首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim We examined evidence for the mesopredator release hypothesis at a subcontinental scale by investigating the relationship between indices of abundance of the dingo Canis lupus dingo (top‐order predator) and the invasive red fox Vulpes vulpes (mesopredator) in three large regions across mainland Australia. The red fox is known to be one of the major threats to the persistence of small and medium‐sized native vertebrates across the continent. Location Australia. Methods Indices of abundance were calculated from three independently collected datasets derived from bounty returns and field surveys. Data were analysed using univariate parametric, semi‐parametric and nonparametric techniques. Results Predator abundance indices did not conform to a normal distribution and the relationships between dingo and fox abundance indices were not well described by linear functions. Semi‐parametric and nonparametric techniques revealed consistently negative associations between indices of dingo and fox abundance. Main conclusions The results provide evidence that mesopredator suppression by a top predator can be exerted at very large geographical scales and suggest that relationships between the abundances of top predators and mesopredators are not linear. Our results have broad implications for the management of canid predators. First, they suggest that dingoes function ecologically to reduce the activity or abundance of red foxes and thus are likely to dampen the predatory impacts of foxes. More generally, they provide support for the notion that the mesopredator‐suppressive effects of top predators could be incorporated into broad‐scale biodiversity conservation programmes in many parts of the world by actively maintaining populations of top predators or restoring them in areas where they are now rare. Determining the population densities at which the interactions of top predators become ecologically effective will be a critical goal for conservation managers who aim to maintain or restore ecosystems using the ecological interactions of top predators.  相似文献   

2.
There is growing evidence that birds are able to discriminate different types of nest intruders and adjust their nest defence behaviour according to intruder dangerousness and distance from the nest (the dynamic risk assessment hypothesis). Here, we tested whether birds’ decisions about nest defence may additionally be affected by an increasing familiarity with a particular nest predator. We tested nest defence responses of great reed warblers Acrocephalus arundinaceus to a nest predator, the little bittern Ixobrychus minutus. Great reed warbler nests located close (≤7 m) to synchronously breeding little bitterns were “neighbour”, other nests were “solitary”. Great reed warbler specific aggression towards a little bittern dummy was much lower (~5-times) at neighbour than solitary nests. In contrast, generalised responses to a control innocuous intruder (the turtle dove, Streptopelia turtur) were statistically identical at neighbour and solitary nests. These patterns are in line with dynamic risk assessment hypothesis. We hypothesise that decreased great reed warbler aggression at neighbour nests also represents a specific behavioural adaptation to nesting in association with the little bittern. Little bitterns breeding closer to great reed warblers showed decreased risks of failure due to predation. However, further research is needed to experimentally test the causal links behind these patterns.  相似文献   

3.
Facultative shifts in nesting habitat selection in response to perceived predation risk may allow animals to increase the survival probability of sessile offspring. Previous studies on this behavioral strategy have primarily focused on single attributes, such as the distance moved or changes in nesting substrate. However, nest site choice often encompasses multiple habitat elements at both the nest site and nest patch scales. We studied the within-season re-nesting strategy of a multi-brooded songbird, the Brewer’s sparrow (Spizella breweri), to determine whether pairs utilized a “win-stay, lose-switch” decision rule with respect to inter-nest distance, nest substrate and/or nest patch characteristics in response to previous nest fate. Pairs moved sequential nest sites slightly farther following nest predation versus success. When inter-nest distance was controlled, however, pairs changed nest patch attributes (shrub height, potential nest shrub density) associated with probability of nest predation to a greater extent following nest predation than success. The strategy appeared to be adaptive; daily nest survival probability for previously depredated pairs increased with greater Euclidian habitat distances between attempts, whereas previously successful pairs were more likely to fledge second attempts when nest sites were similar to those of previous attempts. Our results suggest that nesting birds can use prior information and within-season plasticity in response to nest predation to increase re-nesting success, which may be a critical behavioral strategy within complex nest predator environments. Re-nesting site selection strategies also appeared to integrate multiple habitat components and inter-nest distances. The consideration of such proximate, facultative responses to predation risk may clarify often unexplained variation in habitat preferences and requirements.  相似文献   

4.
Boyle WA 《Oecologia》2008,155(2):397-403
Migration is among the best studied of animal behaviors, yet few empirical studies have tested hypotheses explaining the ultimate causes of these cyclical annual movements. Fretwell’s (1980) hypothesis predicts that if nest predation explains why many tropical birds migrate uphill to breed, then predation risk must be negatively associated with elevation. Data from 385 artificial nests spanning 2,740 m of elevation on the Atlantic slope of Costa Rica show an overall decline in predation with increasing elevation. However, nest predation risk was highest at intermediate elevations (500–650 m), not at lowest elevations. The proportion of nests depredated by different types of predators differed among elevations. These results imply that over half of the altitudinal migrant bird species in this region migrate to safer breeding areas than their non-breeding areas, suggesting that variation in nest predation risk could be an important benefit of uphill migrations of many species. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
The mesopredator release hypothesis (MRH) predicts that reduced abundance of top‐order predators results in an increase in the abundance of smaller predators (mesopredators) due to a reduction in intra‐guild predation and competition. The irruption of mesopredators that follows the removal of top‐order predators can have detrimental impacts on the prey of the mesopredators. Here we investigated the mechanisms via which the presence of a top‐order predator can benefit prey species. We tested predictions made according to the MRH and foraging theory by contrasting the abundances of an invasive mesopredator (red fox Vulpes vulpes) and an endangered prey species (dusky hopping mouse Notomys fuscus), predator diets, and N. fuscus foraging behaviour in the presence and absence of a top‐predator (dingo Canis lupus dingo). As predicted by the MRH, foxes were more abundant where dingoes were absent. Dietary overlap between sympatric dingoes and foxes was extensive, and fox was recorded in 1 dingo scat possibly indicating intra‐guild predation. Notomys fuscus were more likely to occur in fox scats than dingo scats and as predicted by the MRH N. fuscus were less abundant in the absence of dingoes. The population increase of N. fuscus following rainfall was dampened in the absence of dingoes suggesting that mesopredator release can attenuate bottom‐up effects, although it remains conceivable that differences in grazing regimes associated with dingo exclusion could have also influenced N. fuscus abundance. Notomys fuscus exhibited lower giving‐up densities in the presence of dingoes, consistent with the prediction that their perceived risk of predation would be lower and foraging efficiency greater in the presence of a top‐predator. Our results suggest that mesopredator suppression by a top predator can create a safer environment for prey species where the frequency of fatal encounters between predators and prey is reduced and the non‐consumptive effects of predators are lower.  相似文献   

6.
The energetic costs of providing parental care are widely documented, but rarely do studies consider the role of environmental variation (e.g., predation pressure) in this context. Here, we tested if variation in nest predation pressure influenced the energetic costs of parental care in smallmouth bass (Micropterus dolomieu), a teleost fish species that provides lengthy paternal care. First, we documented that nest predation pressure varied among the six lakes studied and the relative predation pressure ranking was consistent across a three year period. We used a combination of traditional proximate body composition (PBC) analyses and electromyogram (EMG) telemetry to quantify activity costs of nesting fish across these populations. The traditional approach revealed declines in energy stores across the parental care period but showed no evidence of an increased energetic cost to parents from populations with higher nest predation pressure. Comparing the distribution of EMG data from the two extremes of predation pressure revealed that males from the site of highest predation spent more time at higher EMG levels relative to the parents from the lake of lowest predation pressure. Although not statistically significant, males from the site of highest predation pressure also spent 21?C24?% of their time burst swimming when guarding young offspring compared to 10?C11?% for males at the site of lowest predation pressure. These differences in overall activity, a large contributor to the energy use of fish, may translate into longer recovery times and decreased future reproductive opportunities.  相似文献   

7.
We investigated the nest-site settlement of the forest-dwelling Tengmalm’s owl (Aegolius funereus) in the temperate zone of Central Europe (Czech Republic) over a 14-year period. We analysed the effect of changes in nest-site suitability (expressed as the proportion of deciduous forest) within the immediate surroundings of the nest boxes (a buffer radius of 25 m) in relation to nest box occupancy, the mean standardized laying date (further the laying date), occurrence of nest predation, and breeding density. In line with the predictions of the site dependence model, we found a positive relationship between the laying date and the proportion of deciduous trees in the nest box surrounding. Further, we found the interactive effect of the laying date and the proportion of deciduous forest surrounding a nest box on the occurrence of breeding attempts predated by pine martens. A higher proportion of deciduous forest was found in the surroundings of predated than non-predated breeding attempts, and a steeper positive relationship between the laying date and the proportion of deciduous forest was found in the surroundings of non-predated than predated breeding attempts. The change in the owls’ habitat utilization can be explained by the process of tree leafing which makes the deciduous forest a less suitable habitat with high risk of nest predation before tree foliage and a more suitable habitat with low risk of nest predation after tree foliage. We conclude that our results are in agreement with the site dependence model, and that the degree of foliage of deciduous forest in the nest surrounding of Tengmalm’s owl is a key factor determining site suitability due to predation risk from pine martens in Central Europe.  相似文献   

8.
The direct lethal impacts and the indirect effects predators have on prey characteristics, such as behavior, have fitness consequences for the prey. Whether the level of predation risk that prey face in the presence of multiple predator species can be predicted from a null model that sums the risk from each predator species in isolation is unclear. In field enclosures, we tested whether the predation risk experienced by Stenonema mayfly larvae from a dragonfly larva (Boyeria vinosa) and a hellgrammite (Corydalus cornutus) together matched the predictions of the multiplicative risk model. We then compared whether any deviations from the models predictions were larger in the presence of two predator species than in the presence of an equivalent density of individuals from either predator species alone, to determine if unique effects arise for the prey in the presence of multiple predator species. We also determined if prey moved preferentially into predator-free refuge spaces or decreased their movement in the presence of predators. Stenonemas risk of predation was reduced compared to the models prediction, but no unique multiple predator species effects were present because this risk reduction was comparable in magnitude to the level exhibited in the presence of each predator species alone. The prey did not move into predator-free refuge spaces in the presence of predators in the field enclosures. Thus, these predators appear to interfere interspecifically and intraspecifically, which may facilitate the coexistence of the predators and the prey.  相似文献   

9.
Do artificial nests reveal relative nest predation risk for real nests?   总被引:2,自引:0,他引:2  
Present knowledge of the effects of nest predation on spatial distribution, habitat selection and community structure of birds is to a large extent based on results from experiments with artificial nests. Although nest predation risk is likely to differ between artificial and real nests, most previous studies of nest predation using artificial nests have been lacking a proper control. We investigated whether predation rates on artificial nests predicted those on real nests by simultaneously comparing the fate of real and artificial nests (containing quail Coturnix coturnix and plasticine eggs) in 92 territories of the northern wheatear Oenanthe oenanthe in 1996. We also investigated whether risk for artificial nests was related to relative average risk for real nests in these territories (based on data collected two years before and two years after the experiment). Nest predation on artificial nests did predict relative predation risk for real nests only when quail egg depredation was used as the criterion for artificial nest predation. Despite plasticine egg depredation being the most common type of predation it was not associated with predation risk for real nests. Small mice and vole species dominated among cases with only plasticine egg depredation, while predatory mammals and snakes destroyed most quail eggs in artificial nests and most eggs in real wheatear nests. The results suggest that artificial nests may only predict the risk for real nests when the nest predator species are similar among the two types of nest. Furthermore, our data suggest that small mice and vole species rarely depredate nests of mid-sized passerine birds . Our results cast doubt on many previous conclusions based on experiments with artificial nests, since predation risk for such nests is likely to be uncorrelated with risk for real nests due to nest-type-specific differences in nest preying species.  相似文献   

10.
While considerable variations in both the frequency of extra‐pair paternity (EPP) and the behavioral events that produce it are recognized among species, populations, individuals, and breeding attempts, the determinants of these variations are surprisingly difficult to establish. Nest predation may be one such determinant, since it is the most important source of reproductive failure, and past studies have suggested a variety of reproductive flexibilities under nest predation risk. However, despite its potentially significant effect on mating behaviors, nest predation risk has rarely been discussed in association with variations in intraspecific EPP patterns. Here, we examined the effect of naturally occurring nest predation, which varied between sites, years, and breeding attempts, on patterns of EPP in 92 broods (132 adults and 710 nestlings) of the Japanese great tit Parus major minor. We found that the frequency of extra‐pair offspring was positively correlated with the nest predation rate, along with a correlation to breeding attempts in a season, but not with other factors such as individual quality or breeding density. Under high nest‐predation risk, it may be adaptive for males to search for additional extra‐pair copulation to spread the risk of losing all offspring and to invest less in mate‐guarding, which also enables females to seek additional extra‐mating. The results of this study suggest that nest predation risk, among other factors, may significantly influence paternity allocation in birds.  相似文献   

11.
Three factors and their interaction effects are increasingly recognized as important determinants of nest predation: nest concealment, nest height, and predator type. The risk of nest predation is predicted to vary across these variables because of nest detectability and accessibility. In general, however, few studies examine how these three variables interact in relation to nest predation, focusing instead on either nest concealment or nest height (whereby predator identity is usually not known). In this study, we examine the role of nest concealment and nest height for nest survival using both artificial and natural nests in the superb fairy-wren (Malurus cyaneus). We indirectly identified potential predators through marks left on artificial eggs and footprints left on tracking tunnels. Predation level at artificial nests was lower than at natural nests, and this could be due to a failure of some nest predators to locate cryptic nests in the absence of cues provided by parental activity. Our results supported the prediction that exposed and concealed nests have different levels of nest predation, which can be explained by variation in predator type. Visual predators were only detected at exposed nests, and survival from visual predators was lower for high nests that were also exposed. However, olfactory predators were detected irrespective of nest height or nest concealment. Because rodents use olfaction to locate nests, this could explain the lack of association between nest concealment and predation outcome at low nests. In addition, rodent footmarks near nests were significantly associated with rodent tooth marks on eggs.  相似文献   

12.
Experienced zebrafish Danio rerio, when subjected to visual contact with a predator, did not show elevated cortisol levels and had values similar to control fish. The main hypothesis is that experienced D. rerio know about the real relevance of this prey–predator encounter. In summary, the data presented provide evidence that experienced D. rerio does not produce elevated cortisol in response to sighting a possible predator, and might suggest that these fish can learn about dangerous situations.  相似文献   

13.
Many types of predators depredate bird nests and thus potentiallyinfluence the spatial distribution of their prey. We used asimulation model of a double-brooded songbird's nesting seasonto test three predictions about the selective advantage ofdispersing different distances after nest predation by predatorswith varying home range sizes. Our results supported the predictions that (1) dispersing birds had higher success than nondispersingbirds after predation of the first nest, (2) dispersing beyondthe home range of the nest predator increased the success ofthe second nest, and (3) birds whose first nests were depredatedearly in the nesting cycle did better by dispersing fartherthan birds whose nests were depredated later in the nestingcycle. Our results provide evidence that predation and predatorcharacteristics may cause variation in adult dispersal distancesduring the breeding season. However, we did not find an advantagefor long-distance dispersal when predators with small- or medium-sizedhome ranges were responsible for the predation event. The criticaldecisions of dispersal and dispersal distance made by adultbirds are complex, but our model demonstrates that predationevents can create a selective advantage to disperse.  相似文献   

14.
Intra-population variation in behaviour unrelated to sex, size or age exists in a variety of species. The mechanisms behind behavioural diversification have only been partly understood, but density-dependent resource availability may play a crucial role. To explore the potential coexistence of different behavioural types within a natural fish population, we conducted a radio telemetry study, measuring habitat use and swimming activity patterns of pike (Esox lucius), a sit-and-wait predatory fish. Three behavioural types co-occurred in the study lake. While two types of fish only selected vegetated littoral habitats, the third type opportunistically used all habitats and increased its pelagic occurrence in response to decreasing resource biomasses. There were no differences in size, age or lifetime growth between the three behavioural types. However, habitat-opportunistic pike were substantially more active than the other two behavioural types, which is energetically costly. The identical growth rates exhibited by all behavioural types indicate that these higher activity costs of opportunistic behaviour were compensated for by increased prey consumption in the less favourable pelagic habitat resulting in approximately equal fitness of all pike groups. We conclude that behavioural diversification in habitat use and activity reduces intraspecific competition in preferred littoral habitats. This may facilitate the emergence of an ideal free distribution of pike along resource gradients.  相似文献   

15.
An example of predator facilitation is that a microhabitat shiftin a prey species induced by one predator increases the probabilityof the prey falling victim to other predators. Least weasels(Mustela nivalis) hunt in dense plant cover, whereas kestrels(Falco tinnunculus) hunt in habitats with sparse plant cover.Field voles (Microtus agrestis), the main food of weasels andkestrels, prefer open country with a high grass layer. We simulateda multipredator environment in an aviary (3.0 x 4.8 x 2.2 m)to find out whether predator facilitation plays a role in theinteractions between voles, small mustelids, and raptors. Ineach replicate, we placed a field vole in a pen including sidesof high and low grass layers (cover and open). In a predator-freesituation, voles preferred cover but shifted to open when aweasel was introduced to cover. In the presence of a kestrel,voles occupied cover and decreased their mobility. In the presenceof a weasel plus a kestrel, voles behaved as under the kestrelrisk alone. Therefore, in these aviary circumstances, volesperceived the kestrel risk as greater than the weasel risk.Predator facilitation in the assemblage of predators subsistingon rodent prey may contribute to the crash of the four-yearvole cycle: microhabitat shift due to an avoidance of weaseljaws may drive voles to raptor talons.  相似文献   

16.
Estimates of predation rates by large predators can provide valuable information on their potential impact on their ungulate prey populations. This is especially the case for pumas Puma concolor and its main prey, mule deer Odocoileus hemionus . However, only limited information on predation rates of pumas exist where mule deer are the only ungulate prey available. I used VHF telemetry data collected over 24-h monitoring sessions and once daily over consecutive days to derive two independent estimates of puma predation rates on mule deer where they were the only large prey available. For the 24-h data, I had 48 time blocks on female pumas with kittens, 43 blocks on females without kittens and 30 blocks on males. For the daily consecutive data, the average number of consecutive days followed was 51.5±4.2 days. There were data on five female pumas with kittens, five pregnant females and nine females without kittens. Predation rates over an average month of 30 days from the 24-h monitoring sessions were 2.0 mule deer per puma month for males (15.1 days per kill), 2.1 mule deer per puma month (14.3 days per kill) for females without kittens and 2.5 mule deer per puma month (12.0 days per kill) for pregnant females and females with kittens. For the consecutive daily data, females without kittens had an estimated predation rate of 2.1±0.14 mule deer per puma month (14.9±0.90 days per kill). Pregnant and females with kittens had predation rates of 2.7±0.18 and 2.6±0.21 mule deer per puma month, respectively (11.4±0.72 and 12.0±1.1 days per kill, respectively). Predation rates estimated in this study compared with those estimated by energetic demand for pumas in the study area but were lower than other field derived estimates. These data help increase our understanding of predation impacts of large predators on their prey.  相似文献   

17.
Invasive species can strongly affect biotic interactions in ecosystems, interacting both directly and indirectly with local species. In European tomato greenhouses, the invasive alien pest Tuta absoluta may impact the population dynamics of other pests like whiteflies. Besides inducing damages to the host plant and competing for resources with local pests, this alien species may exert a predator-mediated interaction on local pests sharing common natural enemies. Biocontrol agents usually used against whiteflies may also prey upon T. absoluta and this could alter the dynamics of local pest populations. We evaluated possible resource competition and predator-mediated interactions in a system involving one mirid predator Macrolophus pygmaeus and two pests, T. absoluta and a local whitefly, Bemisia tabaci, on greenhouse tomatoes. Results showed that both resource competition and predator-mediated interactions occurred simultaneously. In the presence of the shared predator, there was a short-term positive effect of T. absoluta on B. tabaci [up to 5.9-fold increase of B. tabaci juveniles (egg + larvae) after four weeks]. However, in the long-term there was a negative predator-mediated interaction of T. absoluta on B. tabaci, i.e., after ten weeks the density of B. tabaci was 7.3-fold lower in the presence of the invasive pest. We emphasize the critical role of generalist predators in managing both local and invasive alien pest populations and that the strength and direction of predator-mediated indirect interactions can depend on the time scale considered.  相似文献   

18.
19.
Is mating of copepods associated with increased risk of predation?   总被引:1,自引:0,他引:1  
In laboratory experiments, we tested whether the cyclopoid copepodCyclops vicinus is more vulnerable to predation by juvenile(young-of-the-year) roach (Rutilus rutilus) and/or larvae ofthe phantom midge Chaoborus flavicans during mating than individualadult copepods of the same species. We also tested whether C.vicinusavoided mating, displayed shorter mating times and/or loweractivity when a predator (Chaoborus) was present, or when exposedto water in which predators (Chaoborus) were previously held.Fish ate the same quantity of pairs in copulation and individualegg-bearing females but significantly fewer females withouteggs. Chaoborus ate similar quantities of pairs and femalesbut fewer males. Pairs in copulation and egg-bearing femaleswere detected earlier by fish than individual non-ovigerousfemales or males, and pairs in copulation were captured mosteasily by fish. Cyclops vicinus mated less often when Chaoboruslarvae were present than in water in which Chaoborus was previouslyheld, or in pure tap water. However, predator presence or exposureto predator-treated water had no effect on (i.e. did not reduce)mating duration. Activity of C.vicinus pairs during copulationwas significantly lower when a predator was present, or in predator-treatedwater, than in pure tap water, and activity of pairs decreasedwith increasing activity of the predator. Although our experimentswere carried out under artificial conditions which cannot betransferred to the complex conditions in the field, they suggestthat mating in copepods is dangerous and that copepods haveevolved particular strategies to reduce the risk of predationduring mating.  相似文献   

20.
Hebblewhite M  Merrill EH 《Oecologia》2007,152(2):377-387
While migration is hypothesized to reduce predation risk for ungulates, there have been few direct empirical tests of this hypothesis. Furthermore, few studies examined multiscale predation risk avoidance by migrant ungulates, yet recent research reveals that predator–prey interactions occur at multiple scales. We test the predation risk reduction hypothesis at two spatial scales in a partially migratory elk (Cervus elaphus) population by comparing exposure of migrant and resident elk to wolf (Canis lupus) predation risk. We used GPS and VHF telemetry data collected from 67 migrant and 44 resident elk over the summers of 2002–2004 in and adjacent to Banff National Park (BNP), Canada. We used wolf GPS and VHF telemetry data to estimate predation risk as a function of the relative probability of wolf occurrence weighted by a spatial density model that adjusted for varying pack sizes. We validated the predation risk model using independent data on wolf-killed elk, and showed that combining wolf presence and spatial density best predicted where an elk was likely to be killed. Predation risk on summer ranges of migrant elk was reduced by 70% compared to within resident elk summer ranges. Because wolves avoided areas near high human activity, however, fine-scale selection by resident elk for areas near high human activity reduced their predation risk exposure to only 15% higher than migrants, a difference significant in only one of three summers. Finally, during actual migration, elk were exposed to 1.7 times more predation risk than residents, even though migration was rapid. Our results support the hypothesis that large-scale migrations can reduce predation. However, we also show that where small-scale spatial variation in predation risk exists, nonmigratory elk may equally reduce predation risk as effectively as migrants under some circumstances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号