首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
MARK4, also known as Par-1d/MarkL1, is a member of the AMP-activated protein kinase (AMPK)-related family of kinases, which are implicated in the regulation of dynamic biological functions, including glucose and energy homeostasis. However, the physiological function of MARK4 in mammals remains elusive. Here, we investigated a role for MARK4 in regulating energy homeostasis by generating mice with targeted inactivation of the mark4 gene. We show that MARK4 deficiency in mice caused hyperphagia, hyperactivity, and hypermetabolism, leading to protection from diet-induced obesity and its related metabolic complications through up-regulation of brown fat activity. Consequently, MARK4 deficiency mitigated insulin resistance associated with diet-induced obesity by dramatically enhancing insulin-stimulated AKT phosphorylation in major metabolic tissues. Ablation of MARK4 also significantly improved glucose homeostasis by up-regulating the activity and expression of AMPK kinase in key metabolic tissues. Taken together, these data identify a key role of MARK4 in energy metabolism, implicating the kinase as a novel drug target for the treatment of obesity and type 2 diabetes.  相似文献   

2.
Disturbed Wnt signaling has been implicated in numerous diseases, including type 2 diabetes and the metabolic syndrome. In the present study, we have investigated cross-talk between insulin and Wnt signaling pathways using preadipocytes with and without knockdown of the Wnt co-receptors LRP5 and LRP6 and with and without knock-out of insulin and IGF-1 receptors. We find that Wnt stimulation leads to phosphorylation of insulin signaling key mediators, including Akt, GSK3β, and ERK1/2, although with a lower fold stimulation and slower time course than observed for insulin. These Wnt effects are insulin/IGF-1 receptor-dependent and are lost in insulin/IGF-1 receptor double knock-out cells. Conversely, in LRP5 knockdown preadipocytes, insulin-induced phosphorylation of IRS1, Akt, GSK3β, and ERK1/2 is highly reduced. This effect is specific to insulin, as compared with IGF-1, stimulation and appears to be due to an inducible interaction between LRP5 and the insulin receptor as demonstrated by co-immunoprecipitation. These data demonstrate that Wnt and insulin signaling pathways exhibit cross-talk at multiple levels. Wnt induces phosphorylation of Akt, ERK1/2, and GSK3β, and this is dependent on insulin/IGF-1 receptors. Insulin signaling also involves the Wnt co-receptor LRP5, which has a positive effect on insulin signaling. Thus, altered Wnt and LRP5 activity can serve as modifiers of insulin action and insulin resistance in the pathophysiology of diabetes and metabolic syndrome.  相似文献   

3.
Tyrosine kinase pathways are known to play an important role in the activation of platelets. In particular, the GPVI and CLEC-2 receptors are known to activate Syk upon tyrosine phosphorylation of an immune tyrosine activation motif (ITAM) and hemITAM, respectively. However, unlike GPVI, the CLEC-2 receptor contains only one tyrosine motif in the intracellular domain. The mechanisms by which this receptor activates Syk are not completely understood. In this study, we identified a novel signaling mechanism in CLEC-2-mediated Syk activation. CLEC-2-mediated, but not GPVI-mediated, platelet activation and Syk phosphorylation were abolished by inhibition of PI3K, which demonstrates that PI3K regulates Syk downstream of CLEC-2. Ibrutinib, a Tec family kinase inhibitor, also completely abolished CLEC-2-mediated aggregation and Syk phosphorylation in human and murine platelets. Furthermore, embryos lacking both Btk and Tec exhibited cutaneous edema associated with blood-filled vessels in a typical lymphatic pattern similar to CLEC-2 or Syk-deficient embryos. Thus, our data show, for the first time, that PI3K and Tec family kinases play a crucial role in the regulation of platelet activation and Syk phosphorylation downstream of the CLEC-2 receptor.  相似文献   

4.
Phosphoinositide 3-kinases (PI3Ks) are critical regulators of pancreatic β cell mass and survival, whereas their involvement in insulin secretion is more controversial. Furthermore, of the different PI3Ks, the class II isoforms were detected in β cells, although their role is still not well understood. Here we show that down-regulation of the class II PI3K isoform PI3K-C2α specifically impairs insulin granule exocytosis in rat insulinoma cells without affecting insulin content, the number of insulin granules at the plasma membrane, or the expression levels of key proteins involved in insulin secretion. Proteolysis of synaptosomal-associated protein of 25 kDa, a process involved in insulin granule exocytosis, is impaired in cells lacking PI3K-C2α. Finally, our data suggest that the mRNA for PI3K-C2α may be down-regulated in islets of Langerhans from type 2 diabetic compared with non-diabetic individuals. Our results reveal a critical role for PI3K-C2α in β cells and suggest that down-regulation of PI3K-C2α may be a feature of type 2 diabetes.  相似文献   

5.
Cannabinoid system is a crucial mechanism in regulating food intake and energy metabolism. It is involved in central and peripheral mechanisms regulating such behavior, interacting with many other signaling systems with a role in metabolic regulation. Cannabinoid agonists promote food intake, and soon a cannabinoid antagonist, rimonabant, will be marketed for the treatment of obesity. It not only causes weight loss, but also alleviates metabolic syndrome. We present a review of current knowledge on this subject, along with data from our own research: genetic studies on this system in eating disorders and obesity and studies locating cannabinoid receptors in areas related to food intake. Such studies suggest cannabinoid hyperactivity in obesity, and this excessive activity may have prognostic implications.  相似文献   

6.
Glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon bind to related members of the same receptor superfamily and exert important effects on glucose homeostasis, insulin secretion, and energy regulation. The present study assessed the biological actions and therapeutic utility of novel GIP/glucagon/GLP-1 hybrid peptides. Nine novel peptides were synthesized and exhibited complete DPP-IV resistance and enhanced in vitro insulin secretion. The most promising peptide, [dA2]GLP-1/GcG, stimulated cAMP production in GIP, GLP-1, and glucagon receptor-transfected cells. Acute administration of [dA2]GLP-1/GcG in combination with glucose significantly lowered plasma glucose and increased plasma insulin in normal and obese diabetic (ob/ob) mice. Furthermore, [dA2]GLP-1/GcG elicited a protracted glucose-lowering and insulinotropic effect in high fat-fed mice. Twice daily administration of [dA2]GLP-1/GcG for 21 days decreased body weight and nonfasting plasma glucose and increased circulating plasma insulin concentrations in high fat-fed mice. Furthermore, [dA2]GLP-1/GcG significantly improved glucose tolerance and insulin sensitivity by day 21. Interestingly, locomotor activity was increased in [dA2]GLP-1/GcG mice, without appreciable changes in aspects of metabolic rate. Studies in knock-out mice confirmed the biological action of [dA2]GLP-1/GcG via multiple targets including GIP, GLP-1, and glucagon receptors. The data suggest significant promise for novel triple-acting hybrid peptides as therapeutic options for obesity and diabetes.  相似文献   

7.
Adiponectin exerts an insulin-sensitizing effect, improving insulin action in peripheral tissues and restraining insulin resistance. Here, we explore the hypothesis that adiponectin can reproduce some of the actions of insulin/leptin in the hypothalamus. The presence of AdipoR1 and AdipoR2 was mapped to the arcuate and lateral hypothalamic nuclei. Icv adiponectin reduced food intake, which was accompanied by activation/engagement of IRS1/2, ERK, Akt, FOXO1, JAK2 and STAT3. All these actions were dependent on AdipoR1, since inhibition of this receptor, and not of AdipoR2, completely reversed the effects described above. Thus, adiponectin acts in the hypothalamus, activating elements of the canonical insulin and leptin signaling pathways and promoting reduction of food intake.  相似文献   

8.

Background

Diabetes has emerged as a major threat to health worldwide.

Scope of Review

The exact mechanisms underlying the disease are unknown; however, there is growing evidence that excess generation of reactive oxygen species (ROS), largely due to hyperglycemia, causes oxidative stress in a variety of tissues. Oxidative stress results from either an increase in free radical production, or a decrease in endogenous antioxidant defenses, or both. ROS and reactive nitrogen species (RNS) are products of cellular metabolism and are well recognized for their dual role as both deleterious and beneficial species. In type 2 diabetic patients, oxidative stress is closely associated with chronic inflammation. Multiple signaling pathways contribute to the adverse effects of glucotoxicity on cellular functions. There are many endogenous factors (antioxidants, vitamins, antioxidant enzymes, metal ion chelators) that can serve as endogenous modulators of the production and action of ROS. Clinical trials that investigated the effect of antioxidant vitamins on the progression of diabetic complications gave negative or inconclusive results. This lack of efficacy might also result from the fact that they were administered at a time when irreversible alterations in the redox status are already under way. Another strategy to modulate oxidative stress is to exploit the pleiotropic properties of drugs directed primarily at other targets and thus acting as indirect antioxidants.

Major Conclusions

It appears important to develop new compounds that target key vascular ROS producing enzymes and mimic endogenous antioxidants.

General significance

This strategy might prove clinically relevant in preventing the development and/or retarding the progression of diabetes associated with vascular diseases.  相似文献   

9.
Complications of atherosclerosis are the leading cause of death of patients with type 2 (insulin-resistant) diabetes. Understanding the mechanisms by which insulin resistance and hyperglycemia contribute to atherogenesis in key target tissues (liver, vessel wall, hematopoietic cells) can assist in the design of therapeutic approaches. We have shown that hyperglycemia induces FoxO1 deacetylation and that targeted knock-in of alleles encoding constitutively deacetylated FoxO1 in mice (Foxo1(KR/KR)) improves hepatic lipid metabolism and decreases macrophage inflammation, setting the stage for a potential anti-atherogenic effect of this mutation. Surprisingly, we report here that when Foxo1(KR/KR) mice are intercrossed with low density lipoprotein receptor knock-out mice (Ldlr(-/-)), they develop larger aortic root atherosclerotic lesions than Ldlr(-/-) controls despite lower plasma cholesterol and triglyceride levels. The phenotype is unaffected by transplanting bone marrow from Ldlr(-/-) mice into Foxo1(KR/KR) mice, indicating that it is independent of hematopoietic cells and suggesting that the primary lesion in Foxo1(KR/KR) mice occurs in the vessel wall. Experiments in isolated endothelial cells from Foxo1(KR/KR) mice indicate that deacetylation favors FoxO1 nuclear accumulation and exerts target gene-specific effects, resulting in higher Icam1 and Tnfα expression and increased monocyte adhesion. The data indicate that FoxO1 deacetylation can promote vascular endothelial changes conducive to atherosclerotic plaque formation.  相似文献   

10.
The serine/threonine protein kinases Mst1 and Mst2 can be activated by cellular stressors including hydrogen peroxide. Using two independent protein interaction screens, we show that these kinases associate, in an oxidation-dependent manner, with Prdx1, an enzyme that regulates the cellular redox state by reducing hydrogen peroxide to water and oxygen. Mst1 inactivates Prdx1 by phosphorylating it at Thr-90 and Thr-183, leading to accumulation of hydrogen peroxide in cells. These results suggest that hydrogen peroxide-stimulated Mst1 activates a positive feedback loop to sustain an oxidizing cellular state.  相似文献   

11.
We showed previously that phosphorylation of Tyr53, or its mutation to Ala, inhibits actin polymerization in vitro with formation of aggregates of short filaments, and that expression of Y53A-actin in Dictyostelium blocks differentiation and development at the mound stage (Liu, X., Shu, S., Hong, M. S., Levine, R. L., and Korn, E. D. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 13694–13699; Liu, X., Shu, S., Hong, M. S., Yu, B., and Korn, E. D. (2010) J. Biol. Chem. 285, 9729–9739). We now show that expression of Y53A-actin, which does not affect cell growth, phagocytosis, or pinocytosis, inhibits the formation of head-to-tail cell streams during cAMP-induced aggregation, although individual amoebae chemotax normally. We show that expression of Y53A-actin causes a 50% reduction of cell surface cAMP receptors, and inhibits cAMP-induced increases in adenylyl cyclase A activity, phosphorylation of ERK2, and actin polymerization. Trafficking of vesicles containing adenylyl cyclase A to the rear of the cell and secretion of the ACA vesicles are also inhibited. The actin cytoskeleton of cells expressing Y53A-actin is characterized by numerous short filaments, and bundled and aggregated filaments similar to the structures formed by copolymerization of purified Y53A-actin and wild-type actin in vitro. This disorganized actin cytoskeleton may be responsible for the inhibition of intracellular and intercellular cAMP signaling in cells expressing F-Y53A-actin.  相似文献   

12.
目的筛选与人类代谢障碍性肥胖症发病病因学相似的肥胖大鼠模型,并对肥胖个体Leptin信号传导通路的改变情况进行初步研究。方法离乳雄性Wistar大鼠以高脂饲料喂养6周后,取体重增加值大的前1/4部分作为肥胖倾向组大鼠。对肥胖倾向组大鼠,继续进行高脂饲料喂养,并观察其体重、血清Leptin的变化趋势;试验49周后,大鼠处死,对内脏脂肪含量、附睾脂肪细胞大小以及下丘脑LRb(Leptin受体b亚型)表达水平及Stat3磷酸化水平(Tyr705磷酸化)进行测定。结果正常对照组大鼠和肥胖倾向组大鼠在不同饲料喂养的第17周开始体重相对增加值出现组间显著性差异;除第16周肥胖倾向组大鼠的血清Leptin浓度高于正常对照组,但不存在显著性差异之外,其它采血时间点,肥胖倾向组的血清Leptin浓度均显著高于正常对照组;动物处死后,肥胖倾向组大鼠的内脏脂肪含量和附睾脂肪细胞大小均显著大于正常对照组;两组大鼠在下丘脑LRb表达水平和细胞浆内Stat3磷酸化水平方面不存在显著性差异。结论本研究得到了与营养性肥胖人群临床表现相似的肥胖大鼠;同时发现,肥胖大鼠在长期高浓度Leptin刺激后,可能引起了中枢性Leptin抵抗,致使Leptin对体重调节的正常生理作用受到抑制,脂代谢异常的程度进一步加深,最终表现为脂肪细胞体积增大、内脏脂肪含量升高和体重增加。  相似文献   

13.
NPM-ALK is a chimeric tyrosine kinase detected in most anaplastic large cell lymphomas that results from the reciprocal translocation t(2,5)(p23;q35) that fuses the N-terminal domain of nucleophosmin (NPM) to the catalytic domain of the anaplastic lymphoma kinase (ALK) receptor. The constitutive activity of the kinase is responsible for its oncogenicity through the stimulation of several downstream signaling pathways, leading to cell proliferation, migration, and survival. We demonstrated previously that the high level of phosphatidylinositol 5-phosphate measured in NPM-ALK-expressing cells is controlled by the phosphoinositide kinase PIKfyve, a lipid kinase known for its role in vesicular trafficking. Here, we show that PIKfyve associates with NPM-ALK and that the interaction involves the 181-300 region of the oncogene. Moreover, we demonstrate that the tyrosine kinase activity of the oncogene controls PIKfyve lipid kinase activity but is dispensable for the formation of the complex. Silencing or inhibition of PIKfyve using siRNA or the PIKfyve inhibitor YM201636 have no effect on NPM-ALK-mediated proliferation and migration but strongly reduce invasive capacities of NPM-ALK-expressing cells and their capacity to degrade the extracellular matrix. Accordingly, immunofluorescence studies confirm a perturbation of matrix metalloproteinase 9 localization at the cell surface and defect in maturation. Altogether, these results suggest a role for PIKfyve in NPM-ALK-mediated invasion.  相似文献   

14.
Non-insulin-dependent diabetes mellitus is a common disease in the Pima Indians. It is familial and strongly related to obesity. Neel (1962) suggested that the introduction of a steady food supply to people who have evolved a "thrifty genotype" leads to obesity, insulin resistance, and diabetes. Our findings in the Pimas of differences in insulin sensitivity in different metabolic pathways suggest that the thrifty genotype involves the ability of insulin to maintain fat stores despite resistance to glucose disposal. The recent increase in diabetes incidence following the availability of an abundant food supply suggests that the ability to store energy efficiently during cycles of feast and famine may now lead to obesity, insulin resistance, and diabetes.  相似文献   

15.
NO synthesis is a prerequisite for proper insulin sensitivity in insulin-targeted tissues; however, the molecular basis for this process remains unclear. Using a gain-of-function model of endothelial nitric-oxide synthase (eNOS)-transfected COS-7 cells, we have shown a critical role of NO in insulin responsiveness, as evidenced by an NO-dependent increase of tyrosine phosphorylation levels of the insulin receptor and its downstream effectors insulin receptor substrate-1 and PKB/AKT. We hypothesized that NO-induced inactivation of endogenous protein-tyrosine phosphatases (PTPs) would enhance insulin receptor-mediated signaling. To test this hypothesis, we devised a new method of the PTP labeling using a cysteine sulfhydryl-reacted probe. Under the acidic conditions employed in this study, the probe recognized the reduced and active forms but not the S-nitrosylated and inactive forms of endogenous PTPs. Our data suggest that phosphatases SHP-1, SHP-2, and PTP1B, but not TC-PTP, are likely S-nitrosylated at the active site cysteine residue concomitantly with a burst of NO production in signaling response to insulin stimulation. These results were further confirmed by phosphatase activity assays. We investigated further the role of NO as a regulator of insulin signaling by RNA interference that ablates endogenous eNOS expression in endothelial MS-1 cells. We have shown that eNOS-dependent NO production is essential for the activation of insulin signaling. Our findings demonstrate that NO mediates enhancement of insulin responsiveness via the inhibition of insulin receptor phosphatases.  相似文献   

16.
目的:探讨血浆可溶性血栓调节蛋白(soluble thrombomodulin,sTM)与2型糖尿病脑梗死(type 2 diabetes mellitus cerebral infarction,DMCI)的关系及其临床意义。方法:选择2011年12月至2012年8月我科收治的急性脑梗死(acute cerebral infarction,ACO患者60例,其中DMCI患者30例,非2型糖尿病合并脑梗死(non—diabetes mellitus cerebral infarction,NDMCI)患者30例,以及同期健康体检者30例。采用酶联免疫吸附法(ELISA)检测其血浆sTM水平,并按美国国立卫生研究所脑卒中评分(NIHSS)进行临床神经功能缺损评估。结果:(1)与正常对照组相比,DMCI组及NDMCI组患者血浆sTM水平均明显升高,差异有统计学意义fP〈0.01);(2)DMCI组患者血浆sTM水平和NIHSS评分均较NDMCI组显著升高,差异有统计学意义(P〈0.01);(3)DMCI组和NDMCI组患者血浆sTM水平与NIHSS评分呈显著正相关,(r=0.785,P〈0.001)。结论:2型糖尿病脑梗死患者血浆sTM水平较正常人群显著升高,且与其神经功能缺损的严重程度呈显著正相关,检测血浆STM水平可有助于评估2型糖尿病合并脑梗死的分期、严重程度及其转归。  相似文献   

17.
The glucagon-like peptide-1 receptor (GLP-1R) is a therapeutically important family B G protein-coupled receptor (GPCR) that is pleiotropically coupled to multiple signaling effectors and, with actions including regulation of insulin biosynthesis and secretion, is one of the key targets in the management of type II diabetes mellitus. However, there is limited understanding of the role of the receptor core in orthosteric ligand binding and biological activity. To assess involvement of the extracellular loop (ECL) 2 in ligand-receptor interactions and receptor activation, we performed alanine scanning mutagenesis of loop residues and assessed the impact on receptor expression and GLP-1(1-36)-NH(2) or GLP-1(7-36)-NH(2) binding and activation of three physiologically relevant signaling pathways as follows: cAMP formation, intracellular Ca(2+) (Ca(2+)(i)) mobilization, and phosphorylation of extracellular signal-regulated kinases 1 and 2 (pERK1/2). Although antagonist peptide binding was unaltered, almost all mutations affected GLP-1 peptide agonist binding and/or coupling efficacy, indicating an important role in receptor activation. However, mutation of several residues displayed distinct pathway responses with respect to wild type receptor, including Arg-299 and Tyr-305, where mutation significantly enhanced both GLP-1(1-36)-NH(2)- and GLP-1(7-36)-NH(2)-mediated signaling bias for pERK1/2. In addition, mutation of Cys-296, Trp-297, Asn-300, Asn-302, and Leu-307 significantly increased GLP-1(7-36)-NH(2)-mediated signaling bias toward pERK1/2. Of all mutants studied, only mutation of Trp-306 to alanine abolished all biological activity. These data suggest a critical role of ECL2 of the GLP-1R in the activation transition(s) of the receptor and the importance of this region in the determination of both GLP-1 peptide- and pathway-specific effects.  相似文献   

18.
糖尿病是一种影响多器官的疾病,其并发症包括糖尿病肾病、糖尿病神经病变、糖尿病视网膜病变以及心血管病变等.由于吸入性胰岛素的使用,越来越多的人开始关注糖尿病和肺功能之间的关系以及糖尿病与肺功能损害相互影响的机制.糖尿病患者普遍存在肺功能降低,肺功能降低或可导致易患糖尿病,其相互影响机制可能与低氧血症、系统性炎症反应、胰岛素抵抗相关.长期有效的血糖控制、低氧运动和高压氧疗对改善糖尿病患者胰岛素抵抗和肺功能均有良好的作用,但更多的机制和干预方法尚待进一步研究.本文拟对糖尿病与肺功能的关系及相互影响的机制做一综述.  相似文献   

19.
The aim of this study was to investigate the role of Kupffer cell in glucose metabolism and hepatic insulin sensitivity in mice. Both phagocytic activity and secretory capacity of Kupffer cells were blunted 24 h after GdCl3 administration. Glucose tolerance - evaluated following an oral glucose tolerance test (OGTT) - was higher in GdCl3-treated mice whereas fasting insulinemia and HOMA-IR index decreased. The improvement of glucose tolerance and hepatic insulin signalling pathway after inhibition of Kupffer cells was supported by a lower hepatic gluconeogenic enzyme expression and a higher phosphorylation of Akt upon insulin challenge. Moreover, fasting hyperglycemia, insulin resistance and impaired glucose tolerance - induced by high fat (HF) diet - were improved through chronic administration of GdCl3. Interestingly, the inhibition of Kupffer cell exerted antiobesity effects in HF-fed mice, and lowered hepatic steatosis. Therefore, strategies targeting Kupffer cell functions could be a promising approach to counteract obesity and related metabolic disorders.  相似文献   

20.
Abstract: An antiserum to human 14-3-3 protein has been produced in rabbits. The protein was a poor antigen and attempts to improve immunogenicity were unsuccessful. A radioimmunoassay was developed using the antiserum, 125I- 14-3-3-2, and unlabelled 14-3-3-2 as standards. The assay had a sensitivity limit of 2.5 ng.m1−1. The minor component of human 14-3-3 protein (14-3-3-1 protein) cross-reacted to approximately 10% in the assay. Human tissues were surveyed for 14-3-3 protein by two-dimensional electrophoresis and by radioimmunoassay. Two-dimensional electrophoresis showed a 14-3-3 protein complex in brain, intestine, and testis, but not in other tissues. Radioimmunoassay showed that although brain had the highest concentration of 14-3-3 (13.3 μg. mg−1 soluble protein), immunoreactivity was present in all tissues, with the concentration in intestine and testis approaching 50% of the brain level. Lower levels (less than 1.0 μg. mg−1 soluble protein) were seen in liver, kidney, skeletal muscle, and erythrocytes. The immunoreactivity present in tissues other than brain showed the same molecular weight and charge characteristics as authentic 14-3-3 protein. The radioimmunoassay also detected 14-3-3 protein in serum (50 ng.m1−1) and in CSF (5-130 ng.ml−1). The immunoreactivity present in CSF appeared to be intact 14-3-3 protein. CSF 14-3-3 levels were measured in 82 patients with various neurological disorders. Measurements of this protein did not appear sufficiently discriminating to be o f diagnostic value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号