected resilience of cells bearing markedly altered mitochondria, and thus showed that apparently destructive mitochondrial alterations may not lead to cell death. Also, these marked mitochondrial lesions could not be caused by caspases or bcl-2 family members, which these cells do not encode.  相似文献   

3.
Aberrant levels of reactive oxygen species (ROS) rapidly generated from NADPH oxidase (NOX) activation can be cytotoxic due to activating pro-apoptotic signals. However, ROS also induce pro-survival autophagy through the engulfment of damaged mitochondria. This study is aimed at investigating the cytoprotective role of albumin against NOX/ROS-induced autophagy and apoptosis under serum starvation. Serum starvation induced apoptosis following a myeloid cell leukemia sequence 1 (Mcl-1)/Bax imbalance, loss of the mitochondrial transmembrane potential, and caspase activation accompanied by pro-survival autophagy following canonical inhibition of mammalian target of rapamycin complex 1 (mTORC1). Aberrant ROS generation, initially occurring through NOX, facilitated mitochondrial damage, autophagy, and apoptosis. Autophagy additionally regulated the accumulation of ROS-generating mitochondria. NOX/ROS permitted p38 mitogen-activated protein kinase (p38 MAPK)-regulated mitochondrial apoptosis, accompanied by non-canonical induction of autophagy. In addition, activation of glycogen synthase kinase (GSK)-3β by NOX/ROS-inactivated Akt facilitated a decrease in Mcl-1, followed by mitochondrial apoptosis as well as autophagy. Restoring albumin conferred an anti-oxidative effect against serum starvation-deregulated NOX, p38 MAPK, and Akt/GSK-3β/Mcl-1/caspase-3 signaling. Albumin also prevented autophagy by sustaining mTORC1. These results indicate an anti-oxidative role for albumin via preventing NOX/ROS-mediated mitochondrial signaling to stimulate apoptosis as well as autophagy. Autophagy, initially induced by canonical inhibition of mTORC1 and enhanced by non-canonical mitochondrial damage, acts physically as a pro-survival mechanism.  相似文献   

4.
Mitochondria play an important role in the integration and transmission of cell death signals, activating caspases and other cell death execution events by releasing apoptogenic proteins from the intermembrane space. The BCL-2 family of proteins localize (or can be targeted) to mitochondria and regulate the permeability of the mitochondrial outer membrane to these apoptotic factors. Recent evidence suggests that multiple mechanisms may regulate the release of mitochondrial factors, some of which depend on the action of caspases.  相似文献   

5.
The function of bcl-2 in preventing cell death is well known, but the mechanisms whereby bcl-2 functions are not well characterized. One mechanism whereby bcl-2 is thought to function is by alleviating the effects of oxidative stress upon the cell. To examine whether Bcl-2 can protect cells against oxidative injury resulting from post-hypoxic reoxygenation (H/R), we subjected rat fibroblasts Rat-1 and their bcl-2 transfectants b5 to hypoxia (5% CO2, 95% N2) followed by reoxygenation (5% CO2, 95% air). The bcl-2 transfectants exhibited the cell viability superior to that of their parent non-transfectants upon treatment with reoxygenation after 24-, 48-, or 72-h hypoxia, but not upon normoxic serum-deprivation or upon serum-supplied hypoxic treatment alone. Thus bcl-2 transfection can prevent cell death of some types, which occurred during H/R but yet not appreciably until termination of hypoxia. The time-sequential events of H/R-induced cell death were shown to be executed via (1) reactive oxygen species (ROS) production at 1-12 h after H/R, (2) activation of caspases-1 and -3, at 1-3 h and 3-6 h after H/R, respectively, and (3) loss of mitochondrial membrane potential (DeltaPsi) at 3-12 h after H/R. These cell death-associated events were prevented entirely except caspase-1 activation by bcl-2 transfection, and were preceded by Bcl-2 upregulation which was executed as early as at 0-1 h after H/R for the bcl-2 transfectants but not their non-transfected counterpart cells. Thus upregulation of Bcl-2 proteins may play a role in prevention of H/R-induced diminishment of cell viability, but may be executed not yet during hypoxia itself and be actually operated as promptly as ready to go immediately after beginning of H/R, resulting in cytoprotection through blockage of either ROS generation, caspase-3 activation, or DeltaPsi decline.  相似文献   

6.
Hyperthermia enhances the anticancer effects of thymidylate synthase (TYMS) inhibitors (raltitrexed, RTX) and improves the precise biochemical mechanisms partially through enhancement of intracellular drug absorption. Recent research focuses on the potential anticancer drug target Heat Shock Protein 90 (HSP90), which could increase the sensitivity of cancer cells to TYMS inhibitors; however, with different HSP90 inhibitors, several research studies finally showed a poor efficacy in preclinical or clinical research. Here, we showed that 17-allylamino-17-demethoxygeldanamycin (17-AAG, HSP90 inhibitor) affects the efficacy of chemotherapy through antioxidant activation–induced resistance. In this study, we found that RTX, alone or in combination with hyperthermia, triggers reactive oxygen species (ROS) exposure and thus induces cell death. Also, the addition of hyperthermia showed more ROS exposure and function. The pharmacologic inhibition of HSP90 reversed the effects of chemotherapeutical treatments, while the overexpression of HSP90 showed no relation with these effects, which demonstrated that dysregulation of HSP90 might have a significant impact on chemotherapeutic treatments. The addition of 17-AAG increased the activation of antioxidant with increased antioxidant enzymes, thus affecting the RTX efficacy.  相似文献   

7.
We have investigated the production of reactive oxygen species (ROS) by Complex I in isolated open bovine heart submitochondrial membrane fragments during forward electron transfer in presence of NADH, by means of the probe 2′,7′-Dichlorodihydrofluorescein diacetate. ROS production by Complex I is strictly related to its inhibited state. Our results indicate that different Complex I inhibitors can be grouped into two classes: Class A inhibitors (Rotenone, Piericidin A and Rolliniastatin 1 and 2) increase ROS production; Class B inhibitors (Stigmatellin, Mucidin, Capsaicin and Coenzyme Q2) prevent ROS production also in the presence of Class A inhibitors. Addition of the hydrophilic Coenzyme Q1 as an electron acceptor potentiates the effect of Rotenone-like inhibitors in increasing ROS production, but has no effect in the presence of Stigmatellin-like inhibitors; the effect is not shared by more hydrophobic quinones such as decyl-ubiquinone. This behaviour relates the prooxidant CoQ1 activity to a hydrophilic electron escape site. Moreover the two classes of Complex I inhibitors have an opposite effect on the increase of NADH-DCIP reduction induced by short chain quinones: only Class B inhibitors allow this increase, indicating the presence of a Rotenone-sensitive but Stigmatellin-insensitive semiquinone species in the active site of the enzyme. The presence of this semiquinone was also suggested by preliminary EPR data. The results suggest that electron transfer from the iron-sulphur clusters (N2) to Coenzyme Q occurs in two steps gated by two different conformations, the former being sensitive to Rotenone and the latter to Stigmatellin.  相似文献   

8.
Investigations into the capacity of the Bcl-2 protein to prevent apoptosis have targeted mitochondria as key sites of the preventative action accorded by Bcl-2 to cells. Using novel approaches with fluorescence probes and autofluorescence detection of endogenous NAD(P)H, we have examined the effects of expressing Bcl-2 in the Bcl-2 negative Burkitt's lymphoma cell line Daudi. We evaluated for the first time the effect of Bcl-2 expression on the intracellular distribution and production of hydrogen peroxide, under basal conditions and after treatment with apoptosis inducing agents, ceramide analogs and tumor necrosis factor (TNF)-alpha. Increased availability of mitochondrial NAD(P)H was detected in Bcl-2-expressing cells and was correlated with an increased constitutive mitochondrial production of hydrogen peroxide. Although production of hydrogen peroxide was increased by either C(6)-ceramide or TNF-alpha in Bcl-2 negative Daudi cells commensurate with the early phases of apoptosis, this increase did not occur in Bcl-2-expressing cells. Thus, Bcl-2 appears to allow cells to adapt to an increased state of oxidative stress, fortifying the cellular anti-oxidant defenses and counteracting the radical overproduction imposed by different cell death stimuli. Furthermore, we report altered cytological features of mitochondria during the early phases of apoptosis induced by C(6)-ceramide and TNF-alpha. In particular, mitochondria changed in appearance, clustering in the perinuclear region and Bcl-2 expression prevented these changes from occurring.  相似文献   

9.
CDC13 encodes a telomere-binding protein that prevents degradation of telomeres. cdc13-1 yeast grown at the nonpermissive temperature undergo G2/M arrest, progressive chromosome instability, and subsequent cell death. Recently, it has been suggested that cell death in the cdc13-1 mutant is an active process characterized by phenotypic hallmarks of apoptosis and caspase activation. In this work, we show that cell death triggered by cdc13-1 is independent of the yeast metacaspase Yca1p and reactive oxygen species but related to cell cycle arrest per se. Inactivating YCA1 or depleting reactive oxygen species does not increase viability of cdc13-1 cells. In turn, caspase activation does not precede cell death in the cdc13-1 mutant. Yca1p activity assayed by cell binding of mammalian caspase inhibitors is confounded by artifactual labeling of dead yeast cells, which nonspecifically bind fluorochromes. We speculate that during a prolonged cell cycle arrest, cdc13-1 cells reach a critical size and die by cell lysis.  相似文献   

10.
Bcl-2 family proteins protect against a variety of forms of cell death, including acute oxidative stress. Previous studies have shown that overexpression of the antiapoptotic protein Bcl-2 increases cellular redox capacity. Here we report that cell lines transfected with Bcl-2 paradoxically exhibit increased rates of mitochondrial H(2)O(2) generation. Using isolated mitochondria, we determined that increased H(2)O(2) release results from the oxidation of reduced nicotinamide adenine dinucleotide-linked substrates. Antiapoptotic Bcl-2 family proteins Bcl-xL and Mcl-1 also increase mitochondrial H(2)O(2) release when overexpressed. Chronic exposure of cells to low levels of the mitochondrial uncoupler carbonyl cyanide 4-(triflouromethoxy)phenylhydrazone reduced the rate of H(2)O(2) production by Bcl-xL overexpressing cells, resulting in a decreased ability to remove exogenous H(2)O(2) and enhanced cell death under conditions of acute oxidative stress. Our results indicate that chronic and mild elevations in H(2)O(2) release from Bcl-2, Bcl-xL, and Mcl-1 overexpressing mitochondria lead to enhanced cellular antioxidant defense and protection against death caused by acute oxidative stress.  相似文献   

11.
We found that heme-binding protein 2/SOUL sensitised NIH3T3 cells to cell death induced by A23187 and etoposide, but it did not affect reactive oxygen species formation. In the presence of sub-threshold calcium, recombinant SOUL provoked mitochondrial permeability transition (mPT) in vitro that was inhibited by cyclosporine A (CsA). This effect was verified in vivo by monitoring the dissipation of mitochondrial membrane potential. Flow cytometry analysis showed that SOUL promoted necrotic death in A23187 and etoposide treated cells, which effect was prevented by CsA. These data suggest that besides its heme-binding properties SOUL promotes necrotic cell death by inducing mPT.  相似文献   

12.
The Bcl-2 family has been shown to regulate mitochondrial dynamics during cell death in mammals and C. elegans, but evidence for this in Drosophila has been elusive. Here, we investigate the regulation of mitochondrial dynamics during germline cell death in the Drosophila melanogaster ovary. We find that mitochondria undergo a series of events during the progression of cell death, with remodeling, cluster formation and uptake of clusters by somatic follicle cells. These mitochondrial dynamics are dependent on caspases, the Bcl-2 family, the mitochondrial fission and fusion machinery, and the autophagy machinery. Furthermore, Bcl-2 family mutants show a striking defect in cell death in the ovary. These data indicate that a mitochondrial pathway is a major mechanism for activation of cell death in Drosophila oogenesis.  相似文献   

13.
Transient receptor potential melastatin 2 (TRPM2) channel activation by reactive oxygen species (ROS) plays a critical role in delayed neuronal cell death, responsible for postischemia brain damage via altering intracellular Zn2+ homeostasis, but a mechanistic understanding is still lacking. Here, we showed that H2O2 induced neuroblastoma SH-SY5Y cell death with a significant delay, dependently of the TRPM2 channel and increased [Zn2+]i, and therefore used this cell model to investigate the mechanisms underlying ROS-induced TRPM2-mediated delayed cell death. H2O2 increased concentration-dependently the [Zn2+]i and caused lysosomal dysfunction and Zn2+ loss and, furthermore, mitochondrial Zn2+ accumulation, fragmentation, and ROS generation. Such effects were suppressed by preventing poly(adenosine diphosphate ribose, ADPR) polymerase-1-dependent TRPM2 channel activation with PJ34 and 3,3′,5,5′-tetra-tert-butyldiphenoquinone, inhibiting the TRPM2 channel with 2-aminoethoxydiphenyl borate (2-APB) and N-(p-amylcinnamoyl)anthranilic acid, or chelating Zn2+ with N,N,N,N-tetrakis(2-pyridylmethyl)-ethylenediamine (TPEN). Bafilomycin-induced lysosomal dysfunction also resulted in mitochondrial Zn2+ accumulation, fragmentation, and ROS generation that were inhibited by PJ34 or 2-APB, suggesting that these mitochondrial events are TRPM2 dependent and sequela of lysosomal dysfunction. Mitochondrial TRPM2 expression was detected and exposure to ADPR-induced Zn2+ uptake in isolated mitochondria, which was prevented by TPEN. H2O2-induced delayed cell death was inhibited by apocynin and diphenyleneiodonium, nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase (NOX) inhibitors, GKT137831, an NOX1/4-specific inhibitor, or Gö6983, a protein kinase C (PKC) inhibitor. Moreover, inhibition of PKC/NOX prevented H2O2-induced ROS generation, lysosomal dysfunction and Zn2+ release, and mitochondrial Zn2+ accumulation, fragmentation and ROS generation. Collectively, these results support a critical role for the TRPM2 channel in coupling PKC/NOX-mediated ROS generation, lysosomal Zn2+ release, and mitochondrial Zn2+ accumulation, and ROS generation to form a vicious positive feedback signaling mechanism for ROS-induced delayed cell death.  相似文献   

14.
Activated T cells require anti-apoptotic cytokines for their survival. The anti-apoptotic effects of these factors are mediated by their influence on the balance of expression and localisation of pro- and anti-apoptotic members of the Bcl-2 family. Among the anti-apoptotic Bcl-2 family members, the expression level of Bcl-2 itself and its interaction with the pro-apoptotic protein Bim are now regarded as crucial for the regulation of survival in activated T cells. We studied the changes in Bcl-2 levels and its subcellular distribution in relation to mitochondrial depolarisation and caspase activation in survival factor deprived T cells. Intriguingly, the total Bcl-2 level appeared to remain stable, even after caspase 3 activation indicated entry into the execution phase of apoptosis. However, cell fractionation experiments showed that while the dominant nuclear pool of Bcl-2 remained stable during apoptosis, the level of the smaller mitochondrial pool was rapidly downregulated. Signals induced by anti-apoptotic cytokines continuously replenish the mitochondrial pool, but nuclear Bcl-2 is independent of such signals. Mitochondrial Bcl-2 is lost rapidly by a caspase independent mechanism in the absence of survival factors, in contrast only a small proportion of the nuclear pool of Bcl-2 is lost during the execution phase and this loss is a caspase dependent process. We conclude that these two intracellular pools of Bcl-2 are regulated through different mechanisms and only the cytokine-mediated regulation of the mitochondrial pool is relevant to the control of the initiation of apoptosis. D. Scheel-Toellner and K. Raza have contributed equally to this study.  相似文献   

15.
The mitochondria have been shown to play a key role in the initiation of caspase activation during apoptosis. Recently, some caspases have been shown to be associated with mitochondria. In this study, we used Jurkat T-lymphoblasts to show that caspases -2 and -3 are located in the mitochondrial intermembrane space, associated with the inner membrane. Caspase-9 is associated with the outer membrane and is exposed to the cytosolic compartment. Caspase activation took place predominantly in the cytosol in response to Fas ligation, but staurosporine treatment led to caspase activation in both cytosol and mitochondria. In response to both Fas and staurosporine treatment, caspase processing could be detected earlier in cytosol than in mitochondria, but this could reflect the limits of sensitive detection by immunoblotting. Only trace amounts of Apaf-1 were found in association with the mitochondria. However, staurosporine treatment led to preferential auto-processing of caspase-9 associated with mitochondria. These findings suggest that mitochondrial caspases are regulated independently of the cytosolic pool of caspases. The data are also consistent with the notion of a caspase nucleation site associated with mitochondria. Using a stable transfected CEM cell line, we show that Bcl-2 suppressed caspase processing in both cytosolic and mitochondrial compartments in response to both staurosporine and Fas ligation.  相似文献   

16.
Programmed cell death (PCD) is essential for normal development and maintenance of tissue homeostasis in multicellular organisms. While it is now evident that PCD can take many different forms, apoptosis is probably the most well-defined cell death programme. The characteristic morphological and biochemical features associated with this highly regulated form of cell death have until recently been exclusively attributed to the caspase family of cysteine proteases. As a result, many investigators affiliate apoptosis with its pivotal execution system, i.e. caspase activation. However, it is becoming increasingly clear that PCD or apoptosis can also proceed in a caspase-independent manner and maintain key characteristics of apoptosis. Mitochondrial integrity is central to both caspase-dependent and-independent cell death. The release of pro-apoptotic factors from the mitochondrial intermembrane space is a key event in a cell's commitment to die and is under the tight regulation of the Bcl-2 family. However, the underlying mechanisms governing the efflux of these pro-death molecules are largely unknown. This review will focus on the regulation of mitochondrial integrity by Bcl-2 family members with particular attention to the controlled release of factors involved in caspase-independent cell death.  相似文献   

17.
HAMLET (Human α-lactalbumin Made Lethal to Tumor cells) triggers selective tumor cell death in vitro and limits tumor progression in vivo. Dying cells show features of apoptosis but it is not clear if the apoptotic response explains tumor cell death. This study examined the contribution of apoptosis to cell death in response to HAMLET. Apoptotic changes like caspase activation, phosphatidyl serine externalization, chromatin condensation were detected in HAMLET-treated tumor cells, but caspase inhibition or Bcl-2 over-expression did not prolong cell survival and the caspase response was Bcl-2 independent. HAMLET translocates to the nuclei and binds directly to chromatin, but the death response was unrelated to the p53 status of the tumor cells. p53 deletions or gain of function mutations did not influence the HAMLET sensitivity of tumor cells. Chromatin condensation was partly caspase dependent, but apoptosis-like marginalization of chromatin was also observed. The results show that tumor cell death in response to HAMLET is independent of caspases, p53 and Bcl-2 even though HAMLET activates an apoptotic response. The use of other cell death pathways allows HAMLET to successfully circumvent fundamental anti-apoptotic strategies that are present in many tumor cells.  相似文献   

18.
Mitochondria participate in various vital cellular processes. Violation of their functions can lead to the development of cardiovascular and neurodegenerative diseases and malignancies. One of the key events responsible for mitochondrial damage—induction of Ca2+-dependent mitochondrial permeability transition, due to the opening of a nonspecific pore in the inner mitochondrial membrane. Despite active studies of pore components, its detailed structure has not yet been established. This review analyzes possible constituents and regulators of the pore, the role of the pore in various pathologies, and hypotheses that explain the organization of the pores. Elucidation of these questions can help developing strategies for the treatment of a wide range of pathologies—from Alzheimer and Parkinson’s disease to cancer.  相似文献   

19.
20.
We investigated the properties of the permeability transition pore (PTP) in Saccharomyces cerevisiae in agar-embedded mitochondria (AEM) and agar-embedded cells (AEC) and its role in yeast death. In AEM, ethanol-induced pore opening, as indicated by the release of calcein and mitochondrial membrane depolarization, can be inhibited by CsA, by Cpr3 deficiency, and by the antioxidant glutathione. Notably, the pore opening is inhibited, when mitochondria are preloaded by EGTA or Fluo3 to chelate matrix Ca2+, or are pretreated with 4-Br A23187 to extract matrix Ca2+, prior to agar-embedding, or when pore opening is induced in the presence of EGTA; opened pores are re-closed by sequential treatment with CsA, 4-Br A23187 plus EGTA and NADH, indicating endogenous matrix Ca2+ involvement. CsA also inhibits the pore opening with low conductance triggered by exogenous Ca2+ transport with ETH129. In AEC, the treatment of tert-butylhydroperoxide, a pro-oxidant that triggers transient pore opening in high conductance in AEM, induces yeast death, which is also dependent on CsA and Cpr3. Furthermore, AEMs from mutants lacking three ADP/ATP carrier (AAC) isoforms and with defective ATP synthase dimerization exhibit high and low conductance pore openings with CsA sensitivity, respectively. Collectively, these data show that the yeast PTP is regulated by Cpr3, endogenous matrix Ca2+, and reactive oxygen species, and that it is involved in yeast death; furthermore, ATP synthase dimers play a key role in CsA-sensitive pore formation, while AACs are dispensable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号