首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drosophila embryogenesis is initiated by a series of syncytial mitotic divisions. The first nine of these divisions are internal, and are accompanied by two temporally distinct nuclear movements that lead to the formation of a syncytial blastoderm with a uniform monolayer of cortical nuclei. The first of these movements, which we term axial expansion, occurs during division cycles 4-6 and distributes nuclei in a hollow ellipsoid underlying the cortex. This is followed by cortical migration, during cycles 7-10, which places the nuclei in a uniform monolayer at the cortex. Here we report that these two movements differ in their geometry, velocity, cell-cycle dependence, and protein synthesis requirement. We therefore conclude that axial expansion and cortical migration are mechanistically distinct, amplifying a similar conclusion based on pharmacological data (Zalokar and Erk, 1976). We have examined microtubule organization during cortical migration and find that a network of interdigitating microtubules connects the migrating nuclei. These anti-parallel microtubule arrays are observed between migrating nuclei and yolk nuclei located deeper in the embryo. These arrays are present during nuclear movement but break down when the nuclei are not moving. We propose that cortical migration is driven by microtubule-dependent forces that repel adjacent nuclei, leading to an expansion of the nuclear ellipsoid established by axial expansion.  相似文献   

2.
NIMA-related kinase 6 (NEK6) regulates cellular expansion and morphogenesis through microtubule organizaiton in Arabidopsis thaliana. Loss-of-function mutations in NEK6 (nek6/ibo1) cause ectopic outgrowth and microtubule disorganization in epidermal cells. We recently found that NEK6 forms homodimers and heterodimers with NEK4 and NEK5 to destabilize cortical microtubules possibly by direct binding to microtubules and the β-tubulin phosphorylation. Here, we identified a new allele of NEK6 and further analyzed the morphological phenotypes of nek6/ibo1 mutants, along with alleles of nek4 and nek5 mutants. Phenotypic analysis demonstrated that NEK6 is required for the directional growth of roots and hypocotyls, petiole elongation, cell file formation, and trichome morphogenesis. In addition, nek4, nek5, and nek6/ibo1 mutants were hypersensitive to microtubule inhibitors such as propyzamide and taxol. These results suggest that plant NEKs function in directional cell growth and organ development through the regulation of microtubule organization.  相似文献   

3.
4.
5.
We modified a radioactive antibody binding assay in order to determine changes in the content of polymerised polymerised tubulin in lymphocytes of immunised animals is 2-4 times higher than in those of the control mice.  相似文献   

6.
The role of microtubules in guard cell function   总被引:11,自引:0,他引:11       下载免费PDF全文
Marcus AI  Moore RC  Cyr RJ 《Plant physiology》2001,125(1):387-395
Guard cells are able to sense a multitude of environmental signals and appropriately adjust the stomatal pore to regulate gas exchange in and out of the leaf. The role of the microtubule cytoskeleton during these stomatal movements has been debated. To help resolve this debate, in vivo stomatal aperture assays with different microtubule inhibitors were performed. We observed that guard cells expressing the microtubule-binding green fluorescent fusion protein (green fluorescent protein::microtubule binding domain) fail to open for all major environmental triggers of stomatal opening. Furthermore, guard cells treated with the anti-microtubule drugs, propyzamide, oryzalin, and trifluralin also failed to open under the same environmental conditions. The inhibitory conditions caused by green fluorescent protein::microtubule binding domain and these anti-microtubule drugs could be reversed using the proton pump activator, fusicoccin. Therefore, we conclude that microtubules are involved in an upstream event prior to the ionic fluxes leading to stomatal opening. In a mechanistic manner, evidence is presented to implicate a microtubule-associated protein in this putative microtubule-based signal transduction event.  相似文献   

7.
《Current biology : CB》2022,32(14):3170-3179.e4
  1. Download : Download high-res image (153KB)
  2. Download : Download full-size image
  相似文献   

8.
MICROTUBULE ORGANIZATION 1 encodes a microtubule-associated protein in Arabidopsis thaliana but different alleles have contradictory phenotypes. The original mutant mor1 alleles were reported to have disrupted cortical microtubules, swollen organs and normal cytokinesis, whereas other alleles, embryo-lethal gemini pollen 1 (gem1), have defective pollen cytokinesis. To determine whether MOR1 functions generally in cytokinesis, we examined the ultrastructure of cell division in roots of the original mor1-1 allele. Cell plates are misaligned, branched and meandering; the forming cell plates remain partly vesicular, with electron-dense or lamellar content. Phragmoplast microtubules are abundant but organized aberrantly. Thus, MOR1 functions in both phragmoplast and cortical arrays.  相似文献   

9.
Cell elongation requires directional deposition of cellulose microfibrils regulated by transverse cortical microtubules. Microtubules respond differentially to suppression of cell elongation along the developmental zones of Arabidopsis thaliana root apex. Cortical microtubule orientation is particularly affected in the fast elongation zone but not in the meristematic or transition zones of thanatos and pom2–4 cellulose-deficient mutants of Arabidopsis thaliana. Here, we report that a uniform phenotype is established among the primary cell wall mutants, as cortical microtubules of root epidermal cells of rsw1 and prc1 mutants exhibit the same pattern described in thanatos and pom2–4. Whether cortical microtubules assume transverse orientation or not is determined by the demand for cellulose synthesis, according to each root zone''s expansion rate. It is suggested that cessation of cell expansion may provide a biophysical signal resulting in microtubule reorientation.  相似文献   

10.
11.
Advances in live-cell imaging technology have provided an unprecedented look at the dynamic behaviors of the plant microtubule cytoskeleton. Recent studies revisit the classic question of how plants create cell shape through the patterned construction of the cell wall. Visualization of the cellulose synthase complex traveling in the plasma membrane has brought a watershed of new information about cellulose deposition. Observation of the cellulose synthase complex tracking precisely over the underlying cortical microtubules has provided clear evidence that the microtubule array pattern serves as a spatial template for cellulose microfibril extrusion. Understanding how the microtubules are organized into specific array patterns remains a challenge, though new ideas are arising from genetic and cell biological studies. Long-term time-lapse observations of the microtubule arrays in light-grown hypocotyl cells have revealed a striking process of microtubule patterning possibly linked to the creation of polylamellate cell walls.  相似文献   

12.
13.
Plant cell deformations are driven by cell pressurization and mechanical constraints imposed by the nanoscale architecture of the cell wall, but how these factors are controlled at the genetic and molecular levels to achieve different types of cell deformation is unclear. Here, we used stomatal guard cells to investigate the influences of wall mechanics and turgor pressure on cell deformation and demonstrate that the expression of the pectin-modifying gene PECTATE LYASE LIKE12 (PLL12) is required for normal stomatal dynamics in Arabidopsis thaliana. Using nanoindentation and finite element modeling to simultaneously measure wall modulus and turgor pressure, we found that both values undergo dynamic changes during induced stomatal opening and closure. PLL12 is required for guard cells to maintain normal wall modulus and turgor pressure during stomatal responses to light and to tune the levels of calcium crosslinked pectin in guard cell walls. Guard cell-specific knockdown of PLL12 caused defects in stomatal responses and reduced leaf growth, which were associated with lower cell proliferation but normal cell expansion. Together, these results force us to revise our view of how wall-modifying genes modulate wall mechanics and cell pressurization to accomplish the dynamic cellular deformations that underlie stomatal function and tissue growth in plants.  相似文献   

14.
? Hyponastic growth is an upward petiole movement induced by plants in response to various external stimuli. It is caused by unequal growth rates between adaxial and abaxial sides of the petiole, which bring rosette leaves to a more vertical position. The volatile hormone ethylene is a key regulator inducing hyponasty in Arabidopsis thaliana. Here, we studied whether ethylene-mediated hyponasty occurs through local stimulation of cell expansion and whether this involves the reorientation of cortical microtubules (CMTs). ? To study cell size differences between the two sides of a petiole in ethylene and control conditions, we analyzed epidermal imprints. We studied the involvement of CMT orientation in epidermal cells using the tubulin marker line as well as genetic and pharmacological means of CMT manipulation. ? Our results demonstrate that ethylene induces cell expansion at the abaxial side of the- petiole and that this can account for the observed differential growth. At the abaxial side, ethylene induces CMT reorientation from longitudinal to transverse, whereas, at the adaxial side, it has an opposite effect. The inhibition of CMTs disturbed ethylene-induced hyponastic growth. ? This work provides evidence that ethylene stimulates cell expansion in a tissue-specific manner and that it is associated with tissue-specific changes in the arrangement of CMTs along the petiole.  相似文献   

15.
In eukaryotic cells, the actin and microtubule (MT) cytoskeletal networks are dynamic structures that organize intracellular processes and facilitate their rapid reorganization. In plant cells, actin filaments (AFs) and MTs are essential for cell growth and morphogenesis. However, dynamic interactions between these two essential components in live cells have not been explored. Here, we use spinning-disc confocal microscopy to dissect interaction and cooperation between cortical AFs and MTs in Arabidopsis thaliana, utilizing fluorescent reporter constructs for both components. Quantitative analyses revealed altered AF dynamics associated with the positions and orientations of cortical MTs. Reorganization and reassembly of the AF array was dependent on the MTs following drug-induced depolymerization, whereby short AFs initially appeared colocalized with MTs, and displayed motility along MTs. We also observed that light-induced reorganization of MTs occurred in concert with changes in AF behavior. Our results indicate dynamic interaction between the cortical actin and MT cytoskeletons in interphase plant cells.  相似文献   

16.
Salt tolerance requires cortical microtubule reorganization in Arabidopsis   总被引:1,自引:0,他引:1  
Wang C  Li J  Yuan M 《Plant & cell physiology》2007,48(11):1534-1547
Although the results of some studies indicate that salt stress affects the organization of microtubules, it remains an open question whether microtubules play an active role in the plant's ability to withstand salt stress. In the present study, we showed that salt stress-induced wild-type Arabidopsis seedling roots display right-handed skewed growth and depolymerization of the cortical microtubules. The results of a long-term observational study showed that cortical microtubules depolymerized then reorganized themselves under salt stress. Stabilization of microtubules with paclitaxel resulted in more seedling death under salt stress, while disruption of microtubules with oryzalin or propyzamide rescued seedlings from death. Seedlings in which the cortical microtubules were reorganized did not succumb to salt stress. These results suggest that both depolymerization and reorganization of the cortical microtubules are important for the plant's ability to withstand salt stress. Depolymerizing microtubules by drugs rescues seedlings from death under salt stress. This rescue effect was abolished by removing calcium from the medium or treatment with a calcium channel inhibitor. Depolymerization of the microtubules is followed by an increase in the free cytoplasmic calcium concentration. The addition of calcium to the growth medium increased the number of seedlings in which recovery of the cortical microtubules occurred, whereas the removal of calcium decreased the number of seedlings in which recovery occurred. Therefore, depolymerization of the cortical microtubules raises intracellular calcium concentrations, while reorganization of the cortical microtubules and seedling survival may be mediated by calcium influx in salt stress.  相似文献   

17.
Using Xenopus egg extracts arrested in interphase or mitosis, we directly observed differences in microtubule dynamics at different stages of the cell cycle. Interphase extracts were prepared from eggs in the first interphase after meiosis. Mitotic extracts were prepared by addition of purified cyclin to interphase extracts. Microtubules were nucleated by the addition of centrosomes and visualized by fluorescence video-microscopy in extracts to which rhodamine-labeled tubulin had been added. We found a striking difference in microtubule dynamics in mitotic versus interphase extracts. Quantitative analysis revealed that the rates of polymerization and depolymerization are similar in interphase and mitosis and that within the spatial and temporal resolution of our experiments the difference in dynamics is due almost entirely to an increase in the frequency of transition from growing to shrinking (catastrophe frequency) in the mitotic extracts.  相似文献   

18.
Chick embryo retina and optic tectum cells can be dissociated into single cells and then reaggregated in suspension cultures to give highly organized and differentiated aggregates. These aggregates show a degree of cholinergic differentiation that is characteristic of each cell type; the low activity of choline acetyltransferase in the optic tectum aggregates probably reflects the condition of natural deafferentation inherent in the culture situation. It is possible, in this respect, to study the retina-tectum interaction in vitro by preparing coaggregates including both types of cells. When coaggregates are prepared from tectum and retina cells of the same developmental age, the activity of choline acetyltransferase measured in the coaggregates is consistently higher than would be expected from the simple addition of the activities of the component cells, pointing to some kind of metabolic synergism between retinal and tectal cells. As for acetylcholinesterase, this synergism occurs only under special circumstances, and it is generally less marked. No synergism was observed when retina and tectum cells of different developmental age were coaggregated, suggesting the existence of a temporal control of neuronal interaction specificity. On the other hand, the synergism is only observed between neuronal systems that are known to establish synaptic connections during normal in vivo development: No interaction could be detected when either retinal or tectal cells were combined with telencephalon, cerebellum, or liver cells. Experimental evidence is presented suggesting that the retina-tectum interaction depends on intimate cell-cell contact, and it is not mediated by freely diffusible molecules. Neurotransmission-related metabolic studies in coaggregates seem to offer a promising tool to study recognition-interaction phenomena in groups of neurons establishing synaptic links during development.  相似文献   

19.
Microtubules are dynamically unstable polymers that interconvert stochastically between growing and shrinking states by the addition and loss of subunits from their ends. However, there is little experimental data on the relationship between microtubule end structure and the regulation of dynamic instability. To investigate this relationship, we have modulated dynamic instability in Xenopus egg extracts by adding a catastrophe-promoting factor, Op18/stathmin. Using electron cryomicroscopy, we find that microtubules in cytoplasmic extracts grow by the extension of a two- dimensional sheet of protofilaments, which later closes into a tube. Increasing the catastrophe frequency by the addition of Op18/stathmin decreases both the length and frequency of the occurrence of sheets and increases the number of frayed ends. Interestingly, we also find that more dynamic populations contain more blunt ends, suggesting that these are a metastable intermediate between shrinking and growing microtubules. Our results demonstrate for the first time that microtubule assembly in physiological conditions is a two-dimensional process, and they suggest that the two-dimensional sheets stabilize microtubules against catastrophes. We present a model in which the frequency of catastrophes is directly correlated with the structural state of microtubule ends.  相似文献   

20.
Plant cells expand by exocytosis of wall material contained in Golgi-derived vesicles. We examined the role of local instability of the actin cytoskeleton in specifying the exocytosis site in Arabidopsis root hairs. During root hair growth, a specific actin cytoskeleton configuration is present in the cell's subapex, which consists of fine bundles of actin filaments that become more and more fine toward the apex, where they may be absent. Pulse application of low concentrations of the actin-depolymerizing drugs cytochalasin D and latrunculin A broadened growing root hair tips (i.e., they increased the area of cell expansion). Interestingly, recovery from cytochalasin D led to new growth in the original growth direction, whereas in the presence of oryzalin, a microtubule-depolymerizing drug, this direction was altered. Oryzalin alone, at the same concentration, had no influence on root hair elongation. These results represent an important step toward understanding the spatial and directional regulation of root hair growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号